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Abstract It is often the case that stakeholders want to
strengthen/weaken or otherwise change their requirements
for a system-to-be when certain conditions apply at runtime.
For example, stakeholders may decide that if requirement R

is violated more than N times in a week, it should be relaxed
to a less demanding one R−. Such evolution requirements
play an important role in the lifetime of a software system
in that they define possible changes to requirements, along
with the conditions under which these changes apply. In this
paper we focus on this family of requirements, how to model
them and how to operationalize them at runtime. In addition,
we evaluate our proposal with a case study adopted from the
literature.

Keywords Requirements engineering · Modeling ·
Evolution · Requirements · Adaptive systems

1 Introduction

Adaptation and evolution are related concepts. In Biol-
ogy, individuals adapt to better fit their environment, while
species evolve when enough of their individual members
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adapt to a particular new trait. In the field of Software En-
gineering, Meir Lehman [36], proposed that software evo-
lution and maintenance processes change a software system
in accordance with laws, much like physical laws prescrib-
ing physical phenomena. Adaptive and autonomic systems,
on the other hand, include in their architecture mechanisms
through which they can change their behavior at runtime in
order to better fulfill their requirements [1, 8, 9, 29].

Support for adaptation and evolution is especially im-
portant in Requirements Engineering (hereafter RE) since
change in software systems is frequently triggered by
change in stakeholder requirements [54]. With this motiva-
tion, our research has studied different scenarios for require-
ments evolution, striving to develop adaptation and evolu-
tion mechanisms that support these scenarios. For example,
Ernst et al. [15, 17] explore the case where unanticipated
changes occur to the requirements of an operational system,
such as a new law coming into effect, or stakeholders want-
ing additional functionality.

In this paper, we are focusing on requirements that cause
the evolution of other requirements. For instance, consider
requirement evR1 = “If requirement R fails more than N

times in a row, replace it with R−”, or even evR2 = “Af-
ter January 1st 2014, replace R with R+”. Here, both re-
quirements evR1 and evR2 consist of a condition-action rule
where the action involves changing (strengthening, weaken-
ing, abandoning, . . . ) another requirement. We call such re-
quirements evolution requirements (EvoReqs for short). The
main objective of this paper is to circumscribe and charac-
terize such requirements and offer a prototype implementa-
tion for a software evolution mechanism that operationalizes
EvoReqs. EvoReqs allow us to not only specify what other
requirements need to change, but also when other strategies
should be used, such as “retry after some time” or “abort
current execution”.
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Notice that this is a big change with respect to previ-
ous works, which consider as evolution only unanticipated
changes that, therefore, are not able to be modeled, let alone
developed, a priori, e.g., [4, 15]. However, by defining re-
quirements evolution as any change in the system’s original
requirements, be it anticipated or not, it follows immedi-
ately that evolving requirements is one way of adapting to
system failures at runtime. Of course, for these evolutions
to be done automatically, all involved requirements (in the
previous example, R, R− and R+) must have already been
implemented.

Our approach is goal-oriented in the sense that require-
ments are modeled as goals that can be refined and corre-
lated to each other, while EvoReqs are modeled as Event-
Condition-Action (ECA) rules that are activated when an
event occurs and a guard condition holds. The action com-
ponent of an ECA rule consists of a sequence of primi-
tive operations on a goal model (that evolve it in accor-
dance with stakeholder wishes). Each operation results in
a primitive change to the model, e.g., removes/adds a goal
at the class or instance level, changes the state of a goal in-
stance, or undoes the effects of all executed actions for an
aborted execution. Moreover, such operations can be com-
bined using patterns in order to compose macro-level evolu-
tion strategies, such as the aforementioned Retry and Abort
cases.

Our proposal is illustrated using the classic example of
the Meeting Scheduler, improving on what has been pre-
sented in [47]. However, we validate our proposal with a
larger experiment, in which an Adaptive Computer-aided
Ambulance Dispatch (A-CAD) is designed using our ap-
proach and is then executed through simulations to see
how reasonable its evolution is. Its requirements were based
on the well-known London Ambulance Service Computer-
Aided Despatch (LAS-CAD) failure report [18] and some
of the publications that analyzed the case, e.g., [32]. For
the simulations, we have developed a framework that op-
erationalizes EvoReqs at runtime, called Zanshin.

This is an extended version of the paper [49], titled “(Re-
quirement) Evolution Requirements for Adaptive Systems”
that appears in the Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS’12).

The rest of the paper is organized as follows: Sect. 2
presents the baseline for our research, namely Goal-Oriented
Requirements Engineering, and introduces the running ex-
ample; Sect. 3 summarizes our earlier proposals for the de-
sign of adaptive systems based on feedback loops; Sect. 4
focuses on EvoReqs, showing how to specify them in the
system requirements and how they can be used to compose
adaptation strategies, including reconfiguration; Sect. 5 de-
tails the operationalization of EvoReqs at runtime through
an ECA-based process that executes adaptation strategies

in response to failures; Sect. 6 describes the experiments
conducted with the A-CAD, starting from its design as an
adaptive system using our proposal until the execution of
simulations that demonstrate how its requirements evolve at
runtime; Sect. 7 compares our approach to related work in
the fields of software adaptation and evolution; Sect. 8 dis-
cusses the work presented in this paper, pointing out some
of its limitations and opportunities for improvement; finally,
Sect. 9 concludes.

2 Goal-oriented requirements engineering

Goal-Oriented Requirements Engineering is founded on the
premise that the requirements stakeholders want to fulfill
through a new system are goals (desired states-of-affairs),
not functions that determine the functionality of the new sys-
tem. Such goals need to be modeled and analyzed through
a systematic refinement process that leads to a functional
specification for the system-to-be [13].

In our work, we use as primitives for building goal mod-
els the concepts included in the requirements ontology pro-
posed in [28]. Apart from goal, the ontology includes tasks
(aka actions or functions) that operationalize goals. As well,
our modeling framework includes softgoals, that are non-
functional requirements such as security and usability. Soft-
goals are in turn operationalized by quality constraints, such
as “There will be no more than 5 security breaches per year”.
Finally, our framework includes domain assumptions that
have to hold for a specification to fulfill requirements. For
instance, we may generate through refinement a specifica-
tion that fulfills the goal Schedule meeting through the ex-
ecution of two tasks: Collect timetables and Find time slot.
But for this plan to work, we need a domain assumption
Enough meeting rooms available without which our plan
may or may not work.

For our running example, shown in Fig. 1, we start with
the system’s main goal, Schedule meeting, we refine the
model by decomposing the goal into sub-goals (e.g., Use lo-
cal room is decomposed in two sub-goals, Find a local room
and Book room) and by operationalizing them into tasks and
domain assumptions (e.g., Collect automatically is opera-
tionalized by domain assumption Participants use the sys-
tem calendar and task Collect from system calendar).

A task operationalization is a requirement on an agent
(human or software, not represented in the model) whereas
a domain assumption operationalization is a requirement on
the environment (it is assumed to be true). Moreover, some
non-functional requirements are also represented as soft-
goals, operationalized by quality constraints, giving them
clear-cut criteria for satisfaction and avoiding a vague spec-
ification.

Refinements are of two types: AND or OR, carrying obvi-
ous Boolean semantics. OR-refinements allow us to expand
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Fig. 1 Goal model representing the requirements specification for a meeting scheduler

the space of alternatives for goal satisfaction, adding vari-
ability to the specification. Variability is very important for
adaptive systems, given that a possible means of adaptation
is to explore the solution space for a suitable alternative [47].
Variability in requirements and goals has been explored in
other works, e.g., [35].

Figure 1 also represents Awareness Requirements
(AwReqs), Variation Points and Control Variables, which
consist of new elements proposed in our past research on
the design of adaptive systems based on a feedback loop
architecture. This research is summarized next.

3 Feedback-based adaptation

Past research [1, 8, 9] has pointed out the need for sys-
tematic software engineering approaches for developing
self-adaptive systems based on ideas from control engi-
neering with focus on explicitly specified feedback loops,
which provide a generic mechanism for self-adaptation. Our
research adopts an RE perspective, which motivated the
question: what are the requirements that lead to feedback
loop functionality? This question has led us to propose a
new class of requirements, called Awareness Requirements
(AwReqs), which talk about the run-time status of other re-
quirements, such as their success or failure [48].

Furthermore, given that feedback loops are a central ele-
ment of control systems [8], we began to explore techniques

from Control Theory that could be useful in the design of
systems that use feedback loops as a mechanism for adap-
tation. We again applied our RE perspective and proposed
that System Identification—the process of determining the
rules that govern a system’s dynamic behavior—should be
conducted during the modeling of an adaptive system’s re-
quirements, using qualitative information to deal with un-
certainty [47].

The goal model shown earlier in Fig. 1 is, in fact, the
result of applying our systematic system identification pro-
cess, which starts with AwReqs elicitation. AwReqs repre-
sent noteworthy situations where stakeholders may want the
system to adapt. They also indicate how critical each re-
quirement is by specifying the degree of failure that can be
tolerated. In other words, AwReqs are used as indicators of
requirements convergence at runtime (one could, however,
adapt the process to use other kinds of indicators). Since
AwReqs can impose constraints on the success and failure
of other requirements, they enforce our RE perspective at
runtime by describing the desired behavior of the system in
terms of its requirements models.

In our running example, ten AwReqs were identified (la-
beled AR1–AR10) and represented in the model using their
proposed graphical syntax and patterns. For example, since
Characterize meeting is very important (you cannot really
do much without basic information on the meeting to sched-
ule), AR1 prescribes that it should never fail. A not-so-
critical requirement is Good participation, so AR6 enforces



V.E.S. Souza et al.

a 75% success rate on its quality constraint. AwReqs can also
talk about the trend of a requirement’s success rate, e.g.,
AR3: the success rate of Collect timetables should not de-
crease twice in a row, considering week periods.

At runtime, the elements of the goal model are repre-
sented as classes, being instantiated every time a user (or the
system itself) starts pursuing a requirement (in the case of
goals and tasks) or when they are bound to be verified (in the
case of domain assumptions and quality constraints). Fur-
thermore, the framework sends messages to these instances
when there is a change of state (e.g. when they fail or suc-
ceed). Therefore, AwReqs can refer to requirements at the
instance level (e.g., a single instance should not change its
state to Failed, like AR1) or at the class (aggregate) level
(e.g., 75% of the instances created in a specified period of
time should be in the state Satisfied, like AR6).

It can be inferred from the above description that, in
our approach, requirements (or domain assumptions) are
not necessarily treated as invariants that must always be
achieved (or should always be true). Instead, we accept the
fact that the system may fail in achieving any of its initial re-
quirements (or assumptions could turn out to be false) and,
by considering feedback loops as first class citizens in the
language, provide a way of specifying the level of critical-
ity of each requirement and monitor the system to be aware
of their failures. More details on this monitoring infrastruc-
ture and a list of AwReq patterns and their specification in an
OCL-based language can be found in [48].

The next step in the process consists of identifying pa-
rameters that, when changed, can have an effect on the rel-
evant indicators. Parameters can be of two types. Variation
Points consist of OR-refinements which are already present
in high variability systems and just need to be labeled. Ac-
cording to Semmak et al. [43], this concept originally came
from the field of feature modeling [23]. For instance, in the
Meeting Scheduler, the value of VP1 specifies if timetables
will be obtained by phone, via e-mail or automatically in
the system’s calendar. Figure 1 shows five variation points
(VP1–VP5). The OR-refinement of goal Manage meeting
was not considered a VP because it does not represent vari-
ants for the same purpose, but instead two possible outcomes
for meetings: they are either canceled beforehand or, at their
specified time, the secretary confirms if they occurred or not.

Control Variables are abstractions over large/repetitive
variation points, e.g., FhM represents From how Many par-
ticipants (a percentage) the system should collect timeta-
bles before considering the goal Collect timetables satisfied,
abstracting over the (repetitive) OR-refinements that would
have to be added in order to represent such variability. Other
variables identified for the Meeting Scheduler are:

– Required fields (RF, attached to Characterize meeting) is
an enumerated variable that can assume the values: par-
ticipants list only, short description required or full de-
scription required;

– Maximum Conflicts Allowed (MCA, attached to Let system
schedule) forces the system to choose a date in which the
number of scheduling conflicts does not surpass the value
specified in this variable;

– View private appointments (VPA, attached to Collect from
system calendar) can be either yes or no;

– Rooms for Meetings (RfM, attached to Local rooms avail-
able) indicate the number of rooms that the organization
has made available for its employees to conduct meetings.

Having identified the parameters whose change can affect
the indicators (represented by the AwReqs), the next step of
the process is to model the nature of this effect using differ-
ential relations. For instance, �(AR8/RfM)[0,maxRooms] >

0 represents the fact that, by increasing the number of Rooms
for Meetings, the domain assumption Local rooms avail-
able will be satisfied more often. The numbers between
square brackets indicate the interval in which this relation is
valid (maxRooms represents a qualitative value that should,
eventually, be replaced by a precise number).

After modeling the effect of each indicator–parameter
pair individually, a final refinement step analyzes the ef-
fects of the same indicators in combination to decide if they
are cumulative and if they can be ordered (from greatest to
smallest effect). More details on this process can be found
in [47].

Given the specification that results from this model, when
AwReqs fail at runtime, a possible adaptation strategy is to
perform reconfiguration, i.e., to change parameter values in
order to improve the failing indicators, guided by the infor-
mation represented in differential relations. In a recent pa-
per [50], we propose a framework that searches the solution
space for the best values to assign to system parameters, re-
configuring the system to adapt.

However, in this paper we focus on a different kind of
strategy, one based on changing the requirements model—
i.e., the problem space—as specified by Evolution Require-
ments. Unlike reconfiguration, which reasons over the model
to try and find the best parameter values, EvoReqs pre-
scribe specific requirement evolutions when certain situa-
tions present themselves, as illustrated in Sect. 1. We present
this new family of requirements next.

4 Evolution requirements

Evolution requirements specify changes to other require-
ments when certain conditions apply. For instance, suppose
the stakeholders provide the following requirements:

– If the meeting organizer fails to Characterize meeting
(AR1), she should retry after a few seconds;

– If there is a negative trend on the success rate of Collect
timetables for two consecutive weeks (AR3), we can toler-
ate this at most once per trimester, relaxing the constraint
to three weeks in a row;
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– If local rooms are often unavailable (AR8), the Meet-
ing Scheduler software cannot autonomously create new
rooms (i.e., increase RfM). This task should be delegated
to the management;

– If we realize that the domain assumption Participants use
the system calendar is not true, replace it with a task that
will enforce the usage of the system calendar.

We propose to represent these requirements by means of
sequence of operations over goal model elements, in a way
that can be exploited at runtime by an adaptation framework,
which, acting like a controller in a control system, sends
adaptation instructions to the target system. We call them
Evolution Requirements (EvoReqs).

EvoReqs and AwReqs (cf. Sect. 3) complement one an-
other, allowing analysts to specify the requirements for a
feedback loop that operationalizes adaptation at runtime:
AwReqs indicate the situations that require adaptation and
EvoReqs prescribe what to do in these situations. It is im-
portant to note, however, that EvoReqs are not the only way
to adapt to AwReq failures (we briefly discussed reconfigu-
ration in the previous section). Analogously, AwReq failures
are not the only event that can trigger EvoReqs (the frame-
work proposed herein can be adapted to respond to, e.g.,
scheduled events).

The following subsections present EvoReqs, starting with
low-level operations on requirements (4.1), then defining
patterns to represent common adaptation strategies using
these operations (4.2) and how this framework can accom-
modate reconfiguration as one possible strategy (4.3).

4.1 EvoReq operations

Figure 2 shows a conceptual architecture for a run-time
adaptation framework. The Monitor component has been
proposed in [48] and includes an instrumentation phase
which augments the target system with logging capabili-
ties. Here, the term target system is used as in Control The-
ory, i.e., the base system around which one defines a feed-
back loop (e.g., see [26]). By analyzing the requirements
(goal model with AwReqs, parameters, etc.) and the log en-
tries, this component is able to conclude if and when certain
AwReqs have failed.

Fig. 2 Conceptual architecture for a run-time adaptation framework

These failures should then trigger an Adapt component
that decides which requirement evolution operations the tar-
get system should execute (this decision process is fur-
ther discussed in Sect. 5). These operations are obtained
from the specification of EvoReqs, which are also part of
the requirements depicted in Fig. 2. EvoReqs, thus, are
specified as a sequence of primitive operations which have
an effect on the target system (TS) and/or on the adap-
tation framework (AF) itself, effectively telling them how
to change (or, using a more evolutionary term, “mutate”)
the requirements model in order to adapt. The existing
operations and their respective effects are shown in Ta-
ble 1 (the set of operations could be extended if neces-
sary).

As can be seen in the table, adaptation instructions have
arguments which can refer to, among other things, sys-
tem actors (A), requirements classes (upper-case R) or in-
stances (lower-case r) and system parameters (p) and their
values (v). Actors can be provided by any diagram that
models external entities that interact with the system, e.g.,
i� Strategic Dependency models [53]. Requirements class-
es/instances are provided by the monitoring component [48],
which represents the elements of the requirements model
as UML classes each extending the appropriate class from
the diagram shown in Fig. 3. As mentioned in Sect. 3,
run-time instances of these elements (such as the vari-
ous meetings being scheduled) are then represented as ob-
jects that instantiate these classes. Finally, parameters are
elicited during system identification, as also explained in
Sect. 3.

Instructions apply-config and find-config also
refer to configurations (C) and algorithms (algo), which
will be further explained in Sect. 4.3.

Below, we show the specification of one of the examples
presented earlier in this section: retry a goal when it fails.

t’ = new-instance(T_CharactMeet);
copy-data(t, t’);
terminate(t);
rollback(t);
wait(5s);
initiate(t’);

Here, t represents an instance of task Characterize meet-
ing, referred to by the instance of AwReq AR1 that failed.
The framework then creates another instance of the task,
tells the target system to copy the data from the execution
session of the failed task to the one of the new task, to termi-
nate the failing components and rollback any partial changes
made by them. After 5s, the framework finally instructs the
target system to initiate the new task, thus accomplishing
“retry after a few seconds”.

Although evolution operations are generic, their effects
on the target system are application-specific. For exam-
ple, instructing the system to try a requirement again could
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Table 1 Requirement evolution operations and their effect on the target system (TS) and/or the adaptation framework (AF)

Instruction Effect

abort(ar) TS should “fail gracefully”, which could range from just showing an error message to shutting the entire
system down, depending on the system and the AwReq ar that failed.

apply-config(C, L) TS should change from its current configuration to the specified configuration C. Argument L indicates if
the change should occur at the class level (for future executions) and/or at the instance level (for the current
execution).

change-param([R|r],
p, v)

TS should change the parameter p to the value v for either all future executions of requirement R or the
requirement instance r currently being executed

copy-data(r, r’) TS should copy the data associated with performative requirement instance r (e.g., data provided by the
user) to instance r’.

disable(R), suspend(r) TS should stop trying to satisfy requirement instance r in the current execution, or requirement R from
now on. If r (or R) is an AwReq, AF should stop evaluating it.

enable(R), resume(r) TS should resume trying to satisfy requirement instance r in the current execution, or requirement R from
now on. If r (or R) is an AwReq, AF should resume evaluating it.

find-config(algo, ar) AF should execute algorithm algo to find a new configuration for the target system with the purpose of
reconfiguring it. Other than the AwReq instance ar that failed, AF should provide to this algorithm the
system’s current configuration and the system’s requirements model.

initiate(r) TS should initialize the components related to r and start pursuing the satisfaction of this requirement
instance. If r is an AwReq instance, AF should immediately evaluate it.

new-instance(R) AF should create a new instance of requirement R.

rollback(r) TS should undo any partial changes that might have been effected while the satisfaction of performative
requirement instance r was being pursued and which would leave the system in an inconsistent state, as in,
e.g., Sagas [21].

send-warning(A, ar) TS should warn actor A (human or system) about the failure of AwReq instance ar

terminate(r) TS should terminate any component related to r and stop pursuing the satisfaction of this requirement
instance. If r is an AwReq instance, AF should no longer consider its evaluation.

wait(t) AF should wait for the amount of time t before continuing with the next operation. TS is also informed of
the wait in case changes in the user interface are in order during the waiting time.

wait-for-fix(ar) TS should wait for a certain condition that indicates that the problem causing the failure of AwReq ar has
been fixed.

Fig. 3 Class model for requirements in GORE, adapted from [48]

mean, depending on the system and the requirement, retry-
ing some operations autonomously or showing a message
to the user explaining that she should repeat the actions she

has just performed. Therefore, in order to be able to carry
out these operations, the target system is supposed to im-
plement an Evolution API that receives all operations of Ta-
ble 1, for each requirement in the system’s model. Obvi-
ously, as with any other requirement in a specification, each
operation–requirement pair can be implemented on an as-
needed basis.

Revisiting the previous example, copy-data should
tell the Meeting Scheduler to copy the data related to the task
that failed (e.g., information on the meeting that has already
been filled in the system) to a new user session, termi-
nate closes the screen that was being used by the meeting
organizer to characterize the meeting, rollback deletes
any partial changes that might have been saved, wait shows
a message asking the user to wait for 5s and, finally, ini-
tiate should open a new screen associated with the new
user session so the meeting organizer can try again. All
this behavior is specific to the Meeting Scheduler and the
task at hand and the way it will be implemented depends
highly on the technologies chosen during its architectural
design.
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4.2 Adaptation strategies as patterns

The operations of Table 1 allow us to describe different
adaptation strategies in response to AwReqs failures using
EvoReqs. However, many EvoReqs might have similar struc-
tures, such as “wait t seconds and try again, with or without
copying data”. Therefore, to facilitate their elicitation and
modeling, we propose the definition of patterns1 that repre-
sent common adaptation strategies. Table 2 shows the spec-
ification for some EvoReq patterns.

A strategy is defined by a name, a list of arguments that
it accepts (with optional default values) and an algorithm
(composed of Java™-style pseudo-code and evolution op-
erations) to be carried out when the strategy is selected.
For instance, Retry is defined with two parameters: copy,
of Boolean type and with default value true; and time,
of long integer type and no default value (which makes it
mandatory when this pattern is used).

Moreover, strategies are usually associated to failures of
AwReqs and, therefore, we can also refer to the instance
of the AwReq that failed using the keyword awreq in the
pseudo-code. In other words, awreq is an implicit param-
eter that is available in all strategy definitions. Taking the
Retry strategy again as an example, we can see that the
failed AwReq’s target is assigned to variable r in the first
line of the pseudo-code. Consequently, assuming that time
is represented in milliseconds, the example from Sect. 4.1
could be more concisely expressed as Retry(5000).

It is important to note, however, that the list in Table 2 is
not intended to be exhaustive and new strategies can be cre-
ated as needed. For instance, one could take inspiration from
the design patterns for adaptation cataloged by Ramirez and
Cheng [41]. After strategies have been elicited and repre-
sented as patterns, they can be associated with AwReqs and
added to the requirements specification.2 The use of patterns
also allows us to add adaptation strategies to the goal model,
as shown in Fig. 4. This portion of the Meeting Scheduler’s
model shows the Retry(5000) pattern associated with
failures of AwReq AR1.

4.3 Reconfiguration

According to Wang and Mylopoulos [51], a system configu-
ration is “a set of tasks from a goal model which, when ex-
ecuted successfully in some order, lead to the satisfaction of

1Here, we use the term pattern in its more general sense: “a form
or model proposed for imitation” or “something designed or used
as a model for making things” (cf. http://www.merriam-webster.com/
dictionary/pattern). The reader should not confuse it with design pat-
tern, a more common use for this word in Software Engineering.
2Note that, for consistency reasons, even a very simple EvoReq like
aborting (which consists of a single operation) is represented as a strat-
egy through the use of the pattern Abort.

Fig. 4 Graphical representation
of an adaptation strategy in
response to an AwReq failure

the root goal”. We add to this definition the values assigned
to each control variable elicited during system identification
(cf. Sect. 3). Reconfiguration, then, is the act of replacing the
current configuration of the system with a new one in order
to adapt.

As mentioned before, EvoReqs are the focus of this work
and we have proposed a reconfiguration framework in a sep-
arate publication [50]. However, the EvoReqs framework
proposed herein was designed in a way to facilitate the inte-
gration with one or more reconfiguration components. This
is done by considering Reconfiguration a type of adaptation
strategy. EvoReqs can, thus, be used to specify that stake-
holders would like to use reconfiguration, in one of two
ways:

1. If stakeholders wish to apply a specific reconfiguration
for a given failure, instructions like change-param,
enable/disable and initiate/terminate can
be used to describe the precise changes in requirements
at class and/or instance level;

2. Instead, if there is no specific way to reconfigure, a re-
configuration algorithm that is able to compare the dif-
ferent alternatives should be executed using the find-
config instruction, after which apply-config is
called to inform the target system about the new config-
uration.

Below, we show the pattern that describes the adapta-
tion strategy of option 2. The strategy receives as arguments
an algorithm to find the new configuration, the AwReq that
failed and thus triggered the strategy and the level at which
the changes should be applied: class (future executions), in-
stance (current execution) or both.

Reconfigure(algo: FindConfigAlgorithm, ar:
AwReq, level: Level = INSTANCE) {
C’ = find-config(algo, ar)
apply-config(C’, level)

}

The state-of-the-art on goal-based adaptive systems pro-
vides several algorithms that are capable of finding a new
system configuration. Wang and Mylopoulos [51] propose
algorithms that suggest a new configuration without the
component that has been diagnosed as responsible for the
failure; Nakagawa et al. [38] developed a compiler that

http://www.merriam-webster.com/dictionary/pattern
http://www.merriam-webster.com/dictionary/pattern
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Table 2 Some EvoReq patterns and their specifications based on the evolution operations of Table 1

Abort() {
abort(awreq);

}

Delegate(a : Actor) {
send-warning(a, awreq);
wait-for-fix(awreq);

}

RelaxDisableChild(r : Requirement = awreq.target; level : Level = INSTANCE; child : Requirement)
{
if ((level == CLASS) || (level == BOTH)) {

disable(child.class);
}

if ((level == INSTANCE) || (level == BOTH)) {
suspend(r);
terminate(child);
if (child.class = PerformativeRequirement) rollback(child);
suspend(child);
resume(r);

}
}

Replace(r : Requirement = awreq.target; copy : boolean = true; level : Level = INSTANCE; r’ :
Requirement) {
R = r.class;
R’ = r’.class;
if ((level == CLASS) || (level == BOTH)) {

disable(R);
enable(R’);

}

if ((level == INSTANCE) || (level == BOTH)) {
if (R = PerformativeRequirement) && (R’ = PerformativeRequirement) && (copy) copy-data(r,

r’);
terminate(r);
if (R = PerformativeRequirement) rollback(r);
suspend(r);
initiate(r’);

}
}

Retry(copy: boolean = true; time: long) {
r = awreq.target; R = r.class;
r’ = new-instance(R);
if (copy) copy-data(r, r’);
terminate(r); rollback(r);
wait(time);
initiate(r’);

}

StrengthenEnableChild(r : Requirement = awreq.target; level : Level = INSTANCE; child :
Requirement) {
if ((level == CLASS) || (level == BOTH)) {

enable(child.class);
}

if ((level == INSTANCE) || (level == BOTH)) {
suspend(r);
resume(child);
initiate(child);
resume(r);

}
}

Warning(a : Actor) {
send-warning(a, awreq);

}
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generates architectural configurations by performing con-
flict analysis on KAOS goal models [34]; Fu et al. [20]
use reconfiguration to repair systems based on an elabo-
rate state-machine diagram that represents the life-cycle of
goal instances at runtime; Peng et al. [39] assign preference
rankings to softgoals (which can be dynamically changed
at runtime) and determine the best configuration using a
SAT solver; Khan et al. [30] apply Case-Based Reasoning to
the problem of determining the best configuration; Dalpiaz
et al. [12] propose an algorithm that finds all valid vari-
ants to satisfy a goal and compares them based on their cost
and benefit. Moreover, in [11], reconfiguration is discussed
in terms of interaction among autonomous, heterogeneous
agents based on commitments.

Note that different reconfiguration algorithms may re-
quire different information from the model. For instance,
[51] requires a goal model and a diagnosis pointing to the
failing component, whereas [39] needs the preference rank-
ings of softgoals. Analysts should provide the required in-
formation accordingly.

5 The Zanshin framework

To operationalize EvoReq adaptation strategies at runtime
in response to AwReq failures, we have developed a proto-
type framework called Zanshin (named after a term used in
the Japanese martial arts that refers to a state of awareness).
Zanshin receives notifications from the monitoring compo-
nent about AwReq failures and executes an adaptation pro-
cess that is explained in Sect. 5.1. Then, Sect. 5.2 presents
more details on the framework’s implementation.

5.1 The adaptation process

Using the language described in Sect. 4, requirements en-
gineers can specify stakeholders’ EvoReqs in a precise way
(based on clearly-defined primitive operations) that can also
be exploited at runtime by an adaptation framework (e.g.,
Fig. 2). However, more than one EvoReq can be associated
to each requirement divergence, which prompts the need for
a process that coordinates their execution.

Here, we propose a process based on ECA rules for the
execution of adaptation strategies in response to system fail-
ures. This process is summarized in the algorithm shown
in Fig. 5, which manipulates instances of the classes repre-
sented in the class model of Fig. 6.

The process is triggered by AwReq evaluations, indepen-
dent of the AwReq instance’s final state (Success, Failed or
Canceled). For instance, let us recall one of the examples
in the beginning of Sect. 4: say the weekly success rate of
Collect timetables has decreased twice in a row, causing the
failure of AR3 and starting the ECA process.

� �

1 processEvent(ar : AwReq) {
2 session = findOrCreateSession(ar.class);
3 session.addEvent(ar);
4 solved = ar.condition.evaluate(session);
5 if (solved) break;
6
7 ar.selectedStrategy = null;
8 for each s in ar.strategies {
9 appl = s.condition.evaluate(session);

10 if (appl) {
11 ar.selectedStrategy = s;
12 break;
13 }
14 }
15
16 if (ar.selectedStrategy == null)
17 ar.selectedStrategy = ABORT;
18
19 ar.selectedStrategy.execute(session);
20 ar.condition.evaluate(session);
21 }

� �

Fig. 5 Algorithm for responding to AwReq failures

Fig. 6 Entities involved in the ECA-based adaptation process

The algorithm begins by obtaining the adaptation session
that corresponds to the class of said AwReq, creating a new
one if needed (line 2). As shown in Fig. 6, an adaptation ses-
sion consists of a series of events, referring to AwReq evalu-
ations. This time-line of events can be later used to check if a
strategy is applicable or if the problem has been solved (i.e.,
if the adaptation has been successful). Active sessions are
stored in a repository (e.g., a hash table indexed by AwReq
classes attached to the user session) which is managed by
the findOrCreateSession() procedure. In the exam-
ple, assuming it is the first time AR3 fails, a new session will
be created for it.

Then, the process adds the current AwReq’s evaluation
as an event to the active session, immediately evaluates if
the problem has been solved—this is done by considering
the AwReq’s resolution condition, which analyzes the ses-
sion’s event time-line—and stops the process if the answer
is affirmative (3–5). For example, the trivial case is consid-
ering the problem solved if the (next) AwReq evaluates to
success, but this abstract class can be extended to provide
different kinds of resolution conditions, including, e.g., in-
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volving a human-in-the-loop to confirm if the problem has
indeed been solved, organizing conditions into AND/OR-
refinement trees (like in a goal model), etc. For the run-
ning example, let us say that AR3 has been associated with
the aforementioned simple resolution condition. Since the
AwReq’s state is Failed, the session is not considered solved
and the algorithm continues.

If the current AwReq evaluation does not solve the issue,
the process continues to search for an applicable adapta-
tion strategy to execute in order to try and solve it (7–14).
It does so by going through the list of strategies associated
with the AwReq that failed in their predefined order (e.g.,
preference order established by the stakeholders) and evalu-
ating their applicability conditions, breaking from the loop
once an applicable strategy has been found. As with Reso-
lutionCondition, ApplicabilityCondition is
also abstract and should be extended to provide specific
kinds of evaluations. For instance, apply a strategy “at most
N times per session/time period”, “at most in X% of the fail-
ures/executions”, “only during specified periods of the day”,
AND/OR-refinements, etc. (patterns can be useful here).
Some conditions might even need to refer to some domain-
specific properties or contextual information. If no applica-
ble strategy is found, the process falls back to the Abort strat-
egy (16–17).

Back to the running example, imagine now that the
Meeting Scheduler designers have associated two strate-
gies to AR3. First, relax it by replacing AR3 with AR3’,
which verifies if the success rate has decreased not in
two, but in three consecutive weeks (i.e., not TrendDe-
crease(G_CollectTime, 7d, 3)). This strategy is
associated with a condition that constraints its applicability
to at most once a trimester. Second, the Warning strategy is
also associated with AR3, sending a message to the IT sup-
port staff so they can take corrective action. To this strategy
a simple applicability condition is associated, which always
returns true. Therefore, if this is the first time AR3 fails in
the past three months, it will be relaxed to AR3’, otherwise
the Warning strategy will be selected.

After the strategy is selected, it is executed and the ses-
sion is given another chance to evaluate its resolution (some-
times we would like to consider the issue solved after apply-
ing a specific strategy, independent of future AwReq evalua-
tions, e.g. when we use Abort). When an adaptation session
is considered resolved, it should be terminated, which marks
it as no longer being active. At this point, future AwReq eval-
uations would compose new adaptation sessions. Instead, if
the algorithm ends without solving the problem, the frame-
work will continue to work on it when it receives another
AwReq evaluation and retrieves the same adaptation session,
which is still active. Some adaptation strategies can force a
re-evaluation of the AwReq when executed, which guaran-
tees the continuity of the adaptation process.

For the AR3 example, the session would remain active
until another month has passed and AR3’ is checked again.
If the success rate increases, then AR3’ will be satisfied, trig-
gering another call to processEvent(), which would
find AR3’s session and, according to the resolution condi-
tion, consider it solved and terminate it. If the rate decreases
one more time, though, the Warning strategy is used and the
session remains active until the following week. In Sect. 6,
when we discuss the experiments with an ambulance dis-
patch system (A-CAD), this adaptation process is depicted
once again with another example.

As this example illustrated, information on resolution and
applicability conditions should be present in the require-
ments specification in order for the adaptation framework
to use this process. We do not propose any particular syntax
for the inclusion of this information in the specification (as
will be shown later, in our experiments we have used a sim-
ple tabular notation). Furthermore, the ECA-based process
is only one possible solution for the coordination and execu-
tion of adaptation strategies in response to AwReq failures at
runtime. It can be replaced or combined with other processes
that use EvoReqs and any extra specification necessary (e.g.
applicability and resolution conditions) to: (a) select the best
strategy to apply; (b) execute it; (c) check if the problem has
been solved; (d) loop back to the start if it has not.

5.2 Implementation

To demonstrate the value EvoReqs can bring to the devel-
opment of adaptive systems, we have developed the Zan-
shin framework together with a simulation component as the
target system that mimics failure situations that could oc-
cur at runtime. In what follows, we provide more detail on
the framework implementation. Section 6 describes experi-
ments with the A-CAD and how it was simulated in Zanshin.

The framework was implemented as OSGi bundles
(Core, Logging, Monitoring, Adaptation and Simulation)
and their source code is available for download (http://
github.com/vitorsouza/Zanshin). The Core bundle exposes
four service interfaces, based on the conceptual architecture
shown in Fig. 2, each of which implemented by a different
bundle:

– Monitoring Service: monitors the log provided by the tar-
get system and detects changes of state in AwReq in-
stances, submitting these to the Adaptation Service. This
component is further described in [48];

– Adaptation Service: implements the ECA-based adapta-
tion process described in Fig. 5 (Sect. 5.1), analyzing the
requirements specification and deciding which adaptation
strategy to execute next;

– Target System Controller Service: implemented by the
Simulation bundle, serves as a bridge between the adap-
tation framework and the target system, by implementing

http://github.com/vitorsouza/Zanshin
http://github.com/vitorsouza/Zanshin
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the operations of Table 1, which are called by the executed
adaptation strategies;

– Repository Service: implemented by the Core bundle it-
self, stores the instances of the requirements models that
are used by the other services.

Requirements models are specified using Eclipse Mod-
eling Framework (EMF) meta-models: the Core component
provides the basic GORE classes (cf. Fig. 3) and the classes
involved in the ECA-based process (cf. Fig. 6). These meta-
models are extended by the Simulation bundle to provide
classes representing the requirements of the target system.
For example, for the Meeting Scheduler there would be one
EMF class for each requirement of the goal model shown
earlier in Fig. 1, extending the appropriate GORE/ECA
classes.

Finally, the target system’ requirements specification can
be written as an EMF model, to be read by the framework,
represented in memory as Java™ objects (using EMF’s API)
and stored in the Repository Service when the target sys-
tem is executed. This way, the EMF model represents the
requirements at the class level, whereas the objects stored
in the Repository Service for each execution represent the
requirements at the instance level.

At runtime, when the Monitoring Service detects an
AwReq has changed state, it notifies the Adaptation Service,
which executes the adaptation process described earlier in
Sect. 5.1. When the adaptation strategy is chosen and exe-
cuted, EvoReq operations are sent to the Target System Con-
troller Service, which is responsible for adapting the target
system. An example of this entire process is illustrated in the
next section.

6 Experiments

An important aspect of any research proposal is valida-
tion. Hevner et al. [27] describe five categories of evalua-
tion methods in Design Science: Observational, Analytical,
Experimental, Testing and Descriptive. Methods range from
simple description of scenarios up to full-fledge case stud-
ies which are conducted in business environments. In the
previous section, we have used descriptive methods—in the
form of scenarios and informed argument—to illustrate the
usefulness of our approach. In this section, we describe the
application of experimental methods of evaluation—in par-
ticular, controlled experiments and simulations—that have
been conducted using a larger experiment.

6.1 The A-CAD system

In order to provide initial validation of our proposed ap-
proach, we have conducted an experiment on the design

of an Adaptive Computer-aided Ambulance Dispatch (A-
CAD) system and its simulation at runtime using the Zan-
shin framework. The A-CAD was based on the report on the
failure of the London Ambulance Service Computer Aided
Despatch (LAS-CAD) System [18]. This case study was
first presented at the 8th International Workshop on Soft-
ware Specification and Design [19] and became an exemplar
in the Software Engineering community, being further ana-
lyzed in other venues such as the European Journal of Infor-
mation Systems [5], the Journal of the Brazilian Computer
Society [6], ACM SIGSOFT Software Engineering Notes
[32], etc.

Being a real system and having so much available
information—due to its failure and subsequent inquiry—
makes the LAS-CAD a good choice for validation of new
research proposals. In the case of our research on adaptive
systems, this is especially true, given that the success of
the LAS-CAD “would depend on the near 100% accuracy
and reliability of the technology in its totality. Anything less
could result in serious disruption to LAS operations” [18].
An adaptive CAD system could try and avoid the “serious
disruptions” in its operations through adaptation.3

In a technical report [46], we describe in detail the re-
quirements elicitation process (both early and late require-
ments) and the application of our approach for the de-
sign of adaptive systems, including the identification of
sixteen Awareness Requirements (AR1–AR16), five varia-
tion points (VP1–VP5), four control variables (NoC/Number
of Calls, NoSM/Number of Staff Members, MST/Minimum
Search Time, LoA/Level of Automation) and over thirty dif-
ferential relations between indicators and parameters. Fig-
ure 7 shows the final (GORE-based) requirements specifica-
tion for the A-CAD.

Analyzing the failure report and the different publica-
tions mentioned above, we have identified several failures
which were considered as possible causes for the LAS-CAD
demise, such as system misusage, transmission problems,
unreliable software, call flooding, slow response speed,
problems with the use of Mobile Data Terminals (MDTs),
etc. Then, AwReqs were modeled so a feedback loop con-
troller would be aware of these possible failures and would
try to adapt to them. For instance, to address slow response
speeds, four AwReqs were attached to the quality constraints

3Note, however, that is not our intention to prove that the LAS would
not have failed if it had been built as an adaptive system using our pro-
posal. Many of the analyses conducted over the failure indicate that
the procurement and the development processes were flawed, produc-
ing a bad quality system in general. Hence, if adaptation mechanisms
had been developed to work with the LAS, there is no guarantee these
would have been properly developed and have good quality and would
therefore also be prone to failure. Our objectives here are to learn from
the problems detected in the LAS in order to identify critical require-
ments and use those to develop a new system which would, in theory,
be designed properly and have good quality in general.
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Fig. 7 The goal model for the A-CAD system, after applying our approach for the design of adaptive systems

of softgoals Fast dispatch, Fast arrival and Fast assistance;
to try and mitigate call flooding, AwReqs have been associ-
ated with domain assumption Up to <NoC> calls per day
(where the Number of Calls is calculated given the Number
of Staff Members working, which allows management to in-
crease it by hiring new employees), and so forth.

After parameters and differential relations have been
modeled during System Identification, adaptation strategies
were associated with each AwReq, specifying the adapta-
tion part that follows monitoring in the feedback loop. Ta-
ble 3 specifies an ordered list of adaptation strategies to
be executed, in the specified order, in case their associated
AwReq fails. AwReq patterns refer to elements of the goal
model using mnemonics (the letter that precedes the under-
score indicates the type of element—Goal, Task, Domain
assumption, or Quality constraint). Moreover, the Recon-
figure() pattern had its parameters omitted due to our
focus here being on EvoReqs. The complete table can be
seen in [46] and details on the reconfiguration algorithms
that were used are in [50].

6.2 Experiments with the A-CAD

With the parts of the specification of the A-CAD that are
provided by Fig. 7 and Table 3, we were able to simulate

run-time failures of this system to evaluate the response of
the Zanshin framework and the effectiveness of our propos-
als.

The first step consists in encoding the specification of the
A-CAD in an EMF model so, as explained in Sect. 5.2, the
framework can parse it and create an in-memory representa-
tion of the system requirements for every system execution.
Figure 8 shows parts of this EMF model—points of ellip-
sis (. . .) indicate sections of the model that were omitted for
brevity.

This model excerpt shows the specification of goal Reg-
ister call, its child tasks (Input emergency information and
Detect caller location) and ancestor goals (Call taking and
Generate optimized dispatching instructions) in lines 3–9.
Line 15 contains the specification of AwReq AR15, which
refers to Register call as its target using EMF’s syntax for
references within a model (i.e., starting at the root goal, nav-
igate to the child with index 0, then in that element navigate
to the child of index 1).

AR15 is specified to have a simple resolution condition—
i.e., if the AwReq evaluation succeeded, the problem is
solved—and two associated adaptation strategies, as spec-
ified in Table 3: Retry(5000) and RelaxDisable
Child(T_DetectLoc). Both strategies are applicable at
most once during an adaptation session, as can be seen in the
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Table 3 Specification of EvoReqs elicited for the A-CAD experiment

AwReq AwReq Pattern List of EvoReq Adaptation Strategies

AR1 NeverFail(T_InputInfo) 1. Warning(“AS Management”)
2. Reconfigure()

AR2 SuccessRate(AR1, 90 %) 1. Warning(“AS Management”)
2. Reconfigure()

AR3 SuccessRate(Q_AmbArriv, 75 %) 1. Reconfigure()

AR4 not TrendDecrease(Q_AmbArriv, 30d, 2) 1. Replace(AR4, AR4_60Days) + StrengthenReplace(AR3, AR3_80Pct)
2. Reconfigure()

AR5 NeverFail(D_DataUpd) 1. Delegate(“Staff Member”)

AR6 MaxFailure(D_GazetUpd, 1, 7d) 1. Reconfigure()

AR7 1. Reconfigure()

AR8 MaxFailure(D_MDTPos, 1, 1min) 1. Replace(D_MDTPos_20Secs)
2. Replace(AR8, AR8_45Secs)
3. Replace(AR8_45Secs, AR8_30Secs)
4. Retry(60000)
5. Reconfigure()

AR9 SuccessRate(D_MDTPos, 1, 1min) 1. Reconfigure()

AR10 MaxSuccess(T_Except, 10, 1min) 1. Reconfigure()

AR11 NeverFail(Q_Dispatch) 1. Reconfigure()

AR12 SuccessRate(T_Feedback, 90%) 1. Reconfigure()

AR13 NeverFail(Q_MaxCost) 1. Reconfigure()

AR14 MaxFailure(Q_MsgTime, <NoSM>, 1w) 1. Reconfigure()

AR15 NeverFail(G_RegCall) 1. Retry(5000)
2. RelaxDisableChild(T_DetectCaller)

AR16 ComparableDelta(T_SpecConfig, Q_NoExtra,
numAmb, 0)

1. Reconfigure()

specification. The rationale behind this specification is the
following: if the staff member cannot register the call, first
assume it is a glitch in the input form and just try again. If the
goal is still not satisfied, check if it is a problem with caller
detection and disable that part (the staff member should then
insert the location of the caller manually), checking if the
goal is satisfied this way.

After the A-CAD specification has been represented in
EMF, an implementation of the Target System Controller
Service (cf. Sect. 5.2) specifically for the A-CAD simulation
has to be provided. In a real setting, this controller would
be the connection between the running A-CAD and Zan-
shin, effecting the application-specific changes related to
each EvoReq operation (cf. Sect. 4.1). In our experiments,
however, we have instead implemented simulations of the
A-CAD system, which call the life-cycle methods expected
by the monitoring infrastructure [48] and acknowledges the
reception of EvoReq operations, changing the requirements
model as instructed.

When this simulation is ran, the A-CAD specification
is read and stored in the repository and life-cycle meth-
ods referring to tasks Input emergency information and De-
tect caller location are sent by the simulated system. The
monitoring infrastructure detects AR15 has changed its state

(again, details in [48]), and Zanshin conducts the ECA-
based coordination process, producing a log similar to the
one shown in Fig. 9. In the figure, messages are prefixed
with TS and AF to indicate if they originate from the target
system or the adaptation framework, respectively, which run
in separate threads. This is done to resemble more closely
a real life situation, in which the target system is a separate
component from the adaptation framework.

The log shows the adaptation framework receiving noti-
fication of AR15’s failure (line 1), creating a new adaptation
session S1 for it (2) and searching for a suitable adaptation
strategy to be applied, executing the Retry(5000) strat-
egy (4–6). Then the simulated target system acknowledges
the reception of the commands included in that pattern’s
definition (7–12)—see Table 2—, and the adaptation frame-
work verifies that the problem has not yet been solved (13).

After a while, the monitoring component notifies one
more failure of AR15 (line 15), prompting the adaptation
framework to retrieve the same adaptation session S1 as
before, realizing that it has not yet been solved (16–17).
Zanshin then proceeds to searching for a suitable adapta-
tion strategy, but Retry(5000) cannot be used again in
the same session due to its applicability condition (18). The
framework ends up selecting RelaxDisableChild(T_
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <acad:AcadGoalModel ...>
3 <rootGoal xsi:type="acad:G_GenDispatch

">
4 <children xsi:type="acad:G_CallTaking

">
5 <children xsi:type="acad:D_MaxCalls

"/>
6 <children xsi:type="acad:G_RegCall">
7 <children xsi:type="acad:

T_InputInfo"/>
8 <children xsi:type="acad:

T_DetectLoc"/>
9 </children>

10 ...
11 </children>
12 ...
13 </rootGoal>
14 ...
15 <awReqs xsi:type="acad:AR15" target

="//@rootGoal/@children.0/
@children.1">

16 <condition xsi:type="model:
SimpleResolutionCondition"/>

17 <strategies xsi:type="model:
RetryStrategy" time="5000">

18 <condition xsi:type="model:
MaxExecApplicabilityCondition"
maxExecutions="1"/>

19 </strategies>
20 <strategies xsi:type="model:

RelaxDisableChildStrategy" child
="//@rootGoal/@children.0/
@children.1/@children.1">

21 <condition xsi:type="model:
MaxExecApplicabilityCondition"
maxExecutions="1"/>

22 </strategies>
23 </awReqs>
24 </acad:AcadGoalModel>

� �

Fig. 8 The A-CAD requirements specified as an EMF model

DetectCaller) and executing it (19–21), which again is
recognized by the target system controller (22–26).

Finally, the monitoring infrastructure indicates that AR15
has been satisfied (line 28), so the adaptation process can
retrieve session S1, mark the problem as solved and ter-
minate it. From this point on, further failures of AR15
from the same user will create a new adaptation ses-
sion.

As the log shows, the framework is able to execute the
specified adaptation strategies, sending EvoReq operations
to the target system, which should then adapt according
to the instructions. Other than demonstrating the useful-
ness of our proposed approach, such operationalization of
EvoReqs can help in the development of adaptive systems
by separating the adaptation concerns into a specific com-
ponent.

6.3 Performance

Other than demonstrating the usefulness of our approach
using the A-CAD experiment, we have also evaluated the
performance of Zanshin’s implementation, by developing a
simulation in which goal models of different sizes (100–

� �

1 AF: Processing state change: AR15 ->
Failed

2 AF: (S1) Created new session for AR15
3 AF: (S1) The problem has not yet been

solved...
4 AF: (S1) RetryStrategy is applicable.
5 AF: (S1) Selected: RetryStrategy
6 AF: (S1) Applying strategy

RetryStrategy(true; 5000)
7 TS: Received: new-instance(G_RegCall)
8 TS: Received: copy-data(iG_RegCall,

iG_RegCall)
9 TS: Received: terminate(iG_RegCall)

10 TS: Received: rollback(iG_RegCall)
11 TS: Received: wait(5000)
12 TS: Received: initiate(iG_RegCall)
13 AF: (S1) The problem has not yet been

solved...
14 ----------------------------------------

15 AF: Processing state change: AR15 ->
Failed

16 AF: (S1) Retrieved existing session for
AR15

17 AF: (S1) The problem has not yet been
solved...

18 AF: (S1) RetryStrategy is not
applicable

19 AF: (S1) RelaxDisableChildStrategy is
applicable.

20 AF: (S1) Selected:
RelaxDisableChildStrategy

21 AF: (S1) Applying strategy
RelaxDisableChildStrategy(G_RegCall
; Instance level only; T_DetectLoc)

22 TS: Received: suspend(iG_RegCall)
23 TS: Received: terminate(iT_DetectLoc)
24 TS: Received: rollback(iT_DetectLoc)
25 TS: Received: resume(iG_RegCall)
26 AF: (S1) The problem has not yet been

solved...
27 ----------------------------------------

28 AF: Processing state change: AR15 ->
Succeeded

29 AF: (S1) Retrieved existing session for
AR15

30 AF: (S1) The problem has been solved.
Terminate S1.

� �

Fig. 9 Zanshin execution log for the AR15 simulation

1000 elements) are built and have an AwReq failing at run-
time. The framework applies the adaptation strategy that
is also included in the specification and the target sys-
tem (i.e., the simulation) acknowledges it. The simulation
was ran ten times for each goal model size and the run-
ning time of the framework was calculated. Average times
in milliseconds for each goal model size are shown in
Fig. 10 (the running time of the target system was irrel-
evant in comparison and, therefore, not included in the
graph).

As the graph shows, the adaptation framework scales lin-
early with the size of the goal model. The interested reader
can experiment the simulations for themselves by down-
loading its source code. Furthermore, the target system and
adaptation framework can be ran in a separate computers,
reducing the impact of the adaptation process even fur-
ther.
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Fig. 10 Results of the scalability tests of Zanshin

7 Related work

The Rainbow framework [10, 22] adopts an architectural
approach, using an architectural model as centerpiece for
adaptation. Adaptation rules monitor operational conditions
for the system and define actions if the conditions are unfa-
vorable. For example, given a news website as target sys-
tem, the adaptation mechanisms should keep the balance
among three quality objectives: (a) performance, (b) cost
and (c) content fidelity. During a case that the response time
is low a triggered adaptation strategy can either enlist more
servers or switch off the multimedia mode causing the cost
or content fidelity requirements respectively to fail. To re-
store failed requirements, there are adaptation strategies that
when response time increases discharge the extra servers or
switch on the multimedia mode increasing the fidelity.

The adaptation mechanism in Rainbow is similar to our
proposal here in that it consists of rules that monitor the tar-
get system, evaluate recorded data and if a constraint vio-
lation is detected then an adaptation strategy is triggered.
Their strategies involve changing the components of the ar-
chitecture, whereas our rules change requirements. An ad-
vantage of the Rainbow approach is the reusability of evo-
lution rules for systems that share the same architecture and
similar requirements.

Several other approaches for the design of adaptive sys-
tems focus on architectural solutions for this problem, such
as the proposal of Kramer and Magee [31], the work of
Sousa et al. [45], the SASSY framework [37], among oth-
ers. These approaches usually express adaptation/evolution
requirements in a quantitative manner (e.g., utility func-
tions) and focus on quality of service (i.e., non-functional
requirements). In comparison, our research is focused on
requirements (goal) models, allowing stakeholders and re-
quirements engineers to reason about adaptation on a higher
level of abstraction. For this reason, in the rest of this sec-
tion we restrict ourselves to approaches that, like ours, are
focused on requirements.

Our approach is quite similar to FLAGS [3]. This service-
oriented approach allows for the definition of adaptive goals

which, when triggered by a goal not being satisfied, exe-
cute a set of adaptation actions that can change the system’s
goal model in different ways—add/remove/modify goals or
agents, relax a goal, etc.—and in different levels—in tran-
sient or permanent ways. FLAGS is based on Linear Tem-
poral Logic (LTL) and our approach is less heavy-handed in
the formalism that is used than logic-based formalisms such
as LTL, which has been found to be difficult in many prac-
tical settings. Furthermore, our approach is more general,
offering a more varied set of operations over the goal model
and allowing for extensible applicability/resolution condi-
tions for adaptation strategies. On the other hand, FLAGS
deals with synchronization and conflict resolution of adap-
tation goals, whereas EvoReqs just delegate these issues to
the target system, sending instructions according to the spec-
ification of adaptation strategies. Considering these issues is
a good opportunity for future work. The RELAX framework
[52] is similar to FLAGS, although it does not provide a run-
time framework that operationalizes adaptation.

Another similar work is proposed by Fu et al. [20]. Their
approach represents the life-cycle of instances of goals at
runtime using a state-machine diagram and, based on it, an
algorithm can prevent possible failures or repair the system
in case of requirements deviation. Their proposal, however,
works at the instance-level only and does not change the
system in a “from now on” fashion. Moreover, the list of
possible adaptation strategies is fixed, whereas EvoReqs of-
fers a fixed set of operations that can compose many dif-
ferent kinds of adaptation strategies. Failure prevention can
also be implemented in our approach by specifying AwReqs
not only on system failures but also on indications they are
about to occur (if possible). EvoReqs associated with these
AwReqs could then enact preventive measures, avoiding the
failure altogether.

Most requirements-based adaptive systems proposals fo-
cus on the solution space. Qureshi and Perini [40] focus on
service-based applications and adapt by searching for new
services at runtime. Brown et al. [7] extends LTL with an
Adapt operator, encapsulating A-LTL formalisms in spec-
ifications, which allows the system to switch between op-
erational domains. Approaches that perform adaptation by
reconfiguration, such as the ones cited in Sect. 4.3, also fall
into this category. Our work, on the other hand, proposes
to adapt by changing the requirements (problem) space in-
stead.

Another important aspect of adaptation related to our
work is modeling and managing variability among applica-
ble executions of a target system. We introduced earlier the
concepts of variation points and control variables to model
variability at the requirements level. Griss et al. [23] intro-
duce variability as the key for exploiting reusable software
features and propose the terms variation point and variant.
Hallsteinsen et al. [24] point out that Software Product Lines
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(SPLs) lead to the development of applications for differ-
ent domains composed in terms of reusable parts. However,
as applications become more demanding, it is hard to fore-
tell required variability at runtime. Therefore, there is a need
for Dynamic Software Product Lines (DSPLs) where adap-
tation becomes critical in order to cope with changes in user
requirements and the environment.

An interesting approach for developing adaptive systems
based on DSPLs is the FeautureAce framework [42]. Fea-
tureAce allows manual or automatic adaptation by select-
ing a set of features from a static SPL, but also allowing
adaptation rules that are triggered at runtime. Selected fea-
tures are bound dynamically and the final reconfiguration is
validated by a SAT solver to spot inconsistencies. A simi-
lar feature-oriented approach [44] divides available features
represented via alternative and optional constructions. Fea-
tures are inter-related through dependency and other con-
straints that define a space of possible variations. The adap-
tation process is based on ECA (Event-Condition-Action)
rules that mandate at runtime an optimal reconfiguration.
Dinkelaker et al. [14] also express variability at runtime
by specifying DSPLs through constraint relations among
the features that constitute the software. As in previous ap-
proaches the features are activated or deactivated at run-
time resulting in reconfigurations. Instead of declared rules
and satiafiability checks, the validity of these reconfigura-
tions is established with the use of aspect oriented models
taking into account the context of the application’s execu-
tion.

The problem of requirements evolution has mainly been
addressed in the context of software maintenance. Thus,
most research on this topic treats it as a post-implementation
phenomenon (e.g., “evolution of requirements refers to
changes that take place in a set of requirements after ini-
tial requirements engineering phase” [2]) caused by changes
in the operational environment, user requirements, opera-
tional anomalies, etc. A lot of research has been devoted to
the classification of types of changing requirements such as
mutable, adaptive, emergent, etc. [25] and factors leading to
these changes. Generally, these changes are viewed as being
unanticipated and thus as not being able to be modeled a pri-
ori [15]. Our work is quite different in this respect as we use
EvoReqs to define trajectories for possible runtime require-
ments changes under particular circumstances. Clearly, not
all requirements changes can be anticipated, but in this work
we focused on modeling those that capture what the system
should do in case it fails to meet its objectives. The triggers
for these changes are clearly identifiable as requirements
divergences can be anticipated. Nevertheless, these changes
represent requirements evolution as they modify the original
system requirements.

Requirements evolution research has focused on mod-
eling requirements change and its impact on the system.

For instance, in [33], environment changes are propagated
through requirements changes and down to design. Each
triggered requirements change is analyzed in terms of its
risks and the impact it has on the users’ needs. Since we
are dealing with anticipated and explicitly specified require-
ments changes, the analysis of their impact on the system
can be carefully predicted. Another important aspect of re-
quirement evolution is the completeness and consistency of
requirements models. For instance, to address this, [54] pro-
poses a formal approach based to requirements evolution
utilizing non-monotonic default logics with belief revision.
In our approach, we assume that the responsibility for re-
quirements consistency rests with the modeler.

8 Discussion

One of the hallmarks of goal-oriented RE is its ability to
systematically elicit, capture and analyze alternative ways
to refine requirements. EvoReqs do not provide this opportu-
nity since they are currently represented in a non-intentional
way, as ECA rules. While in the method presented in this pa-
per there are ways to support various ways of evolving sys-
tem requirements with different conditions specifying their
applicability, the current approach does not provide for a
full-fledged analysis of alternative system evolutions. Thus,
modeling and trade-off analysis of possible requirements
evolutions using the common quality criteria of cost, cus-
tomer satisfaction, etc. or the criteria especially relevant for
system adaptation, such as the familiarity of the new solu-
tion [16], is not supported.

For instance, after a failure of the previously mentioned
AR3, the two adaptation strategies available are to relax it
or to send a warning to a member of the IT staff for man-
ual intervention. Obviously, albeit risky, postponing any ac-
tion (i.e., relaxation) may prove to be the most cost-effective
strategy in case the negative trend is reversed in the follow-
ing month. However, the costly manual intervention is less
risky. Depending on the relative importance of risk vs. cost,
the ordering/application of the two strategies will be differ-
ent. Thus, the framework for systematic elicitation and anal-
ysis of adaptation strategies given the relevant quality crite-
ria would be a welcome addition to the approach presented
here.

A failure of an AwReq attached to a domain assumption
indicates that the environment is in a different state than an-
ticipated, i.e., in a different context. From this point of view,
adaptation strategies associated with such failures represent
ways to adapt the running system to the new context. There-
fore, exploring connections between this framework and the
goal-oriented context approaches (e.g., [35]) as a way to
support context awareness in adaptive systems seems to be
a worthy endeavor.
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As already mentioned, here we treat system reconfig-
uration as a possible adaptation strategy. Our qualitative
requirements-driven adaptation approach [50] that relies on
the equations produced using the system identification pro-
cess itself has a complex adaptation loop that needs to be in-
tegrated into the feedback loop presented in this paper in or-
der to consistently and reliably combine requirements-based
system evolution and adaptation.

The use of rule sets in our framework constitutes a sig-
nificant limitation. Large rule sets are hard to evolve, as it
becomes increasingly difficult to understand what does a
change entail. Moreover, attention needs to be paid to the
case where conflicting rules fire at the same time. There-
fore, our method puts a lot of responsibility on the target
system’s designers, who need to be concerned with issues
such as consistency, correctness and completeness.

In addition, the operationalization of EvoReqs assumes
the target system can be appropriately instrumented, which
might make the approach difficult to apply on legacy sys-
tems or systems that rely heavily on third-party compo-
nents/services. Furthermore, when stakeholder requirements
are very complex, representing them using adaptation strate-
gies, applicability and resolution conditions can make the
model difficult to read. Finally, our current implementation
deals with AwReq failures separately and is not able to han-
dle multiple concurrent failures.

All these limitations provide opportunities for further re-
search, which may also include an experiment with the com-
plete framework and a real application for further validation,
and the development of a CASE tool to help in model design
and analysis.

9 Conclusions

In this paper, we have characterized a new family of re-
quirements, called Evolution Requirements, which specify
changes to other requirements when certain conditions ap-
ply. We have also proposed an approach to model this type of
requirement and to operationalize them at runtime in order
to provide adaptivity capabilities to a target system. This ap-
proach allows us to explicitly and precisely model changes
to requirements models in response to certain conditions,
such as requirements failures.

We are currently studying design techniques for con-
trollers that would react to undesirable situations (e.g., a
failed requirement) by changing one or more control vari-
ables, thereby changing the behavior of the system and/or
the state of the environment. We are also beginning to
study the adoption of ideas from architecture-based adap-
tation frameworks, such as the Rainbow project [22], so that
proposed adaptations take into account what is a feasible
change at the architectural level and what is not.
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