
Exploring Context Sensing in the

Goal-Driven Design of Business Processes

Alexei Lapouchnian and Eric Yu

Department of Computer Science

University of Toronto

Toronto, Canada

alexei@cs.toronto.edu, eric.yu@utoronto.ca

Abstract— As more and more business processes execute in in-

creasingly rich digital environments, there is a great opportunity

for these processes to make use of the context data to better

achieve business goals. Selecting what context data to employ and

how to incorporate context sensing into a business process design

is therefore of great interest. In this paper, we propose an ap-

proach that allows organizations to proactively identify and ex-

plore the space of context information that can be sensed and uti-

lized in a business process, with the aim of selecting such context

information that can deliver important business benefits. Then,

given the selected context information, the approach derives BP

design constraints that determine at which points in a business

process the selected context information can be sensed and used.

The approach builds upon earlier work on goal-driven design of

context-aware business processes. Examples from the passenger

transportation domain are used for illustration.

Keywords—goals, requirements, context sensing, process design

I. INTRODUCTION

Today’s enterprises are operating in complex and ever more
global business environments, which are also getting increas-
ingly connected, dynamic, and competitive. Under these condi-
tions, organizations need to be able to sense and analyze changes
in their business domains (i.e., within their competitive bounda-
ries) and respond appropriately, possibly by modifying their
business processes (BPs) or even by changing the objectives
they pursue. The properties of the external environment (the
context) and how they affect processes have long been studied
in BP management (e.g., [5][16]) and context-aware BPs are the
processes that are able to automatically sense such external
change at runtime and modify their behaviour accordingly. Their
flexibility “consists of an extrinsic trigger for change and mech-
anisms for intrinsic process adaptation” [16]. Thus, the current
conception of context-aware BP design takes a primarily reac-
tive or passive stance towards external changes. Goal-driven
methods for contextual requirements engineering (e.g., [1][10])
took a similar reactive approach and focused on capturing the
effects of various contexts on requirements.

Today, with technologies like low-cost sensing and the in-
ternet of things (IoT), wireless and mobile devices, wearables,
mobile, social, and cloud computing platforms, as well as big
data analytics, more and more of the business context is availa-
ble as data, waiting to be sensed, analyzed, and used to deliver

better business results. Rather than responding to a few pre-con-
ceived context variables, a BP designer should proactively seek
out and explore the vast context space that can potentially be
sensed and selectively incorporated into a BP design. In many
cases, using more and finer-grained context data allows for more
relevant and precise decisions and better action outcomes and
ultimately delivers more business value. Moreover, taking an
additional piece of information into consideration when achiev-
ing an objective can lead to an important innovation and possi-
bly a competitive advantage. For example, for a ride-hailing ser-
vice such as Uber, sensing and using real-time supply and de-
mand data when calculating fares can create a better balance be-
tween the number of available drivers and passengers willing to
use the service at any given time, thus increasing its efficiency
and competitiveness.

In this paper, we propose an approach that aims at exploring
the availability of data and data sensing technologies to comple-
ment the previous work in context-aware BP design and provide
a different perspective on context awareness. Instead of focusing
on contexts as the external change drivers, we treat any context
information as an opportunity to improve the achievement of
business goals. We take a goal-based view of business require-
ments (as in [9]) and elicit and refine business objectives using
goal models. The approach then focuses on exploring the busi-
ness domain in search for the context information that can be
sensed and utilized to improve (in terms of the important non-
functional criteria) the achievement of operational-level busi-
ness goals. The context information that is deemed to provide
enough benefits to justify its costs (and other potential draw-
backs) is then selected for use in the business process implemen-
tation. Based on the dynamics of the selected context infor-
mation, the approach helps to identify constraints on the posi-
tioning of the process elements that are responsible for sensing
and utilizing that information in BPs.

The ideas in this paper fit well with the vision for the future
BPM research outlined in [17], which itself has roots in the ear-
lier business literature [13]. As opposed to the many current ap-
proaches that fall into the exploitative BPM category and are in-
side-out and reactive, focus on optimization and marginal im-
provements, and look to identify and eliminate negative devi-
ants, the novel explorative BPM approaches should be endowed
with the “outside-in, environment scanning capability” [17] in
search of new, innovative ways to achieve business objectives.
Explorative BPM focuses on identifying and assessing external

opportunities and our approach addresses one aspect of this – the
exploration of the potentially relevant context information.

Our approach allows organizations, in addition to being re-
active to changes in the context (which is supported by the ear-
lier context-aware BP approaches), to be proactive and sense the
properties of the environment that may not be significant enough
to force a change in high-level business requirements and/or a
BP structure, but important enough to support improvements in
how business goals are achieved. We see information-rich do-
mains, such as logistics, retail personalization, smart cities, etc.,
as being ripe for the application of our approach. Note that or-
ganizations operating in dynamically changing business do-
mains would need to re-apply the method described in this paper
periodically to identify and explore new context information and
the opportunities to utilize it to achieve their goals. It would also
be beneficial to run this analysis whenever the organizations’
(functional and quality) goals or the priorities among them
change: given the changed objectives, the evaluation of the ben-
efits of using the various pieces of context information to
achieve business goals may also change.

The rest of the paper is structured as follows. Sec. II dis-
cusses how potentially relevant context information is identified
and analyzed. Sec. III describes the process of identifying con-
straints on BP design, while related work is discussed in Sec. IV.
Sec. V concludes the paper and outlines future work.

II. EXPLORING CONTEXTS FOR ACHIEVING OBJECTIVES

Given a business objective G, what context information can
be used to improve how it is achieved? In this section, given
such a goal, we use ER models [3] to identify the relevant infor-
mation that can potentially affect important quality criteria asso-
ciated with G. We then evaluate the costs and the benefits of
taking each piece of context information into consideration and
settle only on those context variables, which produce enough
benefits to justify their costs, while rejecting the others.

A. Goal-Driven Business Process Design

In this paper, we take the goal- and requirements-driven ap-
proach to BP design and use the general method from [9] to
guide the elicitation and refinement of business goals. Fig. 1A
presents a fragment of a goal model for a ride-hailing/rideshar-
ing service (which can be called a Transportation Network Com-
pany (TNC)), such as Uber, Lyft, etc. These networks act as
electronic platforms connecting transportation service consum-
ers (passengers) and providers (drivers) by implementing app-
based matching and filtering services, a driver/passenger rank-
ing mechanism to instill trust and security into their interactions,
payment processing services, etc. The fragment focuses on re-
fining the objective Transport Customer, which gives rise to one
of the main value-creating processes for such companies. The
model consists of a functional goal decomposition hierarchy
with AND/OR goal refinements with the obvious semantics and
a set or a hierarchy of softgoals, which represent non-functional
objectives (NFRs) associated with the functional goals being re-
fined (see Fig. 1A). The third element of this model is the con-
tribution links that qualitatively (using the help (+), hurt (–),
make (++), or break (--) links) specify how the achievement of
particular (soft)goals contributes to the satisficing of certain

other softgoals. Then, a softgoal is satisficed if there is sufficient
positive and little negative evidence for this claim. Fig. 1A
shows how a service transports a customer, starting from picking
him up at the present location and finishing with unloading him
from a vehicle. Notice that there are two fare options in the
model: the fixed one and the variable one. Relevant NFRs are
elicited for evaluating these and other alternatives. In addition to
increasing profits, the organization wants the fares to be fair to
customers and to make sure that the drivers’ earnings are also
fair. Likewise, it wants to avoid complexity and make sure that
there is enough supply of vehicles to satisfy customer demand.
In the model, contribution links are used to show that fixed fares
are simple, but too inflexible to support the right supply/demand
balance and ensure fair fares and driver earnings. On the other
hand, the variable fare option (the highlighted Calculate Fare
goal) is more complex, but contributes positively to the rest of
the NFRs.

Get
Request

Get Vehicle
to Pickup

Point

Get
Customer
On Board

Get to
Destination

Use
Fixed
Fare

Calculate
Fare

Charge
Customer

Unload
Customer

Le
ge

n
d

AND/OR Goal
Refinements

...
Transport
Customer

Get
Request

Get Vehicle to
Pick Up Point

Get
Customer
on Board

Get to
Destination

Get Paid

Unload
Customer

Determine
Fare

Charge
Customer

Increase
Profits

Fair Fares

Good Supply/
Demand

Ratio

Fair Driver
Earnings

Calculate
Fare

Use Fixed
Fare

Minimize
Complexity

Goal Softgoal

Softgoal
Contributions

B

A

Fig. 1. A) A partial goal model for a ride-hailing service.

B) The derived Transport Customer process.

In [9], goal refinement terminated when goals were simple
enough to be achieved by a process element (PE) – an activity
or a decision. By default, goal models do not represent the or-
dering of goals. To help map goal models into process models,
the approach in [9] added control flow annotations (e.g., se-
quence and parallel) to goal models to capture dependencies
among subgoals (in Fig. 1A, we simply order subgoals left to
right based on their precedence). Then, leaf-level goals were
mapped into the activities that achieved them. The activities
were arranged in the newly created BP (Fig. 1B) based on the
ordering of their corresponding goals. Note that while ORs in
goal models are mostly viewed as being design-time choices for
selecting the best implementation option, the goal refinement

choices can be preserved throughout the implementation to ob-
tain flexible/customizable BPs (see [9]), as done in Fig. 1B with
XOR gateways to keep the two fare calculation choices open.

In this paper, we modify the approach of [9] and propose a
number of additional steps to be performed before mapping leaf-
level objectives into PEs. These are aimed at exploring for such
leaf-level goals a new type of variability – the choices about
what potentially relevant context information to use when
achieving them.

The use of contexts in goal-oriented requirements engineer-
ing (GORE) is not new. Previous approaches for handling con-
texts in GORE (e.g., [1][10]) focused on capturing and analyz-
ing domain variability and its relationship with system require-
ments (goals). For example, [10] used special annotations to
model how contexts affected goal models: whether objectives
had to be achieved in all contexts or just in some of them, how
goal refinement choices contributed differently to NFRs in dif-
ferent contexts, etc. E.g., when an e-commerce company is ship-
ping goods, the goal Clear Customs would appear only in the
context of international orders. This makes system requirements
models dependent on changing contexts and represents an im-
portant step in requirements analysis for systems operating in
different and dynamic environments, and eventually leads to
context-sensitive BP specifications.

This paper proposes a different way to take context infor-
mation into consideration in a goal-driven design of BPs. It is
complementary to the context-driven approaches described
above and can be applied after the effects of domain contexts on
requirements have been captured.

Given a leaf-level goal G, such as Calculate Fare (as in Fig.
1A), we proactively look for the context information that can be
sensed at runtime and taken into consideration to improve the
outcome of attaining it w.r.t. the pertinent NFRs. We expect the
mandatory information for achieving G (e.g., the origin and des-
tination for calculating routes) to be specified explicitly through
goal parameters (as suggested in [9]) and instead seek the addi-
tional/optional data to utilize for attaining G. Thus, any piece of
contextual data can be omitted if it does not provide enough ben-
efits to justify its costs. Note that in some cases, there is no in-
formation that is absolutely necessary for achieving an objective
(e.g., when calculating trip fares – they can simply be fixed).

While our approach can be used for any leaf-level objective
in a goal model, it makes most sense to apply it to those goals
where the utilization of additional context information promises
significant business benefits. The following steps of the ap-
proach will be applied for each such objective.

B. Identifying Potentially Relevant Contexts for a Business

Objective

At this point in the approach, a goal model refining some
business objective has been developed and a method for captur-
ing contextual requirements, such as [2][10], has optionally been
applied as well. Given an objective G selected as outlined above,
we now look at which domain information besides G’s manda-
tory parameters can improve the outcome of achieving G.

We use domain models captured using ER diagrams (UML
class diagrams [15] can also be used) to identify the potentially

relevant context for G. To construct these domain models, we
look at the entities in the domain and their attributes that can be
used in the achievement of the goal. For instance, when calcu-
lating trip fares for a ride-hailing service (see Fig. 2), since Fare
is an attribute of Trip, Trip is identified as an entity directly rele-
vant to the goal. All of its properties (Distance, Duration, Date,
etc.) are potentially relevant to fare calculation. Then, we recur-
sively look for domain entities that are related to those already
identified (in Fig. 2, these are Customer, Vehicle, and Driver) and
model their attributes as potentially relevant for Calculate Fare.
We call the identified attributes context variables (CVs) and
sometimes use the dot notation (e.g., Driver.Rating) to refer to
them. Let us see how some of the attributes of the identified en-
tities can potentially be used when calculating fares:

 Trip: Distance and Duration are routinely used by the taxi
industry to calculate fares; Origin/Destination can be used
to support differentiated fares based on the location (e.g.,
trips from/to airports can be priced differently); Date can
also be used to differentiate fares.

 Driver: fares can be differentiated based on the driver’s
Rating (e.g., lower fares for low-rated drivers to entice
customers to give such drivers a chance to improve).

 Customer: Discount Group (e.g., child/senior) can be
used to offer discounts to passengers; Rating – used the
same as for drivers.

 Vehicle: Type can be used to charge fares based on the
size (and class) of vehicles; their Fuel Consumption can
be used to better offset fuel costs.

Trip

hasCust

Customer Vehicleis_in

Driver

Operates

hasDrv

hasVhcl

Date

Start Time

End Time

Origin

DestinationDuration

Distance

Rating

Payment
Info

Discount
Group

Type

Age

Fuel
Consumption

Rating

Licence
Type

Supply/
Demand Ratio

Fare

Fig. 2. ER diagram for the Calculate Fare objective.

Note that Fare is a derived attribute.

Sometimes, whether certain context variables should be used
in achieving a given objective is determined by business-level
decisions. E.g., a company may decide not to offer discounted
fares. Then, the related attributes (e.g., Discount Group in Fig. 2)
are removed from consideration and will not feature in the sub-
sequent steps of the approach. The rest will be analyzed further.

C. Analyzing Context Variables

At this point, we have, for a given goal G, a set of potentially
relevant CVs. We now evaluate these CVs by identifying bene-
fits, drawbacks, and costs of using them when achieving G.
Then, a subset of the CVs with the positive net benefit is se-
lected. We analyze the CVs using the steps outlined below.

Step 1: Identify the relevant NFRs as the evaluation cri-
teria. The benefits/drawbacks of using a CV to achieve G are
evaluated w.r.t. the relevant NFRs. There are a number of
sources for such NFRs. First come the NFRs from the original
goal model, such as those in Fig. 1A. They represent the organ-
ization’s main domain-specific quality objectives.

Second are the domain-independent NFRs related to context
awareness. Overall, using additional CVs leads to more context
awareness. Being more context-aware leads to better respon-
siveness to change, flexibility, etc., which are important for or-
ganizations operating in dynamic environments. These benefits
come at a cost of increased complexity, unpredictability, etc.

Third are the data sensing costs used to evaluate options for
sensing CVs. CVs may require large upfront investments in the
sensing and data analysis infrastructure. This includes hardware
sensors and/or instrumentation of software systems residing in-
side and outside the organization to enable data collection.
While such an investment will be amortized over a large number
of individual sensing actions, avoiding it may be possible by us-
ing novel means of obtaining the required data. E.g., ride-shar-
ing services let users supply credit card information upfront –
online or through their mobile apps. This eliminates the ex-
tremely costly investment in mobile credit card terminals. In
contrast, taxicab companies so far have not been able to avoid
the significant investment in the reader infrastructure due to a
different business model. On top of the sensing infrastructure
costs we have the marginal costs incurred while sensing each
piece of information. E.g., when getting a user feedback through
paper questionnaires, their processing costs are not negligible.

Fourth are the data quality-related NFRs that are also im-
portant for evaluating context sensing options. These include ac-
curacy, correctness, relevance (the steps of the approach out-
lined in Sec. II.A are designed to help in this regard), complete-
ness, validity (we return to it in Sec. III), consistency, etc. Dif-
ferent means for sensing a CV may produce data of different
quality, which can affect the overall benefit of using that CV to
achieve a business goal. Thus, for a sensing option, the quality
of data it produces must be traded off with its sensing costs.

Fifth – the (re)development of the goal achievement proce-
dure to make use of additional CVs must be considered. Some-
times, using extra CV leads to significant changes in these pro-
cedures. The benefits of utilizing CVs must compensate for
these development costs. Note that these costs are likely to be
incurred for any CV, so for comparing them, we can establish a
development cost baseline and concentrate on comparing the de-
velopment costs for each CV to the baseline.

Note that the above NFRs are not equally valuable. Different
organizations will have different preference orders among these
NFRs and such preference orders may also change over time.

Step 2: Determine which CVs and their combinations
can be used for achieving G. Let us look at the Calculate Fare
goal and Trip.Duration and Trip.Distance as the selected poten-
tially relevant CVs (see Sec. II.B). We need to evaluate the ben-
efits of using each CV to calculate fares. What about using both
variables? This is how most taxi services calculate fares. Do we
have to additionally evaluate the situation where they are used

in combination or can we just add their independently calculated
costs and benefits to evaluate their combined use?

If we begin with a set of N potentially relevant CVs, then, to
select which subset to actually implement, it seems that we need
to exhaustively evaluate all the possible subsets of that set. There
are 2N such subsets. The time complexity of this process is ex-
ponential, which makes it quite impractical. One reasonable ap-
proach is to make the simplifying assumption that the N context
variables can be evaluated independently and the evaluation of
any combination of them will amount to calculating the sums of
their costs and benefits. Formally: for any pair of CVs, ci and cj,
cost(ci + cj) = cost(ci) + cost(cj) and benefit(ci + cj) = benefit(ci)
+ benefit(cj). In other words, no combination of CVs results in
emergent costs or benefits. This independence assumption
states, for instance, that the combined use of both Vehicle.Type
and Trip.Date to calculate fares results in no additional costs or
benefits. Under this assumption the evaluation process becomes
linear in N. If there exist combinations of variables that violate
the assumption, then they should be evaluated separately, which
in the worst case brings the time complexity back to being ex-
ponential.

Fig. 3A presents a general pattern for enumerating the op-
tions for evaluating potentially relevant CVs when achieving a
goal G. It shows that G has a set of mandatory parameters MP
and can be refined into N alternative goals, each adding one op-
tional CV (ci) to the mandatory parameters. Then, combinations
of CVs that violate the independence assumption must be eval-
uated separately. Overall, the model presents a space of options
for taking CVs into consideration when achieving G.

Fig. 3B instantiates the generic model for Calculate Fare. We
first go through 9 CVs that we assume were deemed potentially
relevant in the previous step of the process (Sec. II.B). Note that
Calculate Fare has no mandatory parameters. Then, one combi-
nation of CVs violating the independence assumption is added
(see the dashed oval): if both Trip.Destionation (fares differenti-
ated by destination) and Customer.Discount (fares discounted
for some customer groups) are used, then their combination can
provide vastly superior benefits for some customers – e.g., for
seniors, cheap and fast transportation to hospitals.

Calculate Fare

Calculate Fare
(Cust.Discount)

Calculate Fare
(Trip.Destination)

Calculate Fare
(Trip.Supply/

Demand)

Calculate Fare
(Trip.Distance)

Calculate Fare
(Trip.Duration)

Calculate Fare
(Vehicle.FuelCons)

Calculate Fare
(Vehicle.Type)

Calculate Fare
(Driver.Rating)

Calculate Fare
(Trip.Date)

B
Calculate Fare

(Trip.Destination,
Cust.Discount)

G(MP)

G(MP, c1)

G(MP, cN)

...

G(MP, ci, cj)

G(MP, ck1, ..., ckm)

...

N
individual
contextual
variables

Sets of CVs
violating
indep-ce

assumption

A

Fig. 3. A) Enumerating options for taking CVs into consideration for a goal G.
B) The space of options for using CVs for achieving Calculate Fare.

Step 3: Identify and evaluate sensing options for CVs.
CVs need to be sensed before their values can be utilized for
achieving G. Sensing costs may preclude a CV from being a fea-
sible option as its benefits may be marginal compared to these
costs. There may also be multiple sensing options for a CV –
each with its own costs and benefits. Also, different sensing

means may produce data of varying quality, thus affecting the
potential benefits of that CV.

Identification/evaluation of sensing means has to be per-
formed for every option identified in Step 2. Thus, in our ride-
hailing example, we have to do this for every alternative repre-
sented in Fig. 3B. Goal models capturing a Calculate Fare vari-
ant, ways to sense the CV(s) utilized in it, and the relevant NFRs
are used for such evaluation. Fig. 4A shows how this is done for
Calculate Fare(Trip.Supply/Demand Ratio) that utilizes the ratio
of the current transportation services supply and demand.

In Fig. 4A, the root goal refinement shows that to calculate
fares using the supply/demand ratio, the ratio needs to be sensed
and then used in the calculation. Fig. 4A captures the two op-
tions for sensing the CV (Fig. 4B in Step 4 focuses on the ways
to use the CV to calculate fares): sensing the supply/demand ra-
tio within a particular ride-hailing service and sensing the over-
all ratio – across multiple competing services and possibly even
including the available public transit options. These two options
are then evaluated against two NFRs: Minimize Cost(Sensing)
and Data Completeness shown in bold in Fig. 4A. These soft-
goals cover two NFR categories from Step 1 (data sensing costs
and data quality). Note that Minimize Cost can be further refined
into Minimize Upfront Cost and Minimize Marginal Cost as per
the discussion in Step 1, but we omit this for brevity.

Contribution links show the evaluation of the sensing op-
tions. Sensing the overall supply/demand ratio fully satisfices
(++) Data Completeness since the data covers all service pro-
viders. This option’s sensing costs are high since it has to sense
and aggregate information coming from many systems. On the
other hand, sensing the internal supply/demand ratio only covers
the supply within the service and thus is cheaper to sense, but
the data is much less complete. Data completeness may play a
role if the ride-hailing service uses the information to vary prices
based on the supply/demand ratio. E.g., based only on its inter-
nal data, a ride-sharing company may decide that given the cur-
rent high demand and low supply, fares need to go up to improve
the ratio. However, the incomplete data fails to account for the
possibly high availability of other transportation services. In this
situation, the price hike will inevitably lead to unfairly high fares
and consequently to customers choosing alternative service pro-
viders to meet their transportation needs.

Fig. 4A also shows that data-related softgoals can in turn
contribute to higher-level NFRs representing the company’s

overall objectives. This helps evaluate the impact of sensing op-
tions on business goals. Here, Minimize Cost (Sensing) posi-
tively contributes to Increase Profits. This link helps evaluate the
impact of each sensing option on profits.

The aim of this process step is to identify the best way to
sense a CV, so each option’s benefits need to be evaluated
against its costs. Very frequently the NFRs used to evaluate op-
tions cannot be optimized for at the same time, which requires a
trade-off analysis. E.g., in Fig. 4A, the preferred option for sens-
ing the CV will depend on the relative importance of Data Com-

pleteness and Minimize Cost or those high-level NFRs that they
contribute to. However, sometimes it is impossible to determine
which CV sensing option is outright better. In this case, the anal-
ysis needs to be deferred to Steps 4 and 5 of the process where
each sensing option can be analyzed separately. E.g., in Fig. 3B
(Step 4), Calculate Fare(Trip.Supply/Demand) can be replaced
by Calculate Fare(Internal Trip.Supply/Demand) and Calculate

Fare(Overall Trip.Supply/Demand) that correspond to the two
ways of sensing the CV. Then, in Step 5, which looks at all po-
tentially relevant CVs and can take into account the overall pri-
orities of the organization, the best option will be selected.

Step 4: Employ high-level NFRs to evaluate the benefits
of using a CV to achieve the business goal. Evaluating sensing
options for a CV (as in Fig. 4A) is important, but simply sensing
it does not provide any benefits. We use goal models to explore
how the sensed data can be used to achieve the given objective
G and analyze what value it can deliver (compared to achieving
G while using just the mandatory parameters). Fig. 4B continues
with the Calculate Fare example, but focuses on the options for
Do Fare Calculation(Trip.Supply/ Demand). Here, we elicit and
model alternatives for utilizing this information to calculate
fares. One option here is to raise fares to increase the supply of
drivers – this is called “surge pricing” by Uber. This option is
presented in Fig. 4B. All the options need to be evaluated with
respect to the business-level quality objectives (e.g., from Fig.
1A). We do not explore these options due to the lack of space,
but show how Surge Pricing stacks up against the NFRs. We es-
timate that this practice helps balance supply and demand, has a
positive effect on driver earnings, but contributes negatively to
fair fares. Whether the overall outcome is positive or not will
depend on the relative priorities of these quality objectives.

Step 5: decide which CVs to use for achieving the objec-
tive G. We now go back to evaluating, for each CV (or a com-
bination of CVs where the independence assumption does not
hold), whether it provides enough business value to justify its

[See B]

Minimize
Cost (Sensing)

 – .

 – .

Calculate Fare
(Trip.Supply/Demand)

Sense
(Trip.Supply/Demand)

Do Fare Calculation
(Trip.Supply/Demand)

OR

ANDAND

Sense (Internal
Trip.Supply/Demand)

Sense (Overall
Trip.Supply/Demand)

OR

+

Data
Completeness

++
Increase
Profits

+

+

[See A]

+

G(c1) G(cN)...

+

--+
 +

-

+ -

-

+

Options for taking
CVs into consideration

Sensing Cost, Data
Quality, and Context

Awareness NFRs

Business-Level
NFRs

Calculate Fare
(Trip.Supply/Demand)

Sense (Trip.
Supply/

Demand)

Do Fare Calculation
(Trip.Supply/Demand)

ANDAND

...
OR OR

CB

Fair Fares

Good
Supply/
Demand

Ratio

Fair Driver
Earnings

 – .
+

Surge Pricing
(Trip.Supply/Demand)

A

Fig. 4. A) The sensing options for Calculate Fare(Trip.Supply/Demand). B) Analyzing options for using the sensed data for Calculate Fare(Trip.Supply/Demand).

C) The general pattern for analyzing the use of context variables in achieving an objective G.

costs and therefore whether it should be utilized when achieving
the given business goal. The output is a set of CVs selected for
implementation. Adding a partial order on this set based on the
value the CVs provide is beneficial for the discussion in Sec. III.

 To evaluate whether each CV is worth implementing, stand-
ard goal model analysis techniques [6], which primarily focus
on propagating goal satisfaction labels through multiple layers
of (soft)goals, can be used. Fig. 4C shows the main layers of
(soft)goals this analysis has to go through in our approach. Tab-
ular representations can be used when many options/NFRs are
present. For finer-grained analysis, qualitative contribution la-
bels can be replaced with numerical values to indicate the
strengths of the contributions. For a large number of alternatives,
optimization techniques can also be used to identify the best
CVs to use. E.g., given a limited budget, finding a set of CVs
that deliver the best business value on this budget is an example
of a well-known knapsack problem.

III. CONTEXT-DRIVEN PROCESS DESIGN

In this section, we look at the dynamics of the relevant con-
text variables – when they become defined, when they become
available for sensing, etc. – and its implications on when the
CVs can be sensed and utilized to achieve objectives.

We now switch from discussing what context information
can potentially help in achieving a particular leaf-level business
goal, such as Calculate Fare, to discovering and analyzing the
constraints that the previously selected CVs impose on the PE
achieving that goal. The PE, which we call the Main PE, repre-
sents the implementation of a leaf-level business goal that takes
into consideration the previously selected context(s). The con-
straints on the Main PE restrict when it can be executed in a
business process. We will also discuss the Sensing PEs, which
are needed to support the sensing of CVs.

A. Identifying Process Design Constraints

At this point in our approach, we have identified, for some
objective G, a set of context variables that will be utilized for
achieving G. Then, for each CV, we identify the constraints that
it imposes on the Sensing PE and Main PE. The information can
be sensed only when it is defined (i.e., has a value) and available
(for sensing) and the Main PE can be executed only after the
information has been sensed and until the CV changes its value.

The way we approach constraints identification is by looking
at the lifecycles of the context variable and its sensed value
available in the system. The statechart that captures both of these
lifecycles is shown in Fig. 5A. It is rather generic, but makes
certain assumptions about the behaviour of the CV. Particularly,

the model assumes that the CV is undefined initially and that
once it acquires its value, it is initially unavailable for sensing,
but then may cycle through being available and unavailable.
Such a model is needed for each context variable selected in Sec.
II.C and will reflect its particular dynamics.

In the statechart in Fig. 5A, we use two orthogonal regions
to capture the behaviour of the ActualValue and SensedValue of
a context variable. In the model, we have the following triggers
that trigger state transitions:

 TDfn – causes the actual variable to get initialized (i.e., to
become defined). E.g., when the (final) route for a trip is
known, the Trip Distance variable acquires its value.

 TAvl – makes the context variable available for sensing.
E.g., when a truck exits a tunnel, this enables its GPS-
based position sensing.

 TUnvl – makes the context variable unavailable for sens-
ing. E.g., when a truck enters a tunnel, this makes it im-
possible to sense its location or when a customer leaves
a store, this makes it impossible to sense his feedback on
the transaction that has just happened.

 Changed – indicates that the ActualValue has changed.

 VarSensed – shows that the ActualValue has been
sensed.

These triggers are generic and will be instantiated for each
CV. E.g., for tracking trucks, PositionLost will replace TUnvl).
Thus, when instantiated, the triggers capture what causes partic-
ular CVs to acquire/change their values, what makes them avail-
able/unavailable for sensing, etc. More than one domain-specific
event can trigger transitions in the model and all of them should
be captured in the statechart.

Regarding changes in the variable’s actual value, it might not
always be possible to know when they happen. In some cases,
this information is pushed into the system by its environment. In
others, it has to be pulled from the environment by using sens-
ing/probing. It is possible that we have an idea about the volatil-
ity of the CV – i.e., about its change cycle. We may know it or
may be able to predict it. In this case, the rate of change can be
represented in the model (see Fig. 5B where Changed is re-
placed by a time-based trigger). In this paper, we assume that
there are always ways to evaluate Changed triggers – i.e., to
know when CVs have changed.

Continuing with the subject of change, when evaluating how
a CV influences a given objective, we need to compare the cycle

SensedValue Sensed Changed

VarSensed
[ActualValue in

Available]

ActualValue Defined

Contextual Variable Lifecycle

Undefined Unavailable Available
TAvl

ChangedChanged

TUnvl

Undefined Valid Invalid

[ActualValue in Available]

VarSensed

after
 (Expected change Cycle)

[ActualValue in
Available]

SensedValue

Valid Invalid

Trip Route
Known

SensedValue

[ActualValue in
Available]

Defined

Trip.Distance Lifecycle

Undefined Available

Sensed
Undefined Valid

ActualValue

A B C

Fig. 5. A) A statechart showing the lifecycle of a contextual parameter. B) A statechart fragment for SensedValue showing a context

variable with a known change cycle. C) The lifecycle of Trip.Distance (actual and sensed values).

time of the process where the goal is to be achieved and the vol-
atility (the rate of change) of the CV. Many domain attributes
change too slowly for a relevant BP. In this case, while the CV
can be an important piece of information for achieving the ob-
jective, it can be assumed to be constant within that process, thus
simplifying the statechart representing its lifecycle.

The crucial element of the model in Fig. 5A that integrates
the behaviour of the variable’s actual and sensed values is the
guard condition on VarSensed: [ActualValue in Available]. It
guarantees that sensing can only be done when the context vari-
able is available for sensing. Moreover, for the sensed context
information to be usable when achieving an objective (i.e., for
executing the Main PE for that goal), SensedValue must be in
the Valid state – when it truly (or closely enough) reflects the
real-world data. Thus, for the model in Fig. 5A, to execute the
Main PE while using the sensed value of the context variable c:

 A sensing activity (Sensing PE) must be executed in a BP
when c is in the available state. Based on Fig. 5A, this
must happen after the events TDfn and TAvl have oc-
curred, but before TUnvl. We call the resulting window
the sensing window (SW) for the context variable.

 The Main PE must be executed when the c’s
SensedValue is in the Valid state: i.e., after TDfn and TAvl
occurred and the Sensing PE has been executed, but be-
fore the c’s ActualValue has changed. This defines the
CV’s validity window (VW).

Note that if a context variable is always available for sensing
and its value is not expected to change, then developing
statecharts for it is not necessary since the only constraint is that
its value must be sensed before the Main PE is executed.

To illustrate the above approach, we now present a number
of example statecharts. First, we look at the lifecycle of Trip.Dis-

tance (Fig. 5C), which captures the total distance of passenger
trip. The actual value of this variable is not available until the
trip route is known. For taxi and similar trips, where the exact
route is not known until the end of the trip, the Trip Route Known
transition will be triggered when the trip is over. Thus, in the
case of trips with routes that are unknown upfront, any PE that
utilizes the trip distance information (e.g., Calculate Fare) can
only be executed starting from the end of the trip. However, for
trips with a fixed route (e.g., on railroads) the transition will be
triggered even before the trip begins, thus giving a process de-
signer much more flexibility in terms of the positioning of the
fare calculation activity.

Another example (Fig. 6A) shows the lifecycle of the cus-
tomer payment (e.g., credit card) information in the context of a
taxi trip. Here, the actual value of the information is not defined
until the customer is known. Unlike ride-sharing companies,
taxis are not able to store their customers’ payment information:
only when a customer is actually in a cab can this information
be sensed. Then, once a customer exits the vehicle, his payment
information is no longer available. On the SensedValue side, the
payment information sensing happens when the payment is
made through a credit card reader. This can only happen when
the information is available, i.e., while the customer is in the car.

As already discussed, CVs are the sources of constraints on
the Sensing PE and Main PE. However, in addition to the op-
tional context parameters, there can be constraints due to the
goal’s mandatory parameters. These are identified in a similar
fashion. Extra constraints on the Main PE may also be present
(as exemplified by the need to charge taxi customers before they
exit their cabs). We use the CV and its SW(s) to derive the con-
straints on the placement of the corresponding Sensing PE in a
BP. Both the variable’s SWs and VWs are then used to identify
the Main PE Window (MW) – the window for positioning the
activity used to achieve the objective under consideration.

Fig. 6B illustrates the positioning windows that the payment
information lifecycle imposes on the sensing activity (Sense

Through Reader) and the Main PE (Charge Customer). The di-
agram also shows the corresponding SW and VW.

Customer
Known

Customer out of Car

SensedValue

[ActualValue in
Available]

ActualValue Defined

Customer.Payment Info Lifecycle [Taxi Context]

Undefined Unavailable Available

Customer in Car

Sensed
Undefined

Sensed Through
Reader

Valid

A

B
Customer

In Car Sensed
Through
Reader

Customer
out of Car

time
Main PE Window:
Charge Customer

Validity Window
Sensing Window

Sensing window:
Sense Through Reader

Customer
Known

Fig. 6. A) The lifecycle of Customer.Payment Info in the taxi context.

B) A timeline diagram showing constraints on sensing payment

information and on Charge Customer.

B. Combining Constraints from Multiple Variables

In the previous section, we looked at how the Sensing and
Main PE windows are derived for a CV. In general, a number of
such variables can be utilized for achieving a goal, with each
variable c producing two windows, SWc and MWc, or two sets
of such windows if the information is not always available for
sensing (see below for examples). Each SWc is used to constrain
the positioning of the Sensing PE for c. Generally, these sensing
activities are independent for each CV. So, for N variables, we
will have N Sensing PEs placed somewhere within their corre-
sponding SWc windows. On the other hand, every MWc window
refers to the same Main PE, which means that to determine the
overall constrains on the Main PE we need to combine the MWc
windows from all the used variables. The outcome of such inte-
gration is the window MW (note the absence of the subscript).

When integrating constraints from multiple CVs, we can do
it in two ways. One is to produce a window MW, which repre-
sents the intersection of all the MWc windows. The other is to
produce a single position for executing the Main PE, which is
compatible with all the constraints. Both options lead to the cor-
rect positioning of the Main PE. The benefit of a window is the
added flexibility. We can use further analysis at a later time to
determine the best place for the Main PE within that window –

e.g., whether to postpone or advance its execution. This provides
additional benefits and allows for fine-tuning the position based
on important NFRs [11]. Note that the position of the Main PE
within the window can change periodically if it is deemed that
the BP needs to be reconfigured. While producing the MW in-
stead of a single position adds some extra complexity to the ap-
proach, we believe the added flexibility justifies it. Thus, below
we focus on how to obtain the integrated window MW.

As the MW is the intersection of MWc from all the variables,
it is possible that not all such windows actually intersect. This
creates a conflict and implies that there is no consistent way to
position the Main PE within a BP while utilizing all the selected
CVs. The solution is to drop one or more CVs from considera-
tion so that the windows from the remaining CVs intersect.

Since the selected CVs can be ordered based on their net
benefits, the primary conflict resolution strategy would involve
dropping one or more conflicting CVs to maximize the benefits
provided by the remaining ones. Options may include, for in-
stance, dropping several lower-impact variables or one higher-
impact one. This is a common optimization problem.

Since we would also like to support flexibility in BP design,
the secondary objective of the conflict resolution process may
be to maximize the size of MW. This would lead to the CVs with
the more restrictive MWc windows being removed first.

Recall that the SWc windows are defined based on the avail-
ability (for sensing) of context information and each MWc is de-
fined based on the validity of the sensed information. Since the
information cannot be valid before it has been sensed and the
Main PE can only be executed while the sensed CV value is
valid, the beginning of each MWc always corresponds to the po-
sition of the Sensing PE for the context c. Hence, the position of
the Sensing PE in SWc directly impacts MWc. So, when choos-
ing the best place to execute our Main PE, we also have to con-
sider when to sense the required information: the larger the MWc
windows are for each context c the more flexibility we will have
when integrating them to produce MW. One strategy to address
this is to sense context variables as soon as they become availa-
ble for sensing, thus moving the starting points of the MWc win-
dows as much to the left as possible. It is a good heuristic when
the sensed information is stable (at least in the time frame rele-
vant to the process, as is the case with the credit card infor-
mation). However, the dynamics of context is also important.
E.g., if we want to plan a route based on traffic conditions, we
cannot sense this information arbitrarily early because of its vol-
atility and hence the limited validity of the corresponding sensed
value. This is illustrated later in the section.

Main PE WindowSense PE

Validity Window
Sensing Windows

time

TAvl TUnvl

Fig. 7. Intermittenlty available, but stable context variable.

Similarly, intermittent availability of context information is
an important factor when sensing variables (e.g., think of the
data from a wireless sensor on a truck that occasionally travels

through tunnels). In this case, the context variable will have
many sensing windows (see Fig. 7). These windows are defined
by the TAvl/TUnvl triggers, as previously discussed. Spotty avail-
ability of context data coupled with stable data values is not a
serious complication as the context can simply be sensed in any
of the SWs. As discussed above, sensing early potentially in-
creases the size of MW, which helps flexibility.

Let us now look at an example of how the constraints coming
from several CVs can be integrated. In particular, this example
focuses on the volatility of context data. We look at the Plan

Route goal for a ride-hailing service. To achieve it we need to
know at least the trip’s origin and destination. Yet, there are
many other pieces of information that can potentially improve
the route. We assume that in the context identification process
(Sec. II) we identified four CVs for this goal (see TABLE I.).

TABLE I. VARIABLES IN THE PLAN ROUTE EXAMPLE.

Variable Volatility Availability

Weather
Info

Continuous change.
30 min to significant change

Always available

Traffic Info Continuous change.
10 min to significant change

Always available

Driver
Prefs

Low (constant with respect
to the current process)

Available from
Driver Known

Customer
Prefs

Low (constant with respect
to the current process)

Available from
Customer Known

Weather and traffic information is, obviously, useful when
planning a route. Similarly, driver and customer preferences
(Driver Prefs and Customer Prefs respectively) can also be inte-
grated to produce a better route that can achieve additional qual-
ity objectives relevant to either actor (e.g., the route being scenic
for customers). Once the customer’s identity is known, his pref-
erences can be sensed; the same is true for the driver (and we
also assume that the driver is known before the customer is).
Weather and traffic conditions change constantly. We assume
that the sensed information becomes obsolete (i.e., invalid) after
30 min for the weather and after 10 min for the traffic (which is
more volatile). These assumptions may be different based on
many factors – e.g., the general climate and typical weather pat-
terns in the area, the current date/time characteristics (day of the
week, holiday period), etc.

Fig. 8A illustrates the lifecycle of Traffic Info (Weather Info
has a similar lifecycle). The model shows that the variable is al-
ways available for sensing. Also, significant changes happen
every 10 minutes and sensing must be done at the same rate to
keep the sensed value valid. The statecharts for Driver Prefs and
Customer Prefs are rather simple and are not shown.

Once the constraints are identified for each variable, they are
integrated to produce the overall constraint on Plan Route. To
better understand how the constraints from various CVs are re-
lated, an appropriate timeline diagram can be developed. Fig. 8B
shows the one for our Plan Route example. Here, we capture the
SWs for all the variables (the weather and traffic info are always
available) and for the volatile ones (traffic/weather) we also
model their VWs, which in this example are defined relative to
the position of the Plan Route PE since this data has to be used
within a limited amount of time after it has been sensed.

Weather Info VW

Traffic Info VW

SensedValue

[ActualValue in Available]
Sensed

[ActualValue in
Available]

ActualValue Defined

Traffic Information Lifecycle

Available

Sensed

Undefined
Sensed

Valid Invalid

after(10 min)

after(10 min)

10 timepotential position
for Plan Route

Driver Prefs SW
Customer Prefs SW

Traffic Info SW
Weather Info SW

Driver
Known

Customer
Known 30

A

B

Fig. 8. A) Traffic information context variable’s lifecycle.

B) Bringing together constraints on Plan Route. The variables’ Sensing

Windows (SW) and Validity Windows (VW) are shown.

We then use inequalities on time to capture these constraints.
We look at the SWs, which define constrains on sensing actions
(Sense(variable)), and at how the positioning of Plan Route is
related to these sensing PEs. We assume that events are instan-
taneous and that t(Event) captures the time of the event. Actions
(including sensing ones) take time, so t_s(Action) and t_f(Action)

represent an action’s start and finish times respectively.

1) t(Customer Known) < t_s(Sense(Customer Prefs)) <
 t_f(Sense(Customer Prefs)) < t_s(Plan Route)

2) t(Driver Known) < t_s(Sense(Driver Prefs)) <
 t_f(Sense(Driver Prefs)) < t_s(Plan Route)

3) 0 < t_s(Plan Route) – t_f(Sense(Traffic)) < 10
4) 0 < t_s(Plan Route) – t_f(Sense(Weather)) < 30

The inequalities 1) and 2) combine the constraints on both
the sensing PE and Plan Route and define the lower bound on
the timing of the latter action, while 3) and 4) state that Plan

Route has to start executing within 10 and 30 minutes after sens-
ing traffic and weather, respectively. Note that the upper bound
on the MW for Plan Route does not depend on CVs and will be
determined based on the existing functional dependencies
among business objectives and/or PEs in the business process.

Now that we have seen an example of a volatile context in-
formation sensing, it is easy to see that if, for some CV c, such
volatility is coupled with an intermittent availability, it creates
even more complex conditions for sensing. Here, not only do we
need to sense context variables close enough to the Main PE so
that the sensed data is still valid when the Main PE is executed,
but we also need to make sure the context sensing is done within
one of the validity windows of c. Note that it is possible that no
compatible window exists. In this case, c or some other con-
text(s) may be dropped from consideration, as previously dis-
cussed. We do not illustrate this case due to the lack of space.

For another illustration, we go back to the customer payment
example from Fig. 6A to see how Customer.Payment Info con-
straints affect the positioning of the Charge Customer PE. Un-
like the previous example, the inequalities below define both up-
per and lower bounds for the Charge Customer’s MW:

5) t(Customer Known) < t_s(Sense Through Reader)
6) t(Customer In Car) < t_s(Sense Through Reader) <

t_f(Sense Through Reader) < t(Customer Out Of Car)
7) t_f(Sense Through Reader) < t_s(Charge Customer) <

 t_f(Charge Customer) < t(Customer Out Of Car)

 A SW for a context variable may depend on the means of
sensing it. So, if relevant, a particular instance of a sensing PE
should be specified. Here, we used Sense Through Reader in-
stead of a generic sensing PE Sense(Payment Info).

C. Using the Identified Constraints in Process Design

For an objective G being explored using the approach (e.g.,
Calculate Fare in Fig. 1A) and starting with a base BP, such as
the one in Fig. 1B, we use the timeline diagrams and inequalities
presented earlier to help position the Sensing PEs (one for each
selected CV) and the Main PE in that BP in a way that makes
sure that all the data availability/validity constraints are satis-
fied. Note that the events featured in these diagrams/inequalities
(e.g., Customer Out of Car in Fig. 6B) are matched with the ac-
tivities that have those events as postconditions – e.g., Customer

Out of Car is the result of executing Unload Customer.

The constraints identified here are over and above the func-
tional and data dependency constraints that exist in BPs. By fo-
cusing on windows (not concrete positions) and by using ine-
qualities, we aim at producing the least restrictive constraints on
the positioning of the Sensing and Main PEs. This gives process
designers flexibility when creating process specifications.

IV. RELATED WORK

While a business process is generally seen as a collection of
activities that achieves some business purpose or objective aim-
ing to create value for customers, most approaches to BP mod-
eling work at the workflow level and focus on activities, flows,
etc. [14]. Still, explicitly captured business goals have been used
in BP modeling for a long time [7][8][9]. These approaches help
take business objectives, systematically refine them using vari-
ous goal-based modeling notations, and then map the resulting
leaf-level (operational) goals into BP elements – activities or,
sometimes, subprocesses. Goal models developed in this way
support elicitation and analysis of goal refinement alternatives
and provide rationale for workflow-level activities. These ap-
proaches are complementary to ours. We use the method from
[9] to refine high-level business goals into operational objectives
and then apply our approach to selected leaf-level goals.

There are approaches that support adding certain types of
constraints on relationships among goals to goal models. E.g., in
[9], control flow annotations are heavily used in goal models and
then mapped into BPEL constructs. In [12], preconditions are
graphically represented in goal models. These approaches are
lighter-weight and less powerful than the declarative BP design
methods [1], but have the advantage of using a similar notation
to our approach, which makes them easy to integrate.

Approaches for designing context-aware BPs (e.g., [5][16])
focus on capturing and analyzing the effects of domain proper-
ties (contexts) on process behaviour, which is done at design
time. Once designed, context-aware BPs are generally capable
of sensing context information at runtime and thus a runtime BP

infrastructure is needed to support changing processes behav-
iour. This is frequently done through the use and management
of process fragments (e.g., as in the Provop approach [5]). On
the other hand, our method, given an operational goal, proac-
tively seeks context variables that could be sensed and utilized
to achieve this goal better. This analysis is done at design time.
While in our approach CVs are sensed at runtime and then uti-
lized for achieving business objectives, the process itself does
not change. What changes is the outcome of process elements
that have CVs as their inputs – e.g., routes will be calculated
differently given the changing traffic/weather conditions. Thus,
the contextual variability in our approach is hidden within pro-
cess activities. Therefore, we view our method as complemen-
tary to the mainstream context-aware BP approaches.

V. CONCLUSION AND FUTURE WORK

The growing complexity, dynamism, and competitiveness of
today’s business environments coupled with the increasing
availability of data and the sensing and analytics technologies
enables the shift from the reactive context-awareness that sensed
and analyzed a few important context variables, which had a sig-
nificant impact on organizations’ BPs, to its proactive counter-
part where organizations seek to take as much contextual infor-
mation into consideration as possible, provided the sensed and
utilized contextual variables deliver increased business value.

Unlike the previous approaches for designing context-aware
BPs, which focused on specifying how organizations and their
processes would react to changing business contexts, this paper
describes the approach for proactively seeking relevant context
information to improve the achievement of operational business
goals. Given such an objective, we explore the space of poten-
tially relevant context variables that can be sensed and then used
for achieving it. We outline the process of how the costs and
benefits of each CV can be evaluated and how the set of best-
performing CVs is selected for implementation. Based on these
CVs and their lifecycles we identify the constraints on when
these variables must be sensed and where the PE achieving the
given business goal is to be executed in a BP.

In its current form, the approach provides some guidance on
the elicitation of various types of NFRs (e.g., as described in
Sec. II.C and elsewhere in the paper). We are working on im-
proving upon this and plan to provide detailed patterns for link-
ing various NFRs used in the evaluation of sensing and imple-
mentation options discussed in Sec. II.

We aim at applying this approach to BP architectures
(BPAs) [11] to analyze the situations where, e.g., context sens-
ing and the use of the sensed information are performed in dif-
ferent stages (i.e., processes with distinct execution cycles). This
points to the need to identify additional data-related PEs, such
as those for data aggregation, storage, etc., and to more complex
positioning constraints.

Similarly, as the approach relies heavily on goal model-
based analysis, we are looking at automating this portion of the
approach – e.g., by using existing goal modeling tools.

In the proposed method, we use some lightweight formaliza-
tion (e.g., when specifying lifecycle statechart triggers) and gen-
erate simple, yet useful constraints. Declarative (e.g., Declare
[1]) and hybrid [3] BP modeling approaches have much more
powerful languages that can also be used in our approach for
constraint formulation and eventually for BP design automation.
We are currently exploring these options.

A limitation of the approach is that it only applies to leaf-
level goals and assumes that they are always implemented by a
single PE. We aim at comping up with a generalized version of
the method where these constraints are removed.

The approach is currently being evaluated in the domains of
transportation (portions of this case study were used as examples
in this paper), retail, and DevOps.

REFERENCES

[1] W. van der Aalst, M. Pesic, H. Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science – Research
and Development 23(2):99-113, 2009.

[2] R. Ali, F. Dalpiaz, P. Giorgini. A goal-based framework for contextual
requirements modeling and analysis. Requirements Engineering,
15(4):439-458, 2010.

[3] P. Chen. The Entity-Relationship Model - toward a unified view of data.
ACM Transsactions on Database Systems, 1(1): 9-36, 1976.

[4] G. De Giacomo, M. Dumas, F. Maggi, M. Montali. Declarative Process
Modeling in BPMN. In Proc. CAiSE 2015, Stockholm, Sweden, 2015.

[5] A. Hallerbach, T. Bauer, M. Reichert. Capturing Variability in Business
Process Models: the Provop Approach. J. of Soft. Maint. and Evol.:
Research and Practice, 22(6-7), pp. 519–546, 2010.

[6] J. Horkoff, E. Yu. Comparison and evaluation of goal-oriented
satisfaction analysis techniques. Requirements Engineering, 18(3):199-
222, 2013.

[7] V. Kavakli, P. Loucopoulos. Goal-Driven Business Process Analysis
Application in Electricity Deregulation. Information Systems, 24(3):187-
207, 1999.

[8] R. Kazhamiakin, M. Pistore, M. Roveri. A Framework for integrating
business processes and business requirements. In Proc. EDOC 2004,
Monterey, USA, 2004

[9] A. Lapouchnian, Y. Yu, J. Mylopoulos. Requirements-driven design and
configuration management of business processes. In Proc. BPM 2007,
Brisbane, Australia, Sep 24-28, 2007.

[10] A. Lapouchnian and J. Mylopoulos. Modeling domain variability in
requirements engineering with contexts. In Proc. ER 2009, Gramado,
Brazil, Nov 9-12, 2009.

[11] A. Lapouchnian, E. Yu, A. Sturm. Re-Designing process architectures:
towards a framework of design dimensions. In Proc. RCIS 2015, Athens,
Greece, May 13-15, 2015.

[12] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, J. Mylopoulos. On Goal-based
Variability Acquisition and Analysis. In Proc. RE 2006, Minneapolis,
USA, Sep 11-15, 2006.

[13] J. March. Exploration and exploitation in organizational learning.
Organization Science, 2:71-87, 1991.

[14] Object Management Group. Business Process Model and Notation
(BPMN), Version 2.0.2, 2013. Retrieved April 29, 2016 from
www.omg.org/spec/BPMN/2.0.2/PDF.

[15] Object Management Group. Unified Modeling Language (UML), Version
2.5, 2015. Retrieved April 29, 2016 from www.omg.org/spec/UML/2.5.

[16] M. Rosemann and J. Recker. Context-aware process design: exploring the
extrinsic drivers for process flexibility. In Proc. BPMDS 2006,
Luxembourg, 2006.

[17] M. Rosemann. Proposals for future BPM research directions. In Proc. AP-
BPM 2014, Brisbane, Australia, July 3-4, 2014.

