
“Otherworld” - giving applications a 
chance to survive OS kernel crashes

Alex Depoutovitch and Michael Stumm

University of Toronto



2

Software faults

� That faults in software are an unavoidable fact that 
we have to cope with

� From 30 to 50 percent of computer systems TCO is 

spent on recovering from and preparing for faults

(Patterson et al.)

� IBM and Microsoft calls for switching focus from 

faster systems to more reliable systems
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Kernel faults - particularly severe

� Kernel crash causes all application data to be lost

� Techniques that minimize consequences of fault:

– Checkpointing  

� Introduces overhead 

– Redundant calculations

� Increase system cost and complexity

– Micro-kernels, software fault isolation

� Not directly applicable to commodity OSes, introduces overhead
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Consequences of kernel faults

� Kernel state is corrupted and can’t be trusted

– Kernel state corruption is mostly restricted to faulty modules

– 70-85% of errors are introduced by faulty drivers

� All running application are affected

� Application state is rarely corrupted in kernel faults:

– Application memory corrupted in  less then 18% of cases

– Application-specific recovery reduces this number  to 1-2%

In 98% of the kernel faults application would be 
able restore its data if it is given a chance
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Key idea of “Otherworld”

OS kernel:

– Just component of a software system

– Logically well isolated from other components

It should be possible to reboot the kernel 

without destroying everything else running on 

the same system.
(kernel reboot vs. system reboot)
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Challenges of the kernel reboot

� Kernel contains data critical for all applications

– Physical memory pages

– Location of paged-out data

– Open files

– Network sockets

– etc.

� Need to have software component, which is 

able to manage system after the fault
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“Otherworld” architecture

� Two kernels

Main – active

Crash – dormant, protected, uninitialized

� In case of a fault control transferred to 
Crash kernel

� Crash kernel initializes itself

� Gets information about processes 

� Continues to run processes 
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Benefits of “Otherworld”

� No run-time overhead

� Fixed and small memory overhead

� Applicable to monolithic and microkernel OSes

� Small changes to OS and applications code

� No specialized or redundant hardware 

� Restored state is the most recent

� Amount of state that can be restored is not limited
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Normal functioning

� Main kernel boots

� Reserves space for Crash kernel

� Loads Crash kernel image 

� Runs processes

� Process register Crash Procedure
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Kernel fault occurs

� Control is passed to Crash Kernel

� Crash kernel initializes itself

� Memory is restricted to reserved region

� Result:

– Initialized undamaged kernel

– Main kernel and processes memory preserved and accessible
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Retrieving information

� Crash kernels recovers process 
information for each process

� Checksums and data redundancy 
can be used for corruption detection 

� New process is created 

� Address space is copy of Main kernel process

� Resources are restored
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Running crash procedure

� Crash kernel restores process and calls 
Crash procedure (Resurrection)

� Crash procedure saves information to 
disk or continues application execution

� Crash procedure - analog of application 
exception handler Hardware
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Post-recovery steps

� After application resurrection is 
complete:

– Reclaims all remaining memory

– Loads another crash kernel

– Continues regular activities

� Fully functional system Hardware
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Automatic resources resurrection

Automatically restored:

� Application physical memory pages
� Pages swapped to disk
� Memory mapped files
� Open files

Not restored:

� Network connections
� Pipes
� Screen content
� Threads
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Evaluation

� Platform
– Linux 2.6.18

� (KDump is used for loading crash kernel)

� Applications
– JOE text editor
– MySQL database server
– Apache/PHP
– Berkeley Lab Checkpoint/Restart

� Kernel crashes
– Triggering existing BUGON() asserts in kernel
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JOE – text editor

� Terminal based, multidocument text editor

– 30,000 lines of code

� Crash procedure

– 25 lines of code

– Goes through list of opened documents 

– Calls existing save function for every document

– Restarts test editor with the documents

� For text editor user kernel fault is transparent
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MySQL – database server

� Popular open source database server
– 700,000 lines of code

– Supports memory-resident tables

– Amount of required changes: 75 lines of code

� Crash procedure (50 line)
– Calls MySQL functions to retrieve in-memory data

– Saves the data to disk 

– Restarts the server

� Start-up code (25 line)
– Reads saved data

– Populates in-memory tables

– Continues normal server execution
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Applications of “Otherworld”

� Servers:

– Reliable in-memory databases 

� 1.5-140 times faster than disk resident

– Reliable in-memory web session data

� 25% faster than storing sessions on disk

� Scientific applications:

– Checkpointing without overhead

– Reliable in-memory checkpointing

� Interactive application:

– Editors that restores the document up to the last symbol entered
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Open problems

� Detection and prevention of data corruption

� Uninterrupted application execution 

� Resurrection of other resources (e.g. sockets)

� Resurrection of a group of interacting programs
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Conclusion

“Otherworld” is a fault recovery technique:

– Allows applications and application data to survive kernel crash

– Requires only minor changes to the kernel and applications 

– No run-time overhead

– Applicable to wide range of applications
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Questions
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Probability of application data corruption

500 injected bugsArtificial8%SunOS[5]

400 injected bugsArtificial

Application generic:
interactive 18% non-intreractive 2%

Application specific:

interactive 2% non-interactive 1%

Linux[4]

35,000 injected bugsArtificial10%Linux[3]

Real2%BSD 4.x [2]

Sample of 240 error reports out of 3000Real6%MVS[1]

CommentsBug typesApplication data corruptionOS

Conclusions:

� After OS  failure: application memory corrupted in 1-18% of cases

� Non-interactive applications have lower chance of memory corruption 

� Data corruption rarely occur outside OS kernel component that contains bug

[1] M. Sullivan and R. Chillarege, Software defects and their impact on system availability: A study of field failures in operating systems.

[2] M. Baker et al., Non-volatile memory for fast, reliable file systems.

[3] W. Gu et al., Characterization of linux kernel behavior under errors.

[4] S. Chandra and P. M. Chen, The impact of recovery mechanisms on the likelihood of saving corrupted state.

[5] W. Kao et al., FINE: A Fault Injection and Monitoring Environment for Tracing the UNIX System Behavior Under Faults
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Joe text editor

� Crash procedure:

int ow_crash_procedure(void* unused) {
B *b;

int saved=0, size=10;

char** params=(char**)malloc(sizeof(char*)*size);

params[0]=program_location;

params[1]=NULL;
b=&bufs;

do {

if (b->name) {

bsave(b->bof,b->name,b->eof->byte,1);

params[++saved]=b->name;
params[saved+1]=NULL;

if (saved>=size-2) {

params=(char**)realloc(params,size*2);

size*=2;

}
}

b = b->link.next;

} while (b->link.next!=&bufs);

execl(program_location,params);

return 0;
}
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Comparison to CuriOS

++/-Recovery speed

-+Applicable to existing OSes

-+No run-time overhead

+-Reduction of error propagation

+/--Application transparency

CuriOSOtherworld

• Once error propagates to other subsystems CuriOS is difficult to recover

• Otherworld starts with new clean kernel
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Comparison to checkpoints

� Otherworld has no overhead

� Otherworld has always the latest state

� Both approaches have probability of 

application data corruption
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Objectives of “Otherworld”

� Allow applications and application data to survive 
OS crashes

� Desired properties:
– Can be used with existing OS architecture

– No significant changes to OS or applications 
code

– Negligible run-time overhead

– No specialized or redundant hardware 


