
u INTERFACING
INDIGOLOG AND OAA: A
TOOLKIT FOR ADVANCED
MULTIAGENT APPLICATIONS

A. LAPOUCHNIANandY. LESPE¤ RANCE
Department of Computer Science,York University,
Toronto, Canada

In this paper, we describe an interface library IG-OAAlib that supports the development of

Open Agent Architecture (OAA) agents using the INDIGOLOG agent programming

language. OAA is a multi-agent infrastructure that supports facilitated communication.

INDIGOLOG is a high-level agent programming language based on logic that supports

planning and allows complex agent behaviors to be specified. Full-fledged INDIGOLOG

agents written using our interface library can be both reactive and proactive, thus

overcoming one of the limitations of PROLOG-based agents in the OAA framework. The

interface hides all of the low-level procedures that are used to communicate with the OAA

system, as well as OAA initialization, thereby leaving the INDIGOLOG programmer free to

concentrate on the functionality of the agent. A multi-robot mail delivery application

developed using the library is presented.

In many emerging applications of computer technology, such as elec-
tronic commerce, services on the World Wide Web, space or manufacturing
robots, etc., the software systems involved are complex, composed of mul-
tiple components that need to be integrated. Systems are often open in that
the set of components that are connected can change as the system operates
(e.g., as in wireless computing). As well, systems need to be robust and able
to cope with failures and unexpected conditions. In response to this, devel-
opers are starting to adopt agent-oriented architectures, where a system is
composed of agents, autonomous entities that can interact in flexible ways,
for instance, through negotiation, while working towards their goals and
reacting to changes in the environment. However, such flexibility cannot be
achieved without imparting some intelligence to some of the agents through
the use of knowledge-based architectures, automated planning, etc. In this

Address Correspondence to Alexei Lapouchnian, Department of Computer Science, York

University, Computer Science Building, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.

E-mail: alexei@cs.yorku.ca

813

Applied Artificial Intelligence, 16:813–829, 2002

Copyright # 2002 Taylor & Francis

0883-9514/02 $12.00 +.00

DOI: 10.1080/08839510290030507

paper, we address the need for tools for implementing multi-agent systems
involving intelligent agents for robotics and for other applications.

INDIGOLOG (De Giacomo and Levesque 1999) is a very high-level
programming language for intelligent agents and robots that supports online
planning and plan execution in dynamic and incompletely known environ-
ments. It allows the programmer to specify a logical model of the domain in
the situation calculus and uses it to perform projection in planning/search
and update when actions occur. Complex behaviors combining planning and
reactivity can be specified in a rich concurrent programming language.
INDIGOLOG is an extension of the GOLOG (Levesque et al. 1997) and
CONGOLOG (De Giacomo et al. 2000) high-level agent programming
languages. It has been implemented on top of PROLOG and is a very
effective tool for programming individual agents for tasks that require
planning and reasoning.

INDIGOLOG has been used previously in various applications.
Lespérance and Ng (2000) showed how INDIGOLOG could be employed to
program smart robot controllers that integrate sensing, planning, and reac-
tive plan execution. Levesque and Pagnucco (2000) used it to control very
inexpensive robots. The earlier GOLOG language was used to implement a
very successful museum guide robot in Germany (Burgard et al. 1998).
McIlraith and Son (2001) also used GOLOG to automatically compose and
customize services on the Web.

Many applications are best delivered as multi-agent systems that
involve multiple interacting agents with specialized skills. Agents pro-
grammed in INDIGOLOG can be included in such systems, but until
recently, they had always been interfaced using low-level protocols such as
TCP/IP. In this paper, we describe a new interface mechanism IG-OAAlib
that allows the easy integration of INDIGOLOG agents in multi-agent
systems that use SRI’s Open Agent Architecture (OAA) (Martin et al.
1999) infrastructure. OAA provides high-level brokered communication
facilities that can automatically route requests to agents that have the
capabilities to serve them. It uses a PROLOG-like Interagent Commu-
nication Language that makes it a good match for INDIGOLOG. The
combination of OAA and INDIGOLOG provides a very powerful tool for
developing multi-agent systems for advanced applications. As an example,
we describe a multi-robot mail delivery system that has been implemented
using the framework.

Our INDIGOLOG-OAA interface mechanism allows INDIGOLOG
agents to be both proactive and reactive. This overcomes a major limitation of
PROLOG-based agents in OAA since both INDIGOLOG and OAA require
them to run their separate event loops. Here, we propose a solution that
integrates these event loops, therefore, allowing an INDIGOLOG agent to
monitor both OAA and INDIGOLOG events concurrently.

814 A. Lapouchnian and Y. Lespérance

McIlraith and Son (2001) have used OAA in combination with GOLOG
(the original situation calculus-based programming language on which
INDIGOLOG is based) for semantic Web applications. They developed their
own interface mechanism for doing this, but did not describe it. Our interface
was developed independently.

INDIGOLOG

Indigolog Agent Structure

An INDIGOLOG agent includes the following:

� A specification of the application domain dynamics. This is done de-
claratively in the situation calculus (McCarthy and Hayes, 1979; Reiter,
2001).

� A behavior specification. This is specified procedurally in a rich pro-
gramming language with loops, non-determinism, concurrency, inter-
rupts, etc. INDIGOLOG agents may perform sensing actions to acquire
information at runtime as well as react to exogenous events.

Specifying Domain Dynamics in the Situation Calculus

In INDIGOLOG, domain theories are specified in the situation calculus
(McCarthy and Hayes, 1979; Reiter 2001), a language of predicate logic for
representing dynamically changing worlds. In this language, a possible world
history, which is simply a sequence of actions, is represented by a first order
term called a situation. The constant S0 is used to denote the initial situation
and the term do(a,s) denotes the situation resulting from action a being
performed in situation s.

Relations and functions that vary from situation to situation, called
predicate fluents and functional fluents, respectively, are represented by pre-
dicate and function symbols that take a situation term as last argument. A
domain of application is specified by theory that includes the following types
of axioms (De Giacomo and Levesque 1999; Reiter 2001):

� Axioms describing the initial situation, S0.
� Action precondition axioms, one for each primitive action a, character-

izing Poss(a,s), which means that primitive action a is possible in
situation s.

� Successor state axioms, one for each fluent F(x1,...,xn,s), which char-
acterize the conditions under which F(x1,...,xn,do(a,s)) holds in terms of
what holds in situation s; they provide a solution to the frame problem
(Reiter 1991).

Interfacing INDIGOLOG and OAA 815

� Sensed fluent axioms, which relate the value returned by a sensing action
to the fluent condition it senses in the environment.

� Unique names axioms for the primitive actions.
� Some foundational, domain independent axioms.

In the current INDIGOLOG implementation, the initial situation is
specified as a set of PROLOG clauses, which means that only completely
specified initial situations can be handled. We hope to accommodate limited
forms of incompleteness in the future implementations.

INDIGOLOG Behavior Specification

The behavior of an INDIGOLOG agent is specified procedurally using a
rich set of high-level programming constructs, which include recursive pro-
cedures, if-then-else, while loops, non-deterministic branch, non-determinis-
tic choice of arguments, non-deterministic iteration, concurrent execution
with or without prioritization, interrupts, etc.

A powerful search block facility is available in INDIGOLOG. By default,
INDIGOLOG programs are executed in an online fashion: All the non-
deterministic choices are treated as random ones and any action selected is
executed immediately. On the other hand, for a program in a search block,
the interpreter does an offline search. It looks for a sequence of actions
constituting a legal execution of the program resolving non-deterministic
choices appropriately, before actually executing them. After a sequence of
actions is found for the search block, it needs to be rechecked if an exogenous
action occurs to see if it still leads to a final situation for the search block. If
the previously found sequence of actions is no longer valid, replanning (a new
search) is done.

THE OPEN AGENT ARCHITECTURE

The Open Agent Architecture is a framework for constructing multi-
agent systems developed at SRI International (Martin et al. 1999). The pri-
mary goal of OAA is to provide a means for integrating heterogeneous
applications in a distributed infrastructure. OAA incorporates some of the
dynamism and extensibility of blackboard approaches, e.g., FLiPSiDE
(Schwartz 1995) and LINDA (Gelernter 1993), that provide a flexible solu-
tion for cooperative problem solving in dynamic distributed systems, which
eliminates the requirement for tight interaction links among agents. It also
draws on distributed objects technologies, e.g., CORBA (OMG 2002) and
DCOM (Microsoft 1998), which provide an efficient infrastructure for the
creation of programs whose components are distributed across networks of
computers.

816 A. Lapouchnian and Y. Lespérance

OAA provides a communication infrastructure for the agents as well as
the Interagent Communication Language (ICL) that is used to exchange
information between agents. These provide support for rich and complex
interactions among agents. The system has at least one special agent called a
facilitator. This agent acts as a broker=matchmaker and all inter-agent
communication goes through it. The facilitator keeps track of all the agents
in its system, their addresses, and their capabilities. Requests are auto-
matically routed to agents that have the capabilities to handle them. It is
possible to create a hierarchy of facilitators, each with its own subsystem of
agents. The current version of OAA supports agents written in Java, Quintus
and SICStus PROLOG, C=Cþþ , and Compaq’s Web Language.

When a client agent enters the system, it connects to the facilitator agent
and provides it with a list of solvables—the agent’s capabilities. These pro-
vide the high-level interface to the agent. A callback method associated with
a capability is invoked when a request involving that capability is received.
Agents can dynamically add and remove solvables. The solvables can be of
two types: procedure and data. Procedure solvables describe some service that
can be performed by the agent, while data solvables are most commonly used
to create a data storage that is shared among the agents in the system.

When an agent wants some services performed by other agents, it issues
an oaa_Solve(goal, parameters) request that is forwarded to an appropriate
agent by the facilitator. The goal part of such request is an ICL description of
the service to be performed. A number of parameters can be used in the
oaa_Solve request to specify, for example, whether this call should be
blocking, or to say whether multiple agents are allowed to attempt to solve
the problem simultaneously. The result of the query is returned by binding
variables as in PROLOG.

OUR INDIGOLOG-OAA INTERFACING SCHEME

Our interfacing scheme is designed to integrate full-fledged INDIGO-
LOG agents in an OAA-based system without giving up any of the usual
functionalities (e.g., data solvables, interrupts, etc.) of either tools. It sup-
ports the integration into an OAA system of INDIGOLOG agents that are
both reactive and proactive, thus overcoming one of the major limitations of
PROLOG-based agents in OAA (see Figure 1). To be able to execute an
INDIGOLOG program while keeping track of incoming OAA events, we
need to integrate the event loops of INDIGOLOG and OAA.

To allow this, we need to use an asynchronous communication scheme.
Other agents should be using non-blocking calls when requesting services
from INDIGOLOG OAA agents built using this interface. It is up to the
INDIGOLOG program to decide when and how to respond to these
requests. We advise that the calls to OAA made from an INDIGOLOG

Interfacing INDIGOLOG and OAA 817

agent using this interface also be non-blocking, to allow the agent to react
promptly to its incoming events.

An INDIGOLOG OAA agent using this interface will be able to execute
its program (e.g., reasoning=planning) while still keeping track of incoming
OAA messages (most notably requests for service coming from other agents
in the system). Support for exogenous events in INDIGOLOG allows us to
automatically check the OAA library for incoming events after every action
executed by the INDIGOLOG interpreter. The process of receiving OAA
events is completely transparent to the programmer: they appear in the
program as INDIGOLOG exogenous actions.

The OAA primitives can be used in the implementations of INDIGO-
LOG primitive actions. The interface lets the OAA library handle all the
incoming messages that are not calls to the solvables the agent has defined.
Such events may be related to the management of data solvables defined at
this agent and auxiliary activities, such as message tracing.

In order to be able to react to OAA events appropriately, an INDI-
GOLOG agent needs to have exogenous actions defined, one for every
procedure solvable that the agent declares. Incoming OAA events that are
intercepted by this interface appear in the INDIGOLOG program as these
exogenous actions. They are inserted into the action history in the order in
which they are received. Successor state axioms involving these exogenous
actions should be defined, changing the values of certain fluents in accor-
dance with the event received.

FIGURE 1. Our INDIGOLOG-OAA interfacing scheme.

818 A. Lapouchnian and Y. Lespérance

The interface also hides all of the code that is needed to connect to the
OAA facilitator, declare solvables, etc. However, here we concentrate on the
other benefits of this interface. We next present an example application
before returning to the details of the interface implementation.

EXAMPLE APPLICATION: MULTI-ROBOT MAIL DELIVERY

Overview

Let us now describe an application that we have implemented with our
toolkit. It involves a multi-robot mail delivery system. The setting is a virtual
office environment, which models the graduate labs area in our department.
This environment is populated by a varying number of robots capable of
delivering packages (the robots are currently simulated). The assignment of
packages to robots is the responsibility of a dispatcher agent. The dispatcher
and the robots implement a variant of the contract net protocol (Smith and
Davis 1981) to select the best robot to deliver a package. The system is open
in the sense that the robots can come online and go offline (presumably after
completing the orders they were assigned) at any time. If no robot can deliver
a package, the order is queued until there is a robot available. The GUI agent
is used to get users’ orders and visualize the system by displaying the status
and locations of all the robots in the system.

This example system includes six different types of agents (see Figure 2).
Five of them are implemented in Java. The mail delivery robots are actually
implemented using an architecture that involves two agents: a high-level
control agent written in INDIGOLOG and a low-level control agent written
in Java. The INDIGOLOG-based High-Level Control agent (HLC) is
responsible for bidding for available mail delivery orders and for con-
structing optimal plans for carrying out the orders awarded to the robot. It
takes full advantage of the INDIGOLOG-OAA interface through which it
can execute its package delivery plan, while responding to requests for bids
coming from the dispatcher and modifying the plan to incorporate newly
awarded orders. The Java-based Low-Level Control agent (LLC) simulates
the movement of the robot through the environment. Each robot has a
unique ID. This ID is given to both the LLC and the HLC and is used by
them to find each other and form a single logical robot controller while still
remaining two separate agents.

Individual Agents Details

The GUI, PathPlanner, and DB Agents
The GUI agent displays the virtual environment with the current position

and status of every mail delivery robot and package as well as the status of all

Interfacing INDIGOLOG and OAA 819

delivery orders. It is used by the user of the system to place orders for
package delivery. This agent is multi-threaded and all the synchronous calls
to OAA are executed in their own threads, thus allowing it to accommodate a
large number of robots and orders. The robots use the GUI’s solvables
action_update (we omit parameters here) and position_update to
send information about their current activity and location, respectively.

The PathPlanner agent knows the distances and paths between any pair
of locations. It is used mainly by the robots to prepare bids for new orders
and for traveling from location to location. It has two solvables: distance
returns the distance between a pair of locations, while path returns a list of
locations, that constitutes a path from one location to another.

The DB agent accepts bids from robots and sends them to the Dispatcher
while also keeping track of queued orders. Since the DB agent acts like
a blackboard, its functionality could have been implemented using
OAA facilities, such as triggers and data solvables. Unfortunately, there were

FIGURE 2. Multi-robot mail delivery application interactions.

820 A. Lapouchnian and Y. Lespérance

difficulties with that approach and we decided to have a dedicated DB agent
instead of relying on the OAA functionality.

The Dispatcher
The Dispatcher is responsible for taking orders from the GUI agent

and distributing them among available robots. After receiving an order,
the Dispatcher checks it for validity and then issues a call for bids that is
sent to all the mail delivery robots currently online. The Dispatcher does
not have to know the addresses of the agents it is sending this call for bids
to, or how many such agents are currently in the system. The OAA
Facilitator automatically forwards this query to all the agents that are
capable of handling it, thus illustrating the openness and scalability of
OAA.

The robots will reply to the call for bids by sending their bids to the
Dispatcher. It will then compare the bids and select the robot that is the
closest to the origin of the mail package being processed by the Dispatcher
and award the order to that robot. If there are no replies to the call for bids,
the order is queued. The request for bids will then be sent to any robot that
posts ‘‘available’’ status and automatically awarded to the first robot that
replies with a bid. The GUI uses the Dispatcher’s solvable request

_delivery to inform it of a new order.

The Low-Level Control Agent
The LLC is the low-level motion control subsystem of a mail delivery

robot. It acts on orders from the corresponding High-Level Control agent.
From the point of view of the HLC, moving from one location to another is a
primitive action go(Loc1,Loc2). On the other hand, the LLC is interested
in the exact path it needs to follow. The LLC uses the PathPlanner’s path
solvable to get that path. While following the path, the LLC sends updates on
the position of the robot to the GUI agent. To simulate the lengthy task of
moving from one location to another, the time that the LLC ‘‘travels’’
between two locations is proportional to the distance between them. When
the LLC reaches its destination, it sends a movement_complete event to
its HLC.

The High-Level Control Agent
The HLC is the high-level reasoning part of the mail delivery robot. It is

implemented in INDIGOLOG and is responsible for bidding for new
delivery orders and constructing and executing plans for delivering the
awarded packages. This agent uses the INDIGOLOG-OAA interfacing
mechanism described earlier and is able to effectively execute its package
delivery plans while monitoring for incoming OAA events and reacting
appropriately to calls for bids and new contract assignments.

Interfacing INDIGOLOG and OAA 821

The following fluents are used by the HLC to model the world state:

� current_location. Stores the current location of the robot.
� next_location. Stores the next location of the robot, where it is

currently moving to.
� canmove. True when the robot is stationary, false otherwise.
� delivery(From,To,OrderNo). Stores order status (ordered=onboard=

completed).
� bid_requested(From,To,OrderNo). True when the robot has to

bid on the order.
� llc_address. Stores the OAA address of the corresponding LLC

agent.
� dist(From,To). Stores the distance between From and To locations.

The agent has three solvables defined: request_for_bids is used by
the Dispatcher to ask the robot to bid on a newly placed order; the deliver
event is sent by the Dispatcher to award an order to the robot; and the
movement_complete event is used by the LLC to notify the HLC of its
arrival at the destination.

A causal law (causes_val) specifies the effect of a certain primitive/
exogenous action on a fluent. Causal laws for a given fluent are automatically
compiled into a successor state axiom for the fluent by the INDIGOLOG
interpreter. The first argument of causes_val is the action that causes the
fluent (the second argument) to acquire a new value (the third argument)
provided the condition (the last argument) holds. The following causal laws
are used to update the values of the HLC’s fluents when OAA events arrive.

Fluent bid_requested becomes true for a particular order when
request_for_bids is received:

causes valðrequest for bidsðF;T;ON Þ;
bid requestedðF;T;ONÞ;true;trueÞ:

Fluent delivery becomes ‘‘ordered’’ when the agent is awarded the
delivery:

causes valðdeliverðF;T;ON Þ;deliveryðF;T;ON Þ;ordered;trueÞ:

The movement_complete message from the associated Low-Level
Control agent signals that the robot has reached the destination:

causes valðmovement complete;canmove;true;trueÞ:
causes valðmovement complete;current loc;N ;

N ¼ next locationÞ:

822 A. Lapouchnian and Y. Lespérance

Most of the primitive actions used byHLChave self-explanatory names andwe
will only mention that the delivery_completed action sends a message to
theGUI agent saying that the robot has successfully completed the delivery; the
primitive action go(LLC_addr,From,To) sends the go(From,To) event
to the LLC agent. The extra parameter LLC_addr is used in the call to
oaa_Solve to tell the Facilitator that this event has to be sent only to the one
particular LLC agent associated with the given robot, and not to all the agents
capable of handling go. Similarly, the LLC uses the address of the corre-
sponding HLC to send movement_complete events. Presented below is the
main procedure of the HLC agent (see http:==www.cs.yorku.ca=~
lesperan=IG-OAAlib= for the complete source code).

procðcontrol; ½
prioritized interruptsð½

% high priority: handles bid requests

interruptð½f;t;o�;
bid requestedðf;t;oÞ ¼ true;pið½l;d�;

½?ðl ¼ next locationÞ;?ðd ¼ distðl;fÞÞ;bidðo;dÞ�ÞÞ;
% medium priority: handles newly assigned orders

interruptð½f;t;o�; andðcanmove;
deliveryðf;t;oÞ ¼ orderedÞ;

searchðpconcðminimize distanceð0Þ;
envSimulatorÞÞÞ;

% low priority interrupt: when nothing to do, wait

interruptðtrue;no opÞ �Þ �Þ:
% Environment simulator - simulates exogenous actions

procðenvSimulator;whileðcanmove ¼ false;

simðmovement completeÞÞÞ:

The high priority interrupt fires when the agent receives a request_

for_bids event from the Dispatcher. It produces a bid that is sent back to
the Dispatcher. Presently, the bid is simply based on the distance from the
location where it is currently heading (for simplicity, we do not allow the
robots to change directions midway) to the new package sender’s location;
more interesting bidding strategies could be used. The medium priority
interrupt fires when the Dispatcher awards a new delivery to this robot.

Interfacing INDIGOLOG and OAA 823

Then, the HLC plans an optimal delivery route that serves all orders assigned
to the robot. The lowest priority interrupt is there simply to prevent the HLC
from terminating when it has nothing to do.

To plan a delivery route, the second interrupt runs an iterative dee-
pening search procedure (minimize_distance) to come up with an
offline plan that minimizes the distance the agent has to travel. In our
domain theory, the precondition axiom for the go action requires the robot
to be stationary—the canmove fluent has to be true. The only way for
canmove to become true is through one of the causal laws above. This in
turn is triggered by the arrival of a movement_complete event from the
LLC. Since HLC is doing offline planning, and the plan has to be ready
before it is executed; we run the offline planning routine concurrently with
an environment simulator (Lespérance and Ng 2000) that simulates
movement_complete events. When the plan is actually executed, the
HLC will wait for the arrival of movement_complete before asking the
LLC to move to a new location.

The HLC code for route planning appears below. serve_customers is
the main behavior of a mail delivery robot:

procðserve customersðMaxÞ;
ndetð½

% Have all the orders been delivered?

?ðnegðsomeð½from;to;orderNo�;
orðdeliveryðfrom;to;orderNoÞ ¼ ordered;

deliveryðfrom;to;orderNoÞ ¼ onboardÞÞÞÞ;
% Base case - if no orders to pick up or drop off,

% the agent is done

no op

�; ½
% Base case does not apply� there are still orders to be processed

% Nondeterministically pick up or drop off an order

ndetð½
% Pick values such that the tests (?-operator) succeed

pið½f;t;on;llc;l;m;d�; ½
?ðdeliveryðf;t;onÞ¼orderedÞ;% select an undelivered order

?ðl ¼ current locationÞ; % l holds the current location

?ðllc ¼ llc addressÞ;
% Execute actions (go and pick up a package) with the selected

% parameters

824 A. Lapouchnian and Y. Lespérance

goðllc;l;fÞ;pickUpðonÞ;
?ðd ¼ distðl;fÞÞ; ?ðm is Max � dÞ;
% If the distance allowed is not used up, serve other customers,

% else fail

?ðm >¼ 0Þ; serve customersðmÞ
�Þ

�; ½
pið½f;t;on;l;llc;m;d�; ½

?ðdeliveryðf;t;onÞ ¼ onboardÞ; % select a package that is

% on board

?ðl ¼ current locationÞ;
?ðllc ¼ llc addressÞ;
goðllc;l;tÞ;dropOffðonÞ;delivery completedðon;f;tÞ;
?ðd ¼ distðl;tÞÞ;?ðm is Max � dÞ;
?ðm >¼ 0Þ;serve customersðmÞ

�Þ
�Þ �Þ Þ:

The iterative deepening search routine tries to come up with a plan to
deliver all of the assigned packages with a given distance bound. If unable to
do so, it increments the bound:

procðminimize distanceðMaxÞ;
ndetð

serve customersðMaxÞ;
piðnd; ½?ðnd is Max þ 1Þ; minimize distanceðndÞ�Þ

ÞÞ:

INTERFACE IMPLEMENTATION DETAILS

To allow INDIGOLOG agents to be both proactive and reactive, we
want our INDIGOLOG-OAA interface to process incoming OAA events
without giving complete control to the OAA library. A special exogenous
action get_event is defined as part of the interface (see below). It runs after
every primitive action in an INDIGOLOG program (unless it is specifically
disabled). get_event first executes the procedures found in the main OAA
event loop: it gets the top priority OAA event from the communication
library and lets OAA process it. It repeats this until there are no more events
waiting (i.e., until it receives a ‘‘timeout’’ event).

exog occursðget event;E;HÞ : �

Interfacing INDIGOLOG and OAA 825

% Get OAA events. For events that we are interested in, get_event will
% automatically add them to oaa_event_queue:

oaa loop; % process incoming events

oaa event queueðQÞ; % get the queue with the newly received events

nþQ¼ ½ �; % succeeds if the queue is not empty

extract eventsðE;H ;QÞ: % add OAA events to INDIGOLOG history

The reason why we need to let OAA process the events rather than extract
them manually is simple: In addition to events that result from some agents
requesting the services of our INDIGOLOG agent, there are other OAA
events that we don’t want to deal with. These could be events that update a
data solvable declared at this particular agent, or these could be events that
turn on the system’s tracing facility, and so on. We let the OAA library
handle these events since we want the combined INDIGOLOG OAA agent
to be compliant with OAA specifications to the maximum degree possible.

To achieve the task of separating OAA events that are calls to user-
defined solvables from other OAA events, we define and register with OAA a
default callback that is called every time some agent requests the services of
our INDIGOLOG OAA agent. This callback is given the goal (the problem
that we have to solve) and adds this goal to a queue that holds the OAA
events to be processed by the INDIGOLOG agent. The OAA library sends
the success message to the caller immediately. This is why other agents should
only send non-blocking requests for the services provided by INDIGOLOG
OAA agents. If some other agent waits for the answer to its query, its
oaa_Solve call will return successfully, but the variables through which
that agent expects to get the answer will remain unbound.

get_event then calls the extract_event procedure that processes
the queue and extracts the events from it. It adds the events to the INDI-
GOLOG program history, thus turning the newly received goals into
exogenous actions that appear to have been executed and changing the value
of fluents appropriately. The programmer has to provide the appropriate
causal laws=successor state axioms. Suppose that we register the solvable:
movement_complete. This could be a notification from a certain mobile
robot that our INDIGOLOG agent controls. The following axiom specifies
one of the possible changes in the system caused by the arrival of the goal
movement_complete:

causes valðmovement complete;current loc;
N ;N ¼ next locationÞ:

This effectively says that the value of the fluent current_location

changes to the location that the robot has just arrived at.

826 A. Lapouchnian and Y. Lespérance

CONCLUSION AND FUTURE WORK

Most agent programming languages or frameworks targeted at intelli-
gent=reasoning agents are derived from PRS (Rao and Georgeff 1992), e.g.,
3APL (Hindriks et al. 1998); AgentSpeak(L) (Rao 1996); JACK (Busetta et
al. 1999); and others. What these frameworks do is essentially runtime
expansion of pre-written hierarchical plans. They do not support true plan
synthesis because they commit to a particular plan expansion as soon its
guard condition (on the current state) is satisfied. They don’t have any
analogue of INDIGOLOG’s search block. Another difference is that in
INDIGOLOG, plan selection is coded in the program; there is no goal-
directed invocation of plans (this makes for less declarative and perhaps more
complex code, but eliminates some overhead). On the other hand, the agent’s
world is modeled declaratively using a domain action theory and the world
model is updated automatically using the successor state axioms.

Some of the PRS-based agent programming frameworks (e.g., JACK) are
FIPA-compliant (FIPA 2000) and appear to provide analogues of the com-
munication and matchmaking infrastructure supplied by OAA. However, for
the high-level=model-based programming paradigm exemplified by INDI-
GOLOG, IG-OAAlib appears to be the only available tool that provides
access to a state of the art middleware for building multi-agent systems that
include reasoning=planning agents. As mentioned earlier, McIlraith and Son
(2001) independently developed an interface mechanism for using GOLOG
in combination with OAA in their work on Web services. But they have not
described their interface mechanism, so we cannot compare it with IG-
OAAlib.

In this paper, we have presented an INDIGOLOG-OAA interfacing
mechanism that we think adds value to both tools. It provides an easy access to
a multi-agent platform for INDIGOLOG, allowing us to use this language in
a wide range of new applications. Moreover, since OAA’s ICL is PROLOG-
based, this makes it a great match to the current implementation of
INDIGOLOG. On the other hand, the built-in concurrency of INDIGOLOG
allows INDIGOLOG-based OAA agents to be both reactive and proactive,
and thus muchmore powerful than the previously supported PROLOG-based
agents. This interface adds a new powerful high-level programming language
to the set of languages supported by OAA. The system is available for
download at http:==www.cs.yorku.ca=~lesperan=IG-OAAlib/.

We are interested in applying this work in a variety of domains. One area
of interest is personal service robotics with robots having multiple skills, such
as finding people, giving tours, etc. With Erich Leung, we have started
integrating software agents into the system that locates people based on
where they are logged-in and their typical schedule. We would also like to use
INDIGOLOG to program a smarter matchmaker for some domain, one that

Interfacing INDIGOLOG and OAA 827

supports compound queries. Other potentially interesting applications
include semantic Web services (McIlraith et al. 2001).

The choice of OAA as a multi-agent platform to interface INDIGOLOG
arose from their common PROLOG heritage, which suits them to developing
agents that perform reasoning and planning. We are also examining the use
of INDIGOLOG in combination with FIPA-compliant platforms and would
like to develop tools for this.

REFERENCES

Burgard, W., A. B. Cremers, D. Fox, D. Haehnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun.

1998. The interactive museum tour-guide robot. In Proceedings of the 15th National Conference on

Artificial Intelligence, AAAI-98, 11–18. Menlo Park, CA: AAAI Press.

Busetta, P., R. Ronnquist, A. Hodgson, and A. Lucas, 1999. JACK intelligent agents – components for

intelligent agents in Java. In AgentLink News Letter January 1999. White paper available at

http:==www.agent-software.com.au.

De Giacomo, G., and H. Levesque. 1999. An incremental interpreter for high-level programs with sensing.

In Logical Foundations for Cognitive Agents, eds., H. Levesque, and F. Pirri, 86–102. Berlin: Springer-

Verlag.

De Giacomo, G., Y. Lespérance, and H. Levesque. 2000. ConGolog, a concurrent programming language

based on the situation calculus. Artificial Intelligence 121:109–169.

FIPA. 2000. The Foundation for Intelligent Physical Agens. Available at http:==www.fipa.org.
Gelernter, D. 1993. Mirror Worlds. New York: Oxford University Press.

Hindriks, K. V., F. S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. 1998. A formal semantics for an

abstract agent programming language. In Proceedings of ATAL’97, eds. M. P. Singh, A. Rao, and M.

J. Wooldrigde, 215–229. LNAI 1365, Berlin: Springer-Verlag.

Lespérance, Y., and H. -K. Ng. 2000. Integrating planning into reactive high-level robot programs. In

Proceedings of the Second International Cognitive Robotics Workshop, Berlin, Germany, 49–54.

Levesque, H., R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. 1997. Golog: A logic programming lan-

guage for dynamic domains. Journal of Logic Programming 31:59–84.

Levesque, H., and M. Pagnucco. 2000. LeGolog: Inexpensive experiments in cognitive robotics. In Pro-

ceedings of the 2nd International Cognitive Robotics Workshop, Berlin, Germany, 104–109.

Martin, D. L., A. J. Cheyer, and D. B. Moran. 1999. The open agent architecture: A framework for

building distributed software systems. Applied Artificial Intelligence 13:91–128.

McCarthy, J., and P. Hayes. 1979. Some philosophical problems from the standpoint of artificial in-

telligence. In Machine Intelligence, eds. B. Meltzer and D. Michie, 4:463–502. Edinburgh: Edinburgh

University Press.

McIlraith, S., and T. C. Son. 2001. Adapting GOLOG for programming the semantic web. In Proceedings

of the Fifth Symposium on Logical Formalizations of Commonsense Reasoning (Common Sense 2001),

New York, NY.

McIlraith, S., T. C. Son, and H. Zeng. 2001. Semantic web services. IEEE Intelligent Systems: Special Issue

on the Semantic Web 16(2):46–53.

Microsoft. 1998. Distributed Component Object Model Protocol – DCOM=1.0. Available at

http:==www.microsoft.com=com=resources=specs.asp.
ObjectManagementGroup (OMG). 2002. The Complete CORBA=IIOP Specification. Available at http:= =

www.omg.org=technology=documents=formal=corba_iiop.htm.

Rao, A. S., and M. P. Georgeff, 1992. An abstract architecture for rational agents. In Proceedings of the

3rd International Conference on Principles of Knowledge Representation and Reasoning (KR’92), eds.

B. Nebel, C. Rich, and W. Swartout, 439–449. Cambridge, MA: Morgan Kaufmann.

Rao, A. S. 1996. AgentSpeak (L): BDI agents speak out in a logical computable language. In Agents

Breaking Away, eds. W. Van der Welde and J. W. Perram, 42–55. LNAI 1038. Berlin: Springer-

Verlag.

828 A. Lapouchnian and Y. Lespérance

Reiter, R. 2001. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical

Systems. Cambridge, MA: MIT Press.

Reiter, R. 1991. The frame problem in the situation calculus: A simple solution (sometimes) and a

completeness result for goal regression. In Artificial Intelligence and Mathematical Theory of Com-

putation: Papers in Honor of John McCarthy, ed. V. Lifschitz, 359–380. San Diego, CA: Academic

Press.

Schwartz, D. G. 1995. Cooperating Heterogeneous Systems. Dordrecht: Kluwer Academic Publishers.

Smith, R. G., and R. Davis. 1981. Frameworks for cooperation in distributed problem solving. IEEE

Transactions on Systems, Man and Cybernetics 11(1):61–70.

Interfacing INDIGOLOG and OAA 829

