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Abstract

 

Autonomic computing systems reduce software 

maintenance costs and management complexity 

by taking on the responsibility for their configura-

tion, optimization, healing, and protection. These 

tasks are accomplished by switching at runtime to 

a different system behaviour – the one that is 

more efficient, more secure, more stable, etc. – 

while still fulfilling the main purpose of the sys-
tem. Thus, identifying the objectives of the sys-

tem, analyzing alternative ways of how these 

objectives can be met, and designing a system that 

supports all or some of these alternative behav-

iours is a promising way to develop autonomic 

systems. This paper proposes the use of require-

ments goal models as a foundation for such soft-

ware development process and demonstrates this 

on an example. 

1 Introduction 

As management complexity and maintenance cost 

of software systems keep spiraling upward, Auto-

nomic Computing (AC) [6][11] promises to move 

most of this complexity from humans to the soft-

ware itself and to reduce software maintenance 

costs, thereby drastically reducing the dominant 

cost factor in the software lifecycle. This reduc-

tion is expected to come about because autonomic 

software can self-configure at runtime to match 

changing operating environments; it can self-
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optimize to tune its performance or other software 

qualities; it can self-heal instead of crashing when 

its operating environment turns out to be incon-

sistent with its built-in design assumptions; and it 

can self-protect itself from malicious attacks. 

There are three basic ways to make a system 

autonomic. The first is to design it so that it sup-

ports a space of possible behaviours. These are 

realized through an isomorphic space of possible 

system configurations. To make such designs pos-

sible, we need concepts for characterizing large 

spaces of alternative behaviours/configurations. 
Goal models in requirements engineering [1] and 

feature models in software product line design [5] 

offer such concepts. For example, the possible 

behaviours of an autonomic meeting scheduling 

system might be characterized by a goal model 

that indicates all possible ways of achieving the 

goal “Schedule Meeting.” The second way of 

building an autonomic system is to endow it with 

planning capabilities and possibly social skills so 

that it can delegate tasks to external software 

components (agents), thereby augmenting its own 
capabilities [15]. Evolutionary approaches to au-

tonomic systems [14], such as those found in bi-

ology, constitute a third way of building 

autonomic software. We only explore the first 

way in this paper. 

The purpose of this paper is to show that re-

quirements goal models can be used as a founda-

tion for designing software that supports a space 

of behaviours, all delivering the same function, 

and that is able to select at runtime the best behav-

iour based on the current context. The advantages 
of this approach include the support for traceabil-

ity of software design to requirements as well as 

for the exploration of alternatives and for their 

analysis with respect to quality concerns of stake-

holders. We also sketch an autonomic systems 
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architecture that can be derived from these goal 

models. We then illustrate how self-configuration 

and self-optimization behaviour can be achieved 

in our approach and how properly enriched goal 

models can serve as sources of knowledge for 

these activities. 
The rest of the paper is structured as follows. 

We introduce goal-oriented requirements engi-

neering – the foundation of our approach – in Sec-

tion 2. There, we also discuss the use of goal 

models for capturing and analyzing alternatives as 

well as outline how design-level views can be 

created from goal models. In Section 3 we discuss 

the use of goal models for the design of Autonom-

ic Computing systems, while Section 4 presents 

our approach in detail. Discussion and conclusion 

are in Sections 5 and 6 respectively. 

2 Background 

In this section, we introduce goal-oriented re-

quirements engineering as well as some relevant 

work on using goal models for customizing and 

configuring software. 

2.1 Goal-Oriented Require-

ments Engineering 

A major breakthrough of the past decade in 

(Software) Requirements Engineering is the de-

velopment of a framework for capturing and ana-

lyzing stakeholder intentions to generate 

functional and non-functional (hereafter quality) 

requirements [1][12][17]. In essence, this work 

has extended upstream the software development 

process by adding a new phase (early require-

ments analysis) that is also supported by engineer-

ing concepts, tools and techniques, like its 

downstream cousins. The fundamental concepts 

used to drive the new form of analysis are those of 
goal and actor. For example, a stakeholder goal 

for a library information system may be “Fulfill 

Every Book Request”. This goal may be decom-

posed in different ways. One might consist of 

ensuring book availability by limiting the borrow-

ing period and also by notifying users who re-

quested a book that the book is available. This 

decomposition may lead (through intermediate 

steps) to functional requirements such as “Remind 

Borrower” and “Notify User”. A different decom-

position of the initial goal, however, may involve 
buying a book whenever a request can’t be ful-

filled1. Obviously, there are in general many ways 

to fulfill a stakeholder goal. Analyzing the space 

of alternatives makes the process of generating 

functional and quality requirements more system-

atic in the sense that the designer is exploring an 

explicitly represented space of alternatives. It also 
makes it more rational in that the designer can 

point to an explicit evaluation of these alternatives 

in terms of stakeholder criteria to justify his 

choice. An authoritative account of Goal-Oriented 

Requirements Engineering (GORE) can be found 

in [16].   

At the very heart of this new phase of Soft-

ware Engineering are goal models that represent 

stakeholder intentions and their refinements using 

formally defined relationships. Functional stake-

holder goals are modeled in terms of hard goals 

(or simply goals, when there is no ambiguity). For 
example, “Schedule Meeting” and “Fulfill Every 

Book Request” are functional goals that are either 

fulfilled (satisfied) or not fulfilled (denied). Other 

stakeholder goals are qualitative and are hard to 

define formally. For instance, “Have Productive 

Meeting” and “Have Satisfied Library Users” are 

qualitative goals and they are modeled in terms of 

softgoals. A softgoal by its very nature doesn’t 

have a clear-cut criterion for its fulfillment, and 

may be fully or partially satisfied or denied. 
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Figure 1: A goal model showing interdependen-

cies among goals and qualities. 

Goals and/or softgoals may be related through 
AND/OR relationships that have the obvious se-

mantics that AND-decomposed subgoals must all 
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be attained for their parent goal to be achieved 

and at least one OR-decomposed subgoal needs to 

be achieved for achieving its parent goal. In addi-

tion, goals/softgoals can be related to softgoals 

through help (+), hurt (–), make (++), or break (--) 

relationships. This simple language is sufficient 
for modeling and analyzing goals during early 

requirements, covering both functional and quali-

ty requirements, which in this framework are 

treated as first-class citizens. 

To illustrate what goal models are, and what 

they can do for the design of autonomic software, 

let’s suppose that the task is to design a system 

that supports the scheduling of meetings (Figure 

1). Clearly, several stakeholders here (managers, 

engineers, admin staff, etc.) share the goal 

“Schedule Meeting”, which can be AND-

decomposed into “Collect Timetables” and 
“Choose Schedules”. Each of the subgoals has 

two alternative solutions: it can either be done 

“By Person” (“Manually”) or “By System” (“Au-

tomatically”). A system can collect a timetable 

“From Agents” for each potential meeting partici-

pant (e.g., from his secretary) or directly from 

participants (“From Users”); the latter goal is fur-

ther AND-decomposed into “Send Request” and 

“Receive Response” (regarding timetables).  

Quality attributes are represented as softgoals 

(cloudy shapes in the figure). For our example, 
four top-level desired qualities are “Minimal 

(scheduling) Effort”, “Good Quality Schedule”, 

“Minimal Disturbance” and “Accurate (timetable) 

Constraints”. These can be decomposed into sub-

softgoals. For example, “Minimal Effort” can be 

fulfilled by minimizing “Collection Effort” and 

“(human) Matching Effort”. Similarly, “Good 

Quality Schedule” is fulfilled by having “Minimal 

Conflicts” and “Good Participation”. Clearly, 

collecting timetables manually is a tedious task. 

Thus, it hurts the softgoal “(minimize) Collection 

Effort”. As shown in Figure 1, such partial contri-
butions are explicitly expressed in the goal model. 

In order not to  clutter the figure, we don’t 

show all partial contributions. For instance, when 

timetables are collected by a person, they tend to 

be more accurate. Thus, there should be a positive 

contribution from the “By Person” goal to the 

“Minimal Conflicts” softgoal.  

In all, the goal model of Figure 1 shows six 

alternative ways for fulfilling the goal “Schedule 

Meeting”. It is easy to verify that generally the 

number of alternatives represented by a typical 
goal model depends exponentially on the number 

of OR decompositions (labelled as variation 

points “VP1” through “VP3” in Figure 1) present 

in the goal model (assuming a “normalized” goal 

model where AND and OR decompositions are 

interleaved). As such, goal models make it possi-

ble to capture during requirements analysis – in 
stakeholder-oriented terms – all the different ways 

of fulfilling top-level goals. A systematic ap-

proach for thoroughly analyzing the variability in 

the problem domain with the help of high-

variability goal models is discussed in [10]. The 

paper proposes a taxonomy of variability con-

cerns as well as the method for making sure these 

concerns are properly addressed during the goal 

model elicitation process. Now, if one were de-

signing an autonomic software system, it would 

make sense to ensure that the system is designed 

to accommodate most/all ways of fulfilling top-
level goals (i.e., delivering the desired functionali-

ty), rather than just some.  

Another feature of goal models is that alter-

natives can be ranked with respect to the qualities 

modeled in the figure. Assigning to the system the 

responsibility for collecting timetables and gener-

ating a schedule is in general less time-consuming 

(for people), but results more often in sub-optimal 

schedules, since the system doesn’t take into ac-

count personal/political/social considerations. So, 

the model of Figure 1 represents a space of alter-
native behaviours that can lead to the fulfillment 

of top-level goals, and also captures how these 

alternatives stack up with respect to desired 

stakeholder qualities. 

2.2 Reasoning with Goal Models 

While goal models are a useful notation for mod-

eling and communicating requirements, we are 

interested in the automated analysis of these mod-
els. To this end, Sebastiani et al. [13] present a 

sound and complete satisfaction label propagation 

algorithm that given a goal model with a number 

of alternative ways to satisfy its goals and a num-

ber of softgoals representing important quality 

concerns, can be used to find the alternative that 

achieves the top-level goal of the model while 

addressing these quality constraints. For instance, 

one can specify (see Figure 1) that the goal 

“Schedule Meeting” has to be achieved together 

with the non-functional constraint “Minimal Ef-
fort”. The algorithm will determine that the alter-

native where the collection of timetables from 
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users and the selection of the meeting schedule 

are done automatically is the best option. 

Additionally, given a goal model with a set of 

labels (i.e., satisfied, partially satisfied, etc.), the 

algorithm in [3] propagates these labels up to-

wards the root goals using the semantics of 
AND/OR decompositions and contribution links. 

Thus, this algorithm can be used to determine 

how the satisfaction/denial of lower-level goals 

affects the satisfaction of higher-level ones. For 

example, the failure of the goal “Choose Sched-

ule” in Figure 1 will deny the satisfaction of the 

goal “Schedule Meeting” even if its sibling goal 

“Collect Timetables” is satisfied. 

2.3 Goal Model-based Customi-

zation and Configuration 

There has been interest in trying to apply goal 

models in practice to configure and customize 

complex software systems. In [4], goal models 

were used in the context of “personal software” 

(e.g., an email system) specifically to capture al-

ternative ways of achieving user goals as a basis 

for creating highly customizable systems that can 

be fine-tuned for each particular user. The Goals-

Skills-Preferences approach for ranking alterna-

tives is also presented in [4]. The approach takes 

into consideration the user’s preferences (the de-
sired quality attributes) as well as the user’s phys-

ical and mental skills to find the best option for 

achieving the user’s goals. This is done by com-

paring the skills profile of the user to the skills 

requirements of various system configuration al-

ternatives. For example, for the user who has dif-

ficulty using the computer keyboard, the 

configurator system will reject the alternatives 

that require typing in favour of voice input.  

In a generic version of the above approach, 

capabilities of the system’s environment (e.g., the 

budget the customer allocated for the project or 
the current hardware/software environment in a 

customer organization) are used to prune the 

space of alternatives for achieving goals by re-

moving infeasible ones, while preferences will be 

used to rank the remaining alternatives. 

Goal models can also be used for configuring 

complex software systems based on high-level 

user goals and quality concerns [9][19]. Liaskos et. 

al [9] propose a systematic way of eliciting goal 

models that appropriately explain the intentions 

behind existing systems. In [19], Yu et. al show 
how such models can be used to automatically 

configure relevant aspects of a complex system 

without accessing its source code. A configurator 

system that accepts a goal model and a user pref-

erence profile (in XML) and outputs a configura-

tion for the target system is presented. The tool 

can have a GUI front-end and was used to config-
ure Mozilla Firefox and Eclipse IDE. 

2.4 From Goal Models to High-

Variability Software Designs 

We use goal models to represent variability in the 

way high-level stakeholder objectives can be met 

by the system-to-be together with its environment. 

Thus, goal models capture variability in the prob-

lem domain. However, properly augmented goal 

models can be used to create models that repre-

sent variability in the solution domain. We use 
textual annotations to add the necessary details to 

goal models. For example, the sequence annota-

tion (“;”) can be added to the appropriate AND 

goal decomposition to indicate that the subgoals 

are to be achieved in sequence from left to right. 

Sequence annotations are useful to model data 

dependencies or precedence constraints among 

subgoals. For instance, it is easy to see that the 

goal “Collect Timetables” must be achieved be-

fore achieving the goal “Choose Schedule” (see 

Figure 1). The absence of any dependency among 
subgoals in an AND decomposition can be indi-

cated by a concurrency (“||”) annotation. It is im-

portant to note that the above-mentioned 

annotations capture properties of the problem 

domain in more detail and are not used to capture 

design choices, so they are requirements-level 

annotations. However, annotations that can be 

applied to OR decompositions are usually more 

solution-oriented and indicate how (e.g., in paral-

lel to save time or in sequence to conserve re-

sources) the alternatives are to be attempted. We 

do not use this kind of annotations in this paper. 
Conditional annotations can also be added to 

specify that certain goals are to be achieved only 

under some specific circumstances. Lapouchnian 

and Lespérance [8] discuss more types of annota-

tions. The choice of annotations to be used with 

goal models is influenced by the kinds of analysis 

or model transformations that one would like to 

carry out on goal models.  

In [18], we described how one can gradually 

enrich basic goal models with appropriate infor-

mation and produce the several types of models 
that preserve the variability captured in the goal 
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models. Among the models produced are feature 

models and statecharts. These can serve as a start-

ing point in the development of a design for a 

software system that can deliver the desired func-

tionality in multiple ways.  
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Figure 2: A fragment of the statechart generated 

from the goal model in Figure 1. 

For example, to generate an initial statechart view 

(Figure 2) that models the behavioural variability 

of the system-to-be, for each goal the software 

system is responsible for a state that represents 

that goal being achieved by the system is intro-

duced. We use super-/substates for organizing the 
states into a hierarchy that is isomorphic to the 

goal hierarchy from the source goal model. The 

generation of statecharts is based on a set of pat-

terns that take into account goal decompositions 

and the temporal annotations that were used to 

enrich the original goal models. Here, the behav-

iour of the system depends on the selected process 

alternative in the corresponding goal model. Note 

that the conditions on some state transitions refer 

to the choices made for the variation points of the 

goal model (e.g., “VP1 = 2”). These conditions 
make sure that the choices in the goal model are 

reflected in the system behaviour. So, the variabil-

ity of the goal model is preserved in the statechart. 

Note also, that in this approach, the selection of 

alternative system behaviours is externalized and 

should be handled by a specialized component 

(e.g., the configurator system as in [19]). 

Thus, having a goal model representing the 

requirements for the system-to-be and the appro-

priate process-level enrichments, it is possible to 

generate initial design views that preserve the 
variability in the way the system-to-be can meet 

its objectives.  

Overall, the approach of [18] is systematic 

and requirements-driven. It allows for the gradual 

increase of the level of detail of the goal models 

through the use of annotations. This process maps 

requirements goal models into solution domain 

models that can either be utilized as high-level 

design specifications or used to generate other, 

more elaborate design-level models of the system. 

In this approach, requirements traceability is sup-
ported through the tight mapping between nota-

tions.  

Alternatively, a script can be generated from 

a goal model (e.g., as done in [8] for agent-based 

systems) that can be used for integra-

tion/orchestration of components designed to 

achieve leaf-level goals. In this case, the variabil-

ity will be preserved in the script rather than im-

plemented by the components of the system. 

3 Towards Goal-Driven Au-

tonomic Computing 

In this section, we describe how goal models can 

be helpful in designing autonomic application 

software, outline the architecture for AC systems 

that can be easily derived from goal models, and 

describe our requirements-driven approach for 

developing autonomic systems  

3.1 The Role of Goal Models 

The building blocks of autonomic computing are 

architectural components called Autonomic Ele-

ments (AEs). An autonomic element is responsi-

ble for providing resources, delivering services, 

etc. Its behaviour and its relationships with other 

AEs are “driven by goals that its designer embed-

ded in it” [6]. An AE typically consists of an au-
tonomic manager and a set of managed elements, 

such as resources, components, etc. The manager 

must be able to monitor and control the managed 

elements.  

An autonomic element manages itself to de-

liver its service in the best possible way. In order 

to achieve this, its autonomic manager must be 

armed with tools for monitoring its managed ele-

ments and the environment, for analyzing the col-

lected data to determine whether the AE is 

performing as expected, for planning a new 
course of action if a problem is detected, and for 

executing these plans by, for example, tuning the 

parameters of its managed elements. Most im-

portantly, these activities require the knowledge 

about the goal of the autonomic element, the con-
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figurations and capabilities of its managed ele-

ments, the environment of the AE, etc. 

We believe that goal models can be useful in 

the design of autonomic computing systems in 

several ways. First, goal models are used to cap-

ture and refine requirements for autonomic sys-
tems. A goal model provides the starting point for 

the development of such a system by analyzing 

the environment for the system-to-be and by iden-

tifying the problems that exist in this environment 

as well as the needs that the system under devel-

opment has to address.  Thus, requirements goal 

models can be used as a baseline for validating 

software systems. 

Second, goal models provide a means to rep-

resent many ways in which the objectives of the 

system can be met and analyze/rank these alterna-

tives with respect to stakeholder quality concerns 
and other constraints, as described above. This 

allows for exploration and analysis of alternative 

system behaviours at design time, which leads to 

more predictable and trusted autonomic systems. 

It also means that if the alternatives that are ini-

tially delivered with the system perform well, 

there is no need for complex social interactions 

among autonomic elements (e.g., as implied in [6], 

where AEs are viewed as socially-capable intelli-

gent agents). Of course, not all alternatives can be 

identified at design time. In an open and dynamic 
environment, new and better alternatives may 

present themselves and some of the identified and 

implemented alternatives may become impractical. 

Thus, in certain situations, new alternatives will 

have to be discovered and implemented by the 

system at runtime. However, the process of dis-

covery, analysis, and implementation of new al-

ternatives at runtime is complex and error-prone. 

By exploring the space of alternative process 

specifications at design time, we are minimizing 

the need for that difficult task. 

Third, goal models provide the traceability 
mechanism from AC system designs to stakehold-

er requirements. When a change in stakeholder 

requirements is detected at runtime (e.g., by using 

the approach in [2]), goal models can be used to 

re-evaluate the system behaviour alternatives with 

respect to the new requirements and to determine 

if system reconfiguration is needed. For instance, 

if a change in stakeholder requirements affected a 

particular goal in the model, it is easy to see how 

this goal is decomposed and which compo-

nents/autonomic elements implementing the goal 
are in turn affected. By analyzing the goal model, 

it is also easy to identify how a failure to achieve 

some particular goal affects the overall objective 

of the system. At the same time, high-variability 

goal models can be used to visualize the currently 

selected system configuration along with its alter-

natives and to communicate suggested configura-
tion changes to users in high-level terms. 

Fourth, goal models provide a unifying inten-

tional view of the system by relating goals as-

signed to individual autonomic elements to high-

level system objectives and quality concerns. 

These high-level objectives or quality concerns 

serve as the common knowledge shared among 

the autonomic computing elements to achieve the 

global system optimization. This way, the system 

can avoid the pitfalls of missing the globally op-

timal configuration due to only relying on local 

optimizations. 

3.2 A Hierarchical Autonomic 

Architecture 

We now outline the architecture for autonomic 

software systems that can be derived from high-

variability requirements goal models. We envision 

a hierarchy of autonomic elements that is struc-

turally similar to the goal hierarchy of the corre-

sponding goal model. Here, leaf-level goals are to 

be achieved by the components of the system-to-
be, by legacy systems, or by humans. Higher-level 

goals are used to aggregate the lower-level ones 

all the way to the root goal. Additional infor-

mation such as softgoal contributions and annota-

tions is used to determine the best configuration 

of the system for achieving its main goal.  

In the most straightforward case, a single au-

tonomic element is responsible for the whole sys-

tem. Thus, it is associated with the whole goal 

model and is said to achieve the root goal of the 

model. This has certain advantages in that all of 

the analysis, monitoring, etc. is done in one place, 
which can be helpful in achieving globally opti-

mal performance. However, there are also poten-

tial problems with this approach. A single AE can 

make the system quite inflexible, hard to maintain, 

as well as make it impossible to reuse any part of 

the system.  

In the other extreme case, each goal in the 

goal model can be associated with an autonomic 

element whose purpose is the achievement of that 

goal.  The managed elements of the leaf-level 

autonomic elements (which correspond to leaf- 
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level goals) are then the actual components, re-

sources, etc. Leaf-level AEs can tune and opti-

mize these resources to deliver their objective in 

the best way. On the other hand, higher-level au-

tonomic elements are not directly associated with 

the actual components, but are used to orchestrate 

the lower-level elements. The root autonomic 

element represents the whole software system. 
Thus, an AE corresponds to any subtree of the 

goal model. This approach has an advantage that 

the global high-variability design space is parti-

tioned into autonomic elements with lower varia-

bility, thereby facilitating management and 

administration tasks. Also, this will improve 

maintainability of the system. Finally, there is the 

middle ground where a goal model is partitioned 

among a set of AEs, each of which is responsible 

not for a single goal, but for a goal subtree.  

 

 

Figure 4: A hierarchical composition of AEs. 

It remains to be seen which strategy is the best for 

partitioning a goal model among autonomic ele-

ments. The size of the model is an important fac-

tor here.  

A fragment of a properly enriched goal model will 

serve as the core of each AE’s knowledge. For 

example, Figure 4 presents an AE, whose objec-

tive is to achieve the goal G. It has a fragment of 

the goal model showing the decomposition of this 

goal. Here, the goal G is AND-decomposed into 

G1 and G2, which means that the goal model 

identified only one way to achieve G. The man-
aged elements of the AE in Figure 4 are them-

selves autonomic elements that achieve the goals 

G1 and G2. They have different fragments of the 

goal model assigned to them. For example, the 

AE achieving the goal G2 knows that to attain 

that goal it must either achieve G3 or G4 (the rel-

evant softgoals are not shown). These goals can 

be in turn handled by lower-level AEs (also not 

shown). 

Because of the hierarchy of AEs, it is possi-

ble to propagate high-level concerns from the root 
AE down to the leaf-level elements, thus making 

sure that the system achieves its objectives and 

addresses the quality concerns of its stakeholders. 

Note that each autonomic element retains the 

freedom to achieve its goal in the best way it can 

provided that it satisfies the constraints passed to 

it by the higher-level AE and/or the user. 

3.3 An Illustrative Example 
Before we describe our approach in detail, let us 

introduce a subset of a case study we did to evalu-

ate it (see Figure 3). In the next sections we will 

be referring to parts of this example to illustrate 

the steps of the process. The example is a system 

designed to be used with Mozilla Thunderbird 

email client to periodically download email from 
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a corporate email server, thus “Check Corporate 

Email” is its goal. First, the system needs to con-

nect to the secure corporate intranet, which can be 

achieved by either connecting to it directly 

(through the office network), by using the virtual 

private network (VPN) connection, or by using a 
secure dial-up provider. All three ways are con-

sidered secure (note the contributions to the “Se-

cure Access” softgoal), but have different costs. 

Rectangular shapes in the model show how leaf-

level goals are implemented. For example, the 

achievement of “Through VPN” goal is delegated 

to an existing VPN dialer component. Then, the 

system configures Thunderbird to use the best 

email server available by selecting among the 

three available corporate servers. This is done by 

automatically changing the configuration file of 

Thunderbird (specifically, the parameter 

mail.server.corp.realhostname). Also, 

depending on whether the user prefers not to be 

disturbed or, conversely, prefers to be very re-
sponsive, the system configures Thunderbird to 

display a visual alert, play a sound, or do nothing 

when new mail arrives. After that, the system 

invokes Thunderbird and later disconnects from 

the intranet to reduce connection costs. As you 

can see, the example system delivers its function-

ality by integrating and appropriately configuring 

existing components. 

4 The Approach 

In our approach for the development of autonomic 

software, we take high-variability requirements-

level goal models as a starting point. They are 

used to capture the needs for the new system, both 

functional and non-functional and the alternatives 

that exist in the problem domain for meeting those 

needs, as well as to do the initial analysis of the 

alternatives with respect to the important quality 

criteria modeled as softgoals.  

A lot of research in the Autonomic Compu-
ting area is currently devoted to methods and 

techniques for developing AC managers that han-

dle IT resources shared among applications. 

These resources are usually various kinds of serv-

ers that can be dynamically allocated to applica-

tions that require them. So, the job of these AC 

managers is to optimize the use of their resources, 

to protect them, etc. Therefore, they operate in 

fairly restricted environments (e.g., data centres) 

and their decisions are implemented in terms of a 

relatively small set of actions that are available in 

these domains. This makes the AC managers quite 

generic (i.e., middleware-like). Moreover, most of 

the activities of these managers are hidden from 

the applications since they are quite low-level and 

thus do not affect these applications in a profound 

way. All of these characteristics make the field of 
resource allocation and provisioning ripe for au-

tomation. 

We, on the other hand, believe that resource 

allocation/provisioning is just one of the areas that 

can benefit from autonomic computing ideas and 

that these ideas can be applied to systems other 

than AC managers – specifically, to applications 

themselves. Therefore, our approach is meant to 

be used to introduce autonomic behaviour into the 

application software, thus making it more flexible 

and robust in achieving its goals. 

There are a number of ways in which auto-
nomic application software differs from autonom-

ic middleware. First, the autonomic functionality 

is application-specific, not generic.  Second, the 

changes in the autonomic application behaviour 

are usually visible to and have direct effect on the 

user and thus might require his explicit approval 

and his trust. Third, the autonomic behaviour of 

an application system is highly influenced by the 

preferences and priorities of its users.  

The above discussion suggests that autonom-

ic application software requires special develop-
ment methodologies that address its unique 

characteristics. Thus, the approach presented here 

that is rooted in software requirements engineer-

ing and provides a way to explicitly model and 

analyze alternative behaviours and how they af-

fect user quality concerns seems a promising way 

for building autonomic application software. 

In this approach, users (perhaps, non-

technical) can be in the loop by approving the 

software changes proposed by the autonomic sys-

tem as well as by driving them by the means of, 

for example, shifting priorities from one non-
functional concern to another. As noted before, 

the approach leads to more predictable and trusted 

systems and thus can be used for developing mis-

sion-critical systems with autonomic behaviour 

where changes in the system’s behaviour might 

have to be approved by an appropriate person 

before they are enacted. Goal models can help 

with such user interaction since they explicitly 

represent goal achievement alternatives as well as 

are able to present them in high-level terms. 

Since the approach relies on the manual elici-
tation of high-variability goal models, it may not 
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be suited for domains that need very large number 

of goals. However, once the goal model is devel-

oped, the alternatives can be enumerated and ana-

lyzed automatically. For example, [4] shows that 

even naïve algorithms can work reasonably well 

on a goal model with 750 nodes and 106 alterna-
tives. 

We now describe the main steps in the pro-

cess in more detail. 

4.1 Developing Goal Models 
The process starts by identifying the problem do-

main, together with the opportunities for its im-

provement. Specifically, we look at how the 

introduction of a software system can improve the 
situation in the domain. The i* notation [17] can 

be used at this stage to model stakeholders in the 

domain along with their needs. This early re-

quirements stage helps us in identifying the goals 

that the system-to-be will have to achieve. Once 

the goals of the system are clear, we use goal 

models to capture and refine them using AND/OR 

decompositions described in Section 2. The em-

phasis here is on modeling the variability in the 

problem domain: we try to capture all the differ-

ent ways the system’s goals can be achieved in 
that domain. The process for high-variability goal 

model elicitation described in [10] can help with 

this task. We refine the goals of the model until 

we reach the ones that can easily be achieved 

through developing a software component, dele-

gating the goal to an existing component, a legacy 

or a COTS (Commercial Off-The-Shelf) system, 

or a person. Also, as we can see in the Check 

Email system, some goals can be achieved by 

appropriately configuring COTS systems. 

In our example in Figure 3, the goal of the 

system is “Check Corporate Email”. This goal is 
refined into subgoals with alternative refinements 

(e.g., the way one can connect to the corporate 

intranet) represented by OR decompositions. We 

stopped the refinement once we identified the 

goals that could be achieved by the existing 

COTS systems such as Mozilla Thunderbird, a 

VPN dialer, or by appropriately configuring the 

COTS products used in the system.  

Non-functional constraints are used for ana-

lyzing the alternatives and for selecting the best 

option for the system’s behaviour. They are cap-
tured using softgoals in our goal models, so one of 

the key activities during the elicitation of goal 

models is to identify the quality constraints that 

are important in the problem domain. In the 

Check Email example, the softgoals include “Im-

prove Server Performance”, “Increase Respon-

siveness”, and “Minimize Disturbance”. Note that 

the latter two have the generally opposite contri-

butions from the alternative ways of notifying the 
user of new email messages: the goal “Do Not 

Notify” breaks (--) the softgoal “Increase Respon-

siveness” while making (++) “Minimize Disturb-

ance”. Thus, the selection of the best notification 

alternative will depend on how the user prioritizes 

among these quality constraints. A change in such 

prioritization will trigger a reconfiguration of the 

system. 

While eliciting goal models, we also add the 

necessary sequential and parallel annotations as 

described in Section 2.4. For instance, in the 

Check Email example, the goal of connecting to 
the intranet must be achieved before the goal of 

downloading mail. Similarly, the two aspects of 

the email client configuration, namely the mail 

server and the type of new email alert can be done 

independently, thus the goal “Configure Email 

Client” is used with the parallel annotation. 

4.2 Adding Formal Details 
While some GORE approaches (e.g., KAOS [1]) 

require formal specifications for all goals in goal 

models, in our approach it is up to the user to de-

termine to what extent the model must be formal-

ized. This means that if automated planning is a 

feature of the system, then all the goals will most 

likely be formally specified. Otherwise, the sys-

tem specification can mostly remain informal. For 

example, in Figure 3 we only specify precondi-

tions for goals as needed by using conditional 

annotations if(condition). Specifically, in 
Figure 3 the goal “Connect to Intranet” is OR-

decomposed into the goals “Direct” and “Through 

VPN” referring to the ways one can connect to a 

corporate intranet. The precondition for “Through 

VPN” is Inter, which is a boolean variable that 

is true whenever there is internet connectivity 
(since you have to have the internet connection to 

be able to use VPN). The precondition for the 

direct intranet connection is the existing intranet 

connectivity. Preconditions capture the domain 

properties that must be true for alternatives to be 

considered for selection. For instance, if the sys-

tem has only internet (but not intranet) connectivi-

ty, then the “Direct” option is not available, while 

the VPN and dial-up options are. When multiple 
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alternatives are available, quality criteria (in this 

case, “Minimize Connection Cost” softgoal) will 

be used to select the best one.  

Likewise, the two alternatives for the “Dis-

connect” goal, namely “Disconnect VPN” and 

“Disconnect Phone”, have as preconditions the 
VPN and dial-up connectivity respectively. Obvi-

ously, one can disconnect a dial-up connection 

only if it has been previously established. Thus, 

the boolean variable DialUp, a precondition for 
“Disconnect Phone”, must capture the effect 

(post-condition) of the goal “Secure Dial-Up”. 

The same applies to the variable VPN and the goal 
“Through VPN”. Therefore, when a VPN connec-

tion is established, it will be disconnected by 

achieving the goal “Disconnect VPN”. The pre-

conditions create requirements for the monitoring 

component of the system. 

4.3 Specifying Softgoal Contri-

butions 
In goal models, goals/softgoals can be related to 
softgoals through help (+), hurt (–), etc. relation-

ships. They represent qualitative evaluations of 

how particular alternatives affect the modeled 

non-functional requirements. Many of these do 

not change throughout the execution of the system. 

For instance, in Figure 3, the goal “Do Not Noti-

fy” [of incoming messages] makes (++) the soft-

goal “Minimize Disturbance”, while the goal 

[notify] “With Alert” hurts it. This captures the 

understanding that any alert is a distraction. And 

this is unlikely to change. On the other hand, there 

are situations where one would like to model soft-
goal contributions not as constants, but as func-

tions. In the Check Email example, such softgoal 

is “Improve Server Performance”. Suppose that 

the chosen way to improve email server perfor-

mance in the corporate system is to make email 

clients connect to servers with the lowest current 

workload. Since server workload, obviously, var-

ies, to pick the server with the lowest load we 

must parameterize the contributions to the soft-

goal “Improve Server Performance” as, for exam-

ple, done in [9]. To preserve uniformity in treating 
softgoals and thus to still allow the use of the pre-

viously mentioned goal reasoning algorithms, we 

define the function f(srv) (where srv is the 
name of the email server), which maps certain 

server workload ranges into the already discussed 

four contribution labels. Here, we assume that 

maximum server load is 999 concurrent connec-

tions. The function is defined through the sensed 

value load(srv), the current load on the server 

srv. 
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Since softgoals represent quality concerns (non-

functional requirements), not all of them can be 

automatically determined to be satisfied or not. It 

is even harder is assign values to softgoals thus 

turning them into quantitative entities. Still, many 

softgoals can be metricized – assigned metrics 
that approximate those concerns. The handling of 

the goal “Improve Server Performance” above is 

an example of metricizing a softgoal. Similarly, a 

popular metric for reliability is mean time be-

tween failure is another example. There are many 

examples of such well-understood metrics that 

can be used to approximate profitability, reliabil-

ity, performance, etc. However, not all softgoals 

can be metricized. For example, “Convenience” is 

a highly subjective criterion. 

In general, in order to metricize a softgoal 
one needs to come up with a measurable function 

approximating that softgoal. Additionally, based 

on the usual four-valued system for softgoal con-

tribution we use in our goal models the range of 

the function has to be partitioned into four sub-

ranges, each corresponding to the contribution 

value from “--“ to “++” as done in the example 

above. 

4.4 Monitoring 
For a system to exhibit autonomic behaviour, it 

must be able to monitor its environment as well as 

its own behaviour to detect changes, failures, etc. 

Appropriately enriched goal models described in 

the previous sections can help in determining 

what information needs to be captured and ana-

lyzed by the system. 

First of all, the system must be able to moni-

tor the achievement of its leaf-level goals. These 

are the goals that are assigned to the system com-
ponents, or the environment of the system (i.e., 

legacy systems, humans, etc.) In Requirements 

Engineering, the latter are viewed as the system’s 
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expectations of its environment and so an auto-

nomic system must monitor the achievement of 

these goals in order to detect if the expectations 

are still valid. 

The monitoring can be done in various ways. 

If a goal is assigned to a legacy system or a com-
ponent, it might be possible to query that sys-

tem/component to get the status of the goal. 

Otherwise, sensors in the environment can be 

used to determine if the goal has been achieved 

without querying the involved component(s). For 

instance, in the example in Figure 3, after a VPN 

dialer has been invoked to achieve the goal [con-

nect to intranet] “Through VPN”, we used a sim-

ple sensor to determine if access to the internal 

corporate network had been granted by ping-ing 
a known intranet server.  

The achievement status of non-leaf goals can 

usually be deduced using the algorithm of [3] that 

propagates the satisfaction values of leaf-level 

goals up towards the root of the model. For exam-
ple, if the goal “Through VPN” is determined to 

be achieved, then the goal “Connect to Intranet” is 

achieved as well by the semantics of the OR de-

composition. 

The environment of the system also needs to 

be monitored to determine if preconditions for 

goals are satisfied. In the Check Email example, 

the goal [connect to intranet] “Through VPN” 

requires internet connectivity. Again, a simple 

ping-based sensor is used to determine that. The 

boolean variable Inter used within a conditional 
annotation applied to “Through VPN” is defined 

with the help of this sensor. Frequently, a precon-

dition of one goal is the achievement of another. 

For example, a VPN connection must exist before 

one can disconnect it. So, the precondition for 

“Disconnect VPN”, the boolean variable VPN, is, 
in fact, the post-condition of “Through VPN”. It 

can be tested as described above. 
Since some non-functional requirements 

(modeled as softgoals) can be metricized using 

approximating functions, to calculate the values 

for these functions, we need to capture the data 

used in their definitions. For example, to evaluate 

the satisfaction of the softgoal “Improve Server 

Performance” (as defined in Section 4.3) the 

Check Email system needs to monitor the current 

server load value load(srv) for all  email serv-
ers.  

As already mentioned, many softgoals are too 

high-level/subjective to be metricized. Thus, it is 

not straightforward for the system to, for example, 

automatically verify that a particular alternative’s 

contribution to a softgoal is correctly captured in 

the goal model (e.g., that an alternative, in fact, 

contributes negatively to the softgoal “Conven-

ience”). In these cases, the system might want to 
confirm with the user(s) that its current configura-

tion meets the users’ quality criteria. 

4.5 Using COTS Systems 
COTS or legacy systems can be given responsibil-

ity for achieving goals. This can be done in the 

usual way through procedure calls, messages, etc. 

However, another possibility for using legacy 

software in autonomic systems is through goal-
driven configuration [9][19] where AEs will wrap 

these systems making sure that their behaviour 

conforms to the quality preferences of system’s 

stakeholders. The use of Thunderbird in our 

Check Email case study is an example of that. 

Here, Thunderbird is being dynamically config-

ured to achieve the functional goal “Download 

Mail” while meeting non-functional requirements 

such as “Improve Server Performance”. This con-

figuration approach has limitations since it de-

pends on the richness of configuration options of 
legacy systems. However, many complex systems 

have vast possibilities for configuration yielding 

thousands or millions of alternatives with very 

different properties that can be utilized in our ap-

proach. 

When applied to COTS/legacy systems, our 

approach can be viewed as defining the infrastruc-

ture for flexible, yet predictable integration of 

these systems to meet higher-level customer needs. 

4.6 Goal Model-Based Auto-

nomic Behaviour 
Given a goal model characterizing various ways 

of achieving some root goal G, one can rank these 

alternatives with respect to their satisfaction of the 

partially ordered set of quality criteria represented 

in the model by softgoals. For example, in the 

Check Email case study, if the softgoal “Minimize 

Disturbance” is of high priority, then any alterna-

tive that uses sound notification when new mail 

arrives will be ranked lower than any alternative 

that uses the display notification. Whenever the 
system needs to switch from one configuration to 

another, it tries to select the best new alternative 

that achieves the objective of the system while 
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maximizing the achievement of the set of quality 

constraints (softgoals). 

4.6.1 Self-Configuration 

In our approach, when the system is first deployed, 

it is configured to execute the best alternative for 

the given (initial) preferences over softgoals. It 

should continue to execute the chosen alternative 
until changes in the environment of the system or 

changes in softgoal priorities invalidate it. If this 

happens, the system should be reconfigured and 

the new best alternative must be chosen. For ex-

ample, in Figure 3, the default means for estab-

lishing the intranet connection is the “Direct” 

connection since it, unlike the other choices, has a 

“make” (++) contribution to the softgoal “Mini-

mize Connection Cost”. Therefore, as the user of 

the system keeps checking his email while being 

connected in the office (the precondition Intra 
always holds in this case), the “Direct” option will 

remain selected. However, if the user tries to 

check the corporate email from home using his 
own internet provider, the monitoring component 

will detect the internet, but not the intranet con-

nectivity. Therefore, the precondition for the “Di-

rect” option will not be satisfied and a 

reconfiguration will be needed. In this case, both 

of the remaining alternatives will be available 

since their preconditions are satisfied. The auto-

nomic manager responsible for that part of the 

system will then use the goal reasoning algorithm 

of [13] to find an alternative that achieves the goal 

“Connect to Intranet” while making the best con-

tribution to the softgoal “Minimize Connection 
Cost”. That alternative adopts the goal “Through 

VPN”. This is an example of software reconfigu-

ration based on a change in the environment of 

the system. 

A similar switch from one configuration to 

another will happen due to the change in user pri-

orities regarding email notification (the softgoals 

“Increase Responsiveness” and “Minimize Dis-

turbance”). These changes cannot be easily de-

tected as they are normally related to the user’s 

mood, workload, etc. Thus, the user must be able 
to notify the system about such changes proac-

tively, through the use of a GUI tool. In the case 

study we used a simple tool (presented in [19]) 

that allowed users to set priorities over softgoals 

for the system. Once the user’s input is received, 

the best choice for “Notify User of New Mail” 

based on the user’s new priorities is found as 

above with the help of a reasoning algorithm. 

Therefore, in our approach, both the user and the 

system’s environment can cause self-

reconfiguration. 

4.6.2 Self-Optimization 

The email server configuration in Mozilla Thun-

derbird in our Check Email example is designed 
to show how self-optimization can be done in our 

approach (see Figure 3). When the system is first 

deployed, the values load(srv1) through 

load(srv3) are fetched using a simple monitor-

ing component querying the server status database. 

The contribution values for the servers are then 
calculated and the server with the lowest work-

load is chosen. During the subsequent runs of the 

system new workload values are received and the 

contributions to “Improve Server Performance” 

are recalculated. If applicable, a different server is 

chosen. Since the formula f produces only four 

discrete values for the softgoal contributions, the 

system will not be able to always select the server 

with the lowest workload because the reasoning 

algorithm will not be able to distinguish among 

servers with relatively similar workloads and thus 
the same contribution labels. A finer-grained ap-

proach is, of course, possible (e.g., one use nu-

merical softgoal contribution values). 

4.6.3 Self-Healing 

A failure of a software component, COTS/legacy 

system, or human to achieve a goal delegated to 

them forces the system to search for ways to heal 

itself. Using one of the already mentioned goal 

analysis algorithms [3], the system will propagate 

the “denied” status of the failed leaf-level goal up 

the goal model to determine which higher-level 

goals will in turn be affected by this failure. This 

failure propagation can be presented to the us-
er/administrator of the system to illustrate the 

severity of the problem by showing the problem-

atic system parts. The “top-down” goal reasoning 

algorithm [13] is then used to find a new system 

configuration that satisfies the top-level goal of 

the system and as many of the non-functional 

requirements as possible.  

We will now illustrate this using the example 

in Figure 3. Obviously, a failure of any child of an 

AND-decomposed goal will propagate to its par-

ent. So, in our Check Email example a failure to 
establish an intranet connection automatically 

denies the top-level goal “Check Corporate 
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Email”. In this case, the model has no alternative 

capable of achieving the top goal. 

On the other hand, all of the children of an 

OR-decomposed goal must fail for it to be denied. 

For example, in, if the goal [notify user of new 

email] “With Sound” fails, then its parent goal 
“Notify User of New Mail” can still be attained 

since there exist other alternatives for its 

achievement. From the two possibilities, “With 

Alert” and “Do Not Notify”, and assuming that 

the user prefers the softgoal “Increase Respon-

siveness”, the algorithm of [13] will select “With 

Alert” as the new alternative contributes positive-

ly to that softgoal (unlike “Do Not Notify”). 

5 Discussion 

Kephart and Chess suggest that overall system 

self-management results from the internal self-

management of its individual autonomic elements 

[6]. Moreover, in their view, autonomic elements 

are full-fledged intelligent agents that, when as-

signed individual goals, will use complex social 

interactions to communicate, negotiate, form alli-

ances, etc. and ultimately deliver the objective of 

an autonomic system. However, deriving a set of 

goals and policies that, if embedded into individu-

al autonomic elements, will guarantee certain 
global system properties is nontrivial. Thus, there 

needs to be a systematic way of capturing overall 

system’s objectives, decomposing them into low-

er-level goals, and assigning those goals to AEs. 

This problem is not addressed in [6]. The ap-

proach presented here is requirements-driven and 

can be used to systematically derive goals for 

individual AEs/agents given the overall goals of 

the system.  

Multiagent systems promise to provide a very 

flexible, scalable and open platform for software 

applications. However, the cost of introducing 
agent infrastructures that rely on complex interac-

tion protocols, planning, etc. may outweigh their 

benefits in the domains where, for example, well-

understood performance models already exist and 

can be used for automated optimization of soft-

ware systems. At the same time, there are also 

concerns that a fully agent-based solution may not 

be acceptable in certain domains such as mission 

critical systems, business support systems, etc. 

where predictability, reliability and transparency 

are of paramount importance. Similarly, trust can 
be a major issue in the acceptance of AC systems. 

We believe that while being less flexible, our 

methodology provides the capability to analyze 

important process alternatives thus increasing the 

system’s predictability and transparency while 

improving the users’ trust in it.  

In [8], an agent-oriented requirements engi-

neering method is introduced that translates i* 
models (which are a superset of the goal models 

described here) into high-level formal agent speci-

fications that support formal representation of and 

reasoning about goals and knowledge of agents. 

That approach is similar to the one presented here 

in the sense that it is requirements-driven and uses 

a similar goal-oriented notation. However, the 

method of [8] does not emphasize the variability 

aspect of goal models as much as we do here. 

Therefore, we view the two techniques as com-

plementary to each other. By allowing leaf-level 

goals in our approach to be delegated to intelli-
gent software agents, we will help with the design 

of systems that support a set of previously ana-

lyzed and trusted alternatives and do not require 

complex multiagent infrastructures as long as one 

of the identified alternatives can be applied. In 

situations when no alternative is satisfactory, the 

full capabilities of intelligent software agents such 

as the ability to reason about their goals, to com-

municate with each other at a semantic level, to 

dynamically form teams, etc. can be invoked. We 

plan to work on such hybrid approach in the fu-
ture. 

6 Conclusion 

The essential characteristic of autonomic compu-

ting systems is their ability to change their behav-

iour automatically in case of failures, changing 

environment conditions, etc. In this paper, we 

outline an approach for designing autonomic 

computing systems based on goal models that 

represent all the ways that high-level functional 
and non-functional stakeholder goals can be at-

tained. These goal models can be used as a foun-

dation for building software that supports a space 

of behaviours for achieving its goals and that is 

able to analyze these alternatives (with respect to 

important quality and other criteria), its own state, 

and its environment to determine which behaviour 

is the most appropriate at any given moment. For 

such systems, goal models provide an intentional 

view unifying all the system components and 

demonstrating how they must work together to 
achieve the overall system objective. Goal models 

also support requirements traceability thus allow-
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ing for the easy identification of parts of the sys-

tem affected by changing requirements. When 

properly enriched with relevant design-level in-

formation, goal models can provide the core ar-

chitectural, behavioural, etc. knowledge for 

supporting self-management. Of course, an ap-
propriate monitoring framework as well as, per-

haps, learning mechanisms need to be introduced 

to enable self-management. The use of our ap-

proach with intelligent software agents is also 

possible. 

The benefits of this method also include the 

increase in predictability and transparency of sys-

tems as well as the users’ trust in them. 

Presented here is a vision for the require-

ments-driven design of autonomic software. A lot 

of work remains to be done to test the applicabil-

ity of this approach and its scalability (though 
there is evidence that automated reasoning can be 

done on very large goal models). Heuristics need 

to be developed for decomposing the system into 

a hierarchy of autonomic elements. A particularly 

interesting research area is the integration of 

agents into the approach. This way the system 

will be able to come up with new alternatives for 

meeting its objectives whenever the predefined 

configurations fail. We are also working on larger 

case studies, particular in the area of adaptive 

business processes and patient care. 
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