
“Otherworld” - giving applications a
chance to survive OS kernel crashes

Alex Depoutovitch and Michael Stumm

University of Toronto

2

Software faults

� That faults in software are an unavoidable fact that
we have to cope with

� From 30 to 50 percent of computer systems TCO is

spent on recovering from and preparing for faults

(Patterson et al.)

� IBM and Microsoft calls for switching focus from

faster systems to more reliable systems

3

Kernel faults - particularly severe

� Kernel crash causes all application data to be lost

� Techniques that minimize consequences of fault:

– Checkpointing

� Introduces overhead

– Redundant calculations

� Increase system cost and complexity

– Micro-kernels, software fault isolation

� Not directly applicable to commodity OSes, introduces overhead

4

Consequences of kernel faults

� Kernel state is corrupted and can’t be trusted

– Kernel state corruption is mostly restricted to faulty modules

– 70-85% of errors are introduced by faulty drivers

� All running application are affected

� Application state is rarely corrupted in kernel faults:

– Application memory corrupted in less then 18% of cases

– Application-specific recovery reduces this number to 1-2%

In 98% of the kernel faults application would be
able restore its data if it is given a chance

5

Key idea of “Otherworld”

OS kernel:

– Just component of a software system

– Logically well isolated from other components

It should be possible to reboot the kernel

without destroying everything else running on

the same system.
(kernel reboot vs. system reboot)

6

Challenges of the kernel reboot

� Kernel contains data critical for all applications

– Physical memory pages

– Location of paged-out data

– Open files

– Network sockets

– etc.

� Need to have software component, which is

able to manage system after the fault

7

“Otherworld” architecture

� Two kernels

Main – active

Crash – dormant, protected, uninitialized

� In case of a fault control transferred to
Crash kernel

� Crash kernel initializes itself

� Gets information about processes

� Continues to run processes

Hardware

Main
kernel

Crash

kernel

Process Process Process

Hardware

Main
kernel

Crash

kernel

Process Process Process

8

Benefits of “Otherworld”

� No run-time overhead

� Fixed and small memory overhead

� Applicable to monolithic and microkernel OSes

� Small changes to OS and applications code

� No specialized or redundant hardware

� Restored state is the most recent

� Amount of state that can be restored is not limited

9

Normal functioning

� Main kernel boots

� Reserves space for Crash kernel

� Loads Crash kernel image

� Runs processes

� Process register Crash Procedure

Hardware

Main

kernel
Crash

kernel

Process Process Process

Hardware

Main

kernel
Crash

kernel

Process Process Process

10

Kernel fault occurs

� Control is passed to Crash Kernel

� Crash kernel initializes itself

� Memory is restricted to reserved region

� Result:

– Initialized undamaged kernel

– Main kernel and processes memory preserved and accessible

Hardware

Main

kernel
Crash

kernel

Process Process Process

Hardware

Main

kernel
Crash

kernel

Process Process Process

Hardware

Main

kernel
Crash

kernel

Process Process Process

11

Retrieving information

� Crash kernels recovers process
information for each process

� Checksums and data redundancy
can be used for corruption detection

� New process is created

� Address space is copy of Main kernel process

� Resources are restored

Hardware

Main

kernel

Crash

kernel

Process Process Process

Hardware

Main

kernel

Crash

kernel

Process Process Process

12

Running crash procedure

� Crash kernel restores process and calls
Crash procedure (Resurrection)

� Crash procedure saves information to
disk or continues application execution

� Crash procedure - analog of application
exception handler Hardware

Main

kernel

Crash

kernel

Process Process
Process

Crash

procedure

Hardware

Main

kernel

Crash

kernel

Process Process
Process

Crash

procedure

13

Post-recovery steps

� After application resurrection is
complete:

– Reclaims all remaining memory

– Loads another crash kernel

– Continues regular activities

� Fully functional system Hardware

Former crash

kernel

New

crash

kernel

Process Process Process

Hardware

Former crash

kernel

New

crash

kernel

Process Process Process

14

Automatic resources resurrection

Automatically restored:

� Application physical memory pages
� Pages swapped to disk
� Memory mapped files
� Open files

Not restored:

� Network connections
� Pipes
� Screen content
� Threads

15

Evaluation

� Platform
– Linux 2.6.18

� (KDump is used for loading crash kernel)

� Applications
– JOE text editor
– MySQL database server
– Apache/PHP
– Berkeley Lab Checkpoint/Restart

� Kernel crashes
– Triggering existing BUGON() asserts in kernel

16

JOE – text editor

� Terminal based, multidocument text editor

– 30,000 lines of code

� Crash procedure

– 25 lines of code

– Goes through list of opened documents

– Calls existing save function for every document

– Restarts test editor with the documents

� For text editor user kernel fault is transparent

17

MySQL – database server

� Popular open source database server
– 700,000 lines of code

– Supports memory-resident tables

– Amount of required changes: 75 lines of code

� Crash procedure (50 line)
– Calls MySQL functions to retrieve in-memory data

– Saves the data to disk

– Restarts the server

� Start-up code (25 line)
– Reads saved data

– Populates in-memory tables

– Continues normal server execution

18

Applications of “Otherworld”

� Servers:

– Reliable in-memory databases

� 1.5-140 times faster than disk resident

– Reliable in-memory web session data

� 25% faster than storing sessions on disk

� Scientific applications:

– Checkpointing without overhead

– Reliable in-memory checkpointing

� Interactive application:

– Editors that restores the document up to the last symbol entered

19

Open problems

� Detection and prevention of data corruption

� Uninterrupted application execution

� Resurrection of other resources (e.g. sockets)

� Resurrection of a group of interacting programs

20

Conclusion

“Otherworld” is a fault recovery technique:

– Allows applications and application data to survive kernel crash

– Requires only minor changes to the kernel and applications

– No run-time overhead

– Applicable to wide range of applications

21

Questions

22

Probability of application data corruption

500 injected bugsArtificial8%SunOS[5]

400 injected bugsArtificial

Application generic:
interactive 18% non-intreractive 2%

Application specific:

interactive 2% non-interactive 1%

Linux[4]

35,000 injected bugsArtificial10%Linux[3]

Real2%BSD 4.x [2]

Sample of 240 error reports out of 3000Real6%MVS[1]

CommentsBug typesApplication data corruptionOS

Conclusions:

� After OS failure: application memory corrupted in 1-18% of cases

� Non-interactive applications have lower chance of memory corruption

� Data corruption rarely occur outside OS kernel component that contains bug

[1] M. Sullivan and R. Chillarege, Software defects and their impact on system availability: A study of field failures in operating systems.

[2] M. Baker et al., Non-volatile memory for fast, reliable file systems.

[3] W. Gu et al., Characterization of linux kernel behavior under errors.

[4] S. Chandra and P. M. Chen, The impact of recovery mechanisms on the likelihood of saving corrupted state.

[5] W. Kao et al., FINE: A Fault Injection and Monitoring Environment for Tracing the UNIX System Behavior Under Faults

23

Joe text editor

� Crash procedure:

int ow_crash_procedure(void* unused) {
B *b;

int saved=0, size=10;

char** params=(char**)malloc(sizeof(char*)*size);

params[0]=program_location;

params[1]=NULL;
b=&bufs;

do {

if (b->name) {

bsave(b->bof,b->name,b->eof->byte,1);

params[++saved]=b->name;
params[saved+1]=NULL;

if (saved>=size-2) {

params=(char**)realloc(params,size*2);

size*=2;

}
}

b = b->link.next;

} while (b->link.next!=&bufs);

execl(program_location,params);

return 0;
}

24

Comparison to CuriOS

++/-Recovery speed

-+Applicable to existing OSes

-+No run-time overhead

+-Reduction of error propagation

+/--Application transparency

CuriOSOtherworld

• Once error propagates to other subsystems CuriOS is difficult to recover

• Otherworld starts with new clean kernel

25

Comparison to checkpoints

� Otherworld has no overhead

� Otherworld has always the latest state

� Both approaches have probability of

application data corruption

26

Objectives of “Otherworld”

� Allow applications and application data to survive
OS crashes

� Desired properties:
– Can be used with existing OS architecture

– No significant changes to OS or applications
code

– Negligible run-time overhead

– No specialized or redundant hardware

