
File Systems: More Cooperations - Less Integration.

Alex Depoutovitch
VMWare, Inc.

aldep@vmware.com

Andrei Warkentin
VMWare, Inc.

andreiw@vmware.com

Abstract

Conventionally, file systems manage storage space
available to user programs and provide it through the
file interface. Information about the physical location of
used and unused space is hidden from users. This makes
the file system free space unavailable to other storage
stack kernel components because of performance or lay-
ering violation reasons. This forces file systems archi-
tects to integrate additional functionality, like snapshot-
ting and volume management, inside file systems in-
creasing their complexity.

We propose a simple and easy to implement file system
interface that allows different software components to
efficiently share free storage space with a file system at
a block level. We demonstrate the benefits of the new
interface by optimizing an existing volume manager to
store snapshot data in the file system free space, instead
of requiring the space to be reserved in advance making
it unavailable for other uses.

1 Introduction

A typical operating system storage stack consists of
functional elements that provide many important fea-
tures: volume management, snapshots, high availabil-
ity, data redundancy, file management and more. The
traditional UNIX approach is to separate each piece of
functionality into its own kernel component and to stack
these components on top of one another (Fig. 1). Com-
munication typically occurs only between the adjacent
components using a linear block device abstraction.

This design creates several problems. First, users have
to know at installation time how much space must be
reserved for the file system and for each of the kernel
components. This reservation cannot be easily changed
after the initial configuration. For example, when de-
ploying a file system on top of an LVM volume man-
ager, users have to know in advance if they intend on

application

volume manager

file system

software RAID

disk

user

kernel

Figure 1: Storage stack

using snapshots and choose the size of the file system
accordingly to leave enough storage space to hold the
snapshots [2]. This reserved space is not available to
user programs and snapshots cannot grow larger than the
reserved space. The end result is wasted storage capac-
ity and unnecessary over-provisioning. Second, kernel
components underneath the file system have to resort to
storing their data within blocks at fixed locations. For
example, Linux MD software RAID expects its internal
metadata in the last blocks of the block device [4]. Be-
cause of this, MD cannot be installed without relocating
an existing file system 1.

To solve the above problems, many modern file sys-
tems, like ZFS, BTRFS, and WAFL, tend to incorpo-
rate a wide range of additional functionality, such as
software RAID arrays, a volume manager, and/or snap-
shots [1, 6, 11]. Integrating all these features in a sin-
gle software component brings a lot of advantages, such

1There is an option to store the metadata on a separate file sys-
tem, but this requires a separate file system to be available.

1



as flexibility and ease of storage configuration, shared
free space pool, and potentially more robust storage al-
location strategies. However, additional functionality of
such "monolithic" file systems results in a complex and
large source code. For example, BTRFS contains twice
as many lines of code as EXT4, and four times more
than EXT3. ZFS source code is even larger. A large
code-base results in a more error-prone and harder to
modify software. BTRFS development started in 2008,
and the stable version is yet to be released. In addi-
tion, these file systems put users into an "all or nothing"
position: if one needs BTRFS volume management or
snapshotting features, one has to embrace its slower per-
formance in many benchmarks [13].

We believe that a file system can and should provide a
centralized storage space management for stateful com-
ponents of the storage stack without integrating them in-
side the file system code. File systems are ideally suited
for this role as they already implement disk space man-
agement. We propose a new interface, called Block Reg-
ister (BR), to a file system that allows both user-mode
applications and kernel components to dynamically re-
serve storage from a single shared common pool of free
blocks. With BR interface, stateful storage stack com-
ponents do not need to reserve storage space outside the
file system, but can ask the file system to reserve the
necessary space for them.

With the help of the new interface, file systems, such
as EXT4, can have advantages, like more effective stor-
age resource utilization, reduced wasted space, and flex-
ible system configuration, without integrating additional
functionality inside the file system. The BR interface
also solves the problem of fixed metadata location, al-
lowing kernel components to dynamically query for lo-
cation of necessary blocks. We demonstrate the benefits
of the BR interface by integrating it with LVM snap-
shot mechanism and allowing snapshots to use file sys-
tem free blocks instead of preallocated storage space. It
is important that our interface can be exposed by exist-
ing file systems with no changes to their disk layout and
minimal or no changes to their code.

2 Block Register Interface

The main purpose of the Block Register interface is to
allow kernel components to ask the file system to reserve
blocks of storage, increase and decrease number of re-
served blocks, query for blocks that have been reserved

brreserve(name, block_num)
brquery(name, offset, block_num) returns set of
blocks
brexpand(name, block_num)
brtruncate(name, block_num)
brfree(name)

Table 1: Block Register interface functions.

before, and release blocks back for future reuse. While
we want this interface to provide both fine-grained con-
trol and extensive functionality, we also make sure that
it can be implemented by any general-purpose file sys-
tem without core changes to its design and on-disk lay-
out and with no or minimal code changes. The inter-
face needs to be generic and easy to use with simple
abstractions. Although we think that kernel components
will be the primary users of the Block Register interface,
user mode applications might benefit from it as well, for
example, to get access to data saved by kernel compo-
nents. Therefore, the Block Register interface has to be
accessible from both user and kernel modes.

The main abstraction we provide is a reservation. A
reservation is a set of blocks on a block device, identi-
fied by their block numbers. These blocks belong to the
caller and can be accessed directly by calling a block
device driver for the device on which the file system is
located. The file system will neither try to use these
blocks itself nor include them in other reservation re-
quests. Each reservation can be uniquely identified by
its name. In the Table 1, we list functions of the Block
Register API. Currently, we define 5 functions. When
a caller needs to reserve a set of blocks, it calls the
brreserve() function, specifying a unique name for
this reservation and the number of blocks requested. In
response, the file system reserves the required the num-
ber of blocks from its pool of free blocks.

When a caller needs to get the list of blocks of an ex-
isting reservation, it calls the brquery() function,
passing it the name of the existing reservation and the
range of blocks required. The range is specified by
the offset of the first block in the query and the num-
ber of blocks to return. An existing reservation can
grow and shrink dynamically by calls to brexpand()
and brtruncate(). brexpand() takes the reser-
vation name and the number of blocks to expand by,
while brtruncate() takes the physical block to re-

2



turn back to the file system.

Finally, an existing reservation can be removed by call-
ing the brfree() function. After a reservation is re-
moved, all blocks belonging to the reservation are re-
turned to the file system’s pool of free blocks.

3 Linux Implementation

In this section, we’ll explore how the Block Register in-
terface could be implemented in the EXT4 file system.
Although, we use some of the EXT4- and Linux-specific
features, they are used only as a shortcut in the prototype
implementation of the BR interface.

Although this is not necessary, we decided to repre-
sent Block Register reservations as regular files, using
a common name space for files and reservations. Thus,
brreserve() and brfree() can be mapped to file
creation and deletion. Leveraging the existing file name
space has other advantages with respect to access and
management. Since reservations are basically normal
files, they can be easily accessed with existing file sys-
tem utilities and interfaces. Because the BR interface
is oriented towards block I/O, application data access
through the file system cache results in a data coherence
problem and, therefore, should be prohibited. While
open, reservation files must be also protected from mod-
ifications of file block layout, such as truncation. On
Linux, this can be solved by marking the file as im-
mutable with the S_IMMUTABLE flag.

Having the block reservations being treated as files has
an additional implication. Invoking brquery() for
every access would have a significant performance im-
pact. Because of this, the caller of the BR interface may
want to cache the results of previous brquery() calls.
Thus, the file system cannot perform any optimization
on the file, such as defragmentation, copy-on-write, and
deduplication. To enforce this requirement, we relied on
the Linux S_SWAPFILE inode flag, used to mark a file
as unmoveable.

We implemented brexpand() and brtruncate()
using the fallocate() function implemented in
Linux and EXT4 which allows changing the file size
without performing actual writes to the file. There
are, however, a few specifics of fallocate() be-
haviour that have to be taken into consideration. First,
fallocate() makes no guarantees on the physical

contiguity of allocated space. This may affect I/O per-
formance. Second, fallocate() call results in write
operations to the underlying block device, thus special
care has to be taken by the caller in order to avoid dead-
locks.

brquery() was implemented using the bmap()
function, which returns the physical device block for the
given logical file block. bmap() may also trigger some
read requests to the underlying storage.

4 Snapshots with Block Register Interface

In order to evaluate the Block Register interface, we
modified Linux Logical Volume Manager (LVM) to use
our new interface to allocate storage necessary to cre-
ate and maintain snapshots of block devices [2]. In this
section, we briefly describe the changes we made to the
snapshotting code so that it can make use of the Block
Register interface.

Snapshots preserve the state of a block device at a par-
ticular point in time. They are widely used for many
different purposes, such as backups, data-recovery, or
sandboxing. LVM snapshots are implemented using de-
vice mapper. Snapshots require additional storage to
store the original version of the modified data. The size
of the additional storage depends on the amount of data
modified during the lifetime of the snapshot. Currently,
users planning to use snapshots create a file system only
on a part of available storage, reserving the rest of it for
snapshot data. The space reserved for snapshots cannot
be used to store files, and its size is fixed after the file
system creation.

We modified dm-snap, the device mapper target respon-
sible for creating snapshots, to use the Block Register
interface to allocate space to store the snapshot data as
needed instead of using space reserved in advance. dm-
snap uses this space to maintain the set of records, called
an exception store, that describe chunks of the origi-
nal device that have been been modified and copied to
the snapshot device as well as the old contents of these
chunks. We created a new exception store persistence
mechanism which uses block reservations instead of a
block device for storing data. We based our code on the
existing exception store code, dm-snap-persistent, and
reused its metadata layout.

In order to create a snapshot of a file system that sup-
ports the Block Register interface, the user specifies the

3



device with the file system and the name to be used for
a block reservation on that file system. This reserva-
tion will contain the snapshot data. The new dm-snap
code calls brreserve() for the initial block reserva-
tion. Responding to this request, the file system creates
a new reservation. dm-snap queries blocks allocated to
this reservation and creates a new snapshot using the re-
served blocks.

After a certain amount of changes to the file system, dm-
snap will need additional blocks to maintain the original
version of the file system’s data. In order to get these
blocks, dm-snap calls brexpand() to request the new
set of blocks. Because expanding the reservation might
cause additional changes to the file system metadata,
this call cannot be made in the context of a file sys-
tem’s operation, otherwise, deadlock might occur. In
order to avoid the deadlock, the new dm-snap maintains
a pool of available free blocks. If the pool falls below
a “low watermark”, a separate thread wakes up and re-
quests additional blocks through the Block Register in-
terface. The value of the low watermark depends on the
write throughput of the file system.

To improve performance and prevent callbacks to the
file system in the context of an I/O operation, dm-snap
caches the data returned by brquery() in memory
and queries this data with a binary search combined with
a most-recently-used lookup. The implementation of the
cache mechanism has been largely based on the obsolete
dm-loop prototype [3].

During the operating system boot process, before the
file system can be mounted in read-write mode, it has to
be mounted in read-only mode, so LVM can query the
file system for blocks reserved for snapshot data. Af-
ter that, LVM enables the copy-on-write mechanism for
the block device containing the file system and exposes
the snapshots to the user. Once the COW mechanism is
enabled, the file system can be remounted in read-write
mode.

5 Evaluation

In order to evaluate our changes, we incorporated them
into the Linux 3.2.1 kernel and measured their impact on
performance of the file system in the presence of a snap-
shot. We compared our snapshot implementation us-
ing the Block Register interface and the standard LVM
snapshot implementation. The results are presented in

Read, ra
ndom

Write
, ra

ndom

Read, s
equential

Write
, s

equential

Read, ra
ndom

Write
, ra

ndom

Read, s
equential

Write
, s

equential

Kernel (u
npack + delete

 x5)
0%

20%

40%

60%

80%

100%

120%

140%

1 outstanding I/O requests 8 outstanding I/O requests

Figure 2: Performance of snapshots using Block Regis-
ter relative to LVM

Figure 2. Each measurement shows the performance of
the file system in the corresponding benchmark with an
active snapshot implemented using the Block Register
interface relative to performance of the same benchmark
with a snapshot taken using the standard Linux LVM
implementation. Each result is the average of 3 runs.
Values greater than 100% mean that the Block Register
implementation outperforms the standard Linux imple-
mentation.

In the first set of experiments, we created a 50GB test
file on the file system, took a snapshot of the file system,
and started issuing I/O requests to the file on the original
file system. During each experiment we maintained the
number of outstanding I/O operations (OIO) to be con-
stant (either 1 or 8) and measured the number of com-
pleted I/O operations per second. Each I/O operation
had a size of 4096 bytes. We used direct synchronous
I/O to avoid caching effects. Since read operations do
not involve snapshotting, we did not notice any differ-
ence between our and the standard Linux snapshot im-
plementations. However, our snapshot implementation
behaved better while serving write operations. In ran-
dom write operations, performance improvement varies
from 1% for OIO=1 to 8% for OIO=8. Performance
gain for sequential write operations is more significant:
9% for OIO=1 and 26% for OIO=8.

In the second set of experiments, we created a snapshot

4



file system
with snapshotB1 B2

file system snapshot
B2B1

Standard Linux LVM implementation

Snapshot implementation using Block Register

disk head seek span

Figure 3: Disk head seek span during copy-on-write op-
eration

of an empty file system and measured the time necessary
to unpack 5 copies of the Linux 3.2.1 kernel source tree
from an archive to the file system and then delete all
created files. The last column on Figure 2 shows the
result of this experiment. Our implementation performs
on a par with the standard Linux implementation in this
benchmark.

We believe that the performance improvement comes
from a shorter disk head seek span during write oper-
ations with our snapshot implementation. As shown on
Figure 3, copy-on-write operation for a block requires
two additional seek operations. The first is to seek to
the location of the block B2 in the snapshot to write
the original data of the block B1, and the second is to
seek back to the original block B1 to write the new data.
In the standard Linux snapshot implementation, storage
blocks containing snapshot data are located in the re-
served area outside the file system. This forces the disk
to perform seek operations on average over the span of
the whole file system. In our implementation, a file sys-
tem has a chance of placing these two blocks closer to
each other, thus reducing the seek time. Initially, when
we designed the Block Register interface, we did not tar-
get performance improvements. This result comes as a
pleasant side effect and leaves room for future work on
snapshot placement optimizations.

6 Open Issues

The implementation of the Block Register interface
raises several important problems. The best way to solve

them is yet to be identified. In this section, we describe
some of these problems.

So far, we considered only file systems located on a
single partition, disk, or a hardware RAID array. Cur-
rently, BR interface will not work in case of an addi-
tional component, which performs non-linear mapping
of disk blocks, placed between the file system and the
user of the BR interface. An example of such a compo-
nent is a software implementation of RAID 0.

Block reservation and query may result in additional I/O
operations. Therefore, special care has to be taken, e. g.,
calling them asynchronously, to avoid deadlock when
calling these functions while serving other I/O requests.
Another solution is to mark I/O caused by reservation
requests with special hints, so that kernel components
can give them priority and guarantee that they will not
be blocked.

Blocks that belong to reservations must be protected
from some file system operations, such as defragmen-
tation or accidental modifications by user-mode appli-
cations.

The block allocation algorithm depends on the file sys-
tem and, therefore, may be suboptimal in some cases be-
cause file systems are tuned for the most common case.

Finally, there are some implementation limitations, such
as caching reservation block numbers in memory, which
may become a problem for very large and fragmented
reservations.

7 Future Work

We are going to investigate additions to the BR inter-
face that will allow other components of the storage
stack to interact with a file system without being incor-
porated into it. The goal of this interaction is to achieve
flexibility and functionality similar to those provided by
"monolithic" file systems, like BTRFS or ZFS.

Other kernel block layer components may benefit from
the Block Register interface. We are planning to modify
MD software RAID and DRBD, the Distributed Reli-
able Block Device [8], to use the Block Register inter-
face for storing their metadata within the file system.

Another interesting opportunity comes from our imple-
mentation of reservations as regular files in a file system.

5



Because of that, they could be accessed (with necessary
precautions, such as taking measures to avoid the cache
coherence problem) by user mode-programs. This al-
lows, for example, to copy or archive contents of the file
system along with snapshots using familiar utilities, like
cp or tar.

We are also going to investigate changes to block alloca-
tion algorithms that allow kernel components to request
reservations in the proximity of a specific location. This
can improve performance of some operations, like copy-
on-write or update of dirty block bitmap, by enabling
proximal I/O [14].

8 Related Work

Some file systems, such as BTRFS, ZFS or WAFL,
implement snapshots internally and also store original
version of the modified data in their own free space
[1, 6, 11]. Our approach uses a similar technique, how-
ever, it does not depend on a particular file system im-
plementation.

Thin provisioning tries to achieve similar goals, how-
ever, once a block has been written to, a thinly pro-
visioned block device does not have knowledge if this
block contains useful data or not. In order to solve this
problem, a file system has to support additional inter-
faces to the block layer, telling the block layer when
blocks become free. Another problem with thin provi-
sioning is in the duplication of file system functionality
for accounting and allocating storage blocks. This re-
sults in additional levels of indirection and additional
I/O for storing persistent allocation information. Con-
flicting allocation policies may result in less than op-
timal performance, e.g, blocks that file system alloca-
tor tries to allocate continuously might be allocated far
from each other by a thin provisioning code. Examples
of thinly provisioned block device implementations in-
clude Virtual Allocation and dm-thin [5, 12].

Linux provides fibmap and fiemap ioctl calls, which re-
turn information about the physical location of files on
the block device to applications [9]. Wires et al. argue
that growing number of applications can benefit from
the knowledge of the physical location of file data [15].
They present a MapFS interface that allows applications
to examine and modify file system mappings between
individual files and underlying block devices. Block
Register, on the other hand, provides applications and

kernel components access to the free space of the file
system. Block I/O to files using bmap() has been used
in Linux to implement a file-backed swap device [7].

Parallel NFS (pNFS) is an enhancement of the NFS file
system that exposes file layout to the clients in order
to improve scalability [10]. While pNFS work is con-
centrated on large-scale networks, we argue that similar
ideas can be successfully applied in a single-machine
environment.

9 Conclusion

In this paper, we proposed a novel interface that extends
usefulness of the file systems. Our interface is generic
and does not rely on a specific file system implementa-
tion. It allows kernel storage stack components to share
storage space with user files and use the file system to
reserve storage space and locate data. On the example of
storage snapshotting, we showed how our interface can
be used for more flexible and efficient storage utilization
without integrating snapshots inside file system’s code.
In addition, we demonstrate that the new interface may
also help optimize storage I/O performance.

10 Acknowledgements

The authors express sincere gratitude to Edward Goggin
for his insightful advices regarding this work.

References

[1] BTRFS project. http://btrfs.wiki.kernel.org.

[2] Device-mapper resource page. http://sources.redhat.com/dm/.

[3] dm-loop: Device-mapper loopback target.
http://sources.redhat.com/lvm2/wiki/DMLoop.

[4] Linux software RAID. http://linux.die.net/man/4/md.

[5] Thin provisioning. http://lwn.net/Articles/465740/.

[6] BONWICK, J., AHRENS, M., HENSON, V., MAYBEE, M.,
AND SHELLENBAUM, M. The zettabyte file system. In Proc.
of the 2nd Usenix Conference on File and Storage Technolo-
gies (2003).

[7] BOVET, D. P., AND CESATI, M. Understanding the Linux
Kernel, 3rd ed. O’Reilly, 2006.

[8] ELLENBERG, L. Drbd 9 and device-mapper: Linux block
level storage replication. Proc. of the 15th International Linux
System Technology Conference (2008), 125–130.

[9] FASHEH, M. Fiemap, an extent mapping ioctl.
http://lwn.net/Articles/297696/.

6



[10] HILDEBRAND, D., AND HONEYMAN, P. Exporting storage
systems in a scalable manner with pNFS. In Proc. of the 22nd
IEEE Conference on Mass Storage Systems and Technologies
(2005), IEEE, pp. 18–27.

[11] HITZ, D., LAU, J., AND MALCOLM, M. A. File system
design for an NFS file server appliance. Proc. of the Winter
USENIX Conference (1994), 235âĂŞ–246.

[12] KANG, S., AND REDDY, A. An approach to virtual allocation
in storage systems. ACM Transactions on Storage 2, 4 (2006),
371 – 399.

[13] LARABEL, M. Linux 3.3 kernel: BTRFS vs. EXT4.
http://www.phoronix.com, 2012.

[14] SCHINDLER, J., SHETE, S., AND SMITH, K. Improving
throughput for small disk requests with proximal I/O. In Proc.
of the 9th USENIX Conference on File and Storage Technolo-
gies (2011).

[15] WIRES, J., SPEAR, M., AND WARFIELD, A. Exposing file
system mappings with MapFS. In Proc. of the 3rd USENIX
conference on Hot topics in storage and file systems (2011).

7


	Introduction
	Block Register Interface
	Linux Implementation
	Snapshots with Block Register Interface
	Evaluation
	Open Issues
	Future Work
	Related Work
	Conclusion
	Acknowledgements

