
“Otherworld” - giving applications a chance to survive OS kernel crashes

Alex Depoutovitch Michael Stumm
Department of Computer Science, Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
{depout,stumm}@eecg.toronto.edu

Abstract

In this paper, we present a mechanism that allows appli-
cations to survive operating system kernel crashes and
continue functioning with no application data loss after
a system reboot. The proposed mechanism introduces
no run-time overhead and can be implemented in a com-
modity operating system, such as Linux. We demonstrate
the feasibility of our mechanism on two example appli-
cations: a JOE text editor and a MySQL database server.

1 Introduction

An unexpected error within an operating system (OS)
kernel, also referred to as a kernel panic, typically leads
to a system reboot, which destroys all applications with-
out giving them an opportunity to take remedial actions,
such as saving data in memory to disk. In this paper,
we describe a mechanism that, with a few changes to
the applications, allows them to survive system reboots.
Specifically, the mechanism preserves application data
across kernel reboots and gives the applications the op-
portunity to save their state or, in many cases, to continue
execution under the control of the rebooted kernel.

Many techniques have been developed over the last
few decades that allow applications to handle critical
application-level errors. Examples include registration of
handler routines that are called by the OS when the ap-
plication encounters a critical error, watchdog processes
that monitor the health of the application, and dividing
application into a set of restartable components. How-
ever, in all of the above approaches, the kernel itself re-
mains a weak point in that, whenever it experiences an
unexpected error, there is no other software component
that can reliably deal with the error. As a result, when
production OS’s, such as Linux or Windows, encounter
a critical error, they simply reboot the system. A side
effect of this is immediate termination of all running ap-
plications and loss of all unsaved application data.

A number of techniques exists that minimize the con-
sequences of a kernel crash (i.e. an error in the kernel that
leads to reboot), including periodic saving of application
state to persistent storage, propagating application state
to another system, or performing redundant calculations.
These techniques may minimize or prevent data loss, but
they also introduce significant overhead in terms of run-
time performance and/or system cost. We are unaware
of any existing technique that allows an application to
survive a critical error in the OS and continue execution,
even with limited functionality, without this type of over-
head.

The key idea behind our work is that an OS kernel is
simply a component of a larger software system, which
is logically well isolated from other components, such as
applications, and, therefore, it should be possible to re-
boot the kernel without terminating everything else run-
ning on the same system. Of course, rebooting a compo-
nent as important as the kernel will be difficult without
support from the applications, but we argue in this pa-
per that this is possible with minimal and straightforward
changes to application code.

Two properties of OS kernels complicate the process
of rebooting the kernel without affecting running appli-
cations. The first is that the kernel resides in a privileged
layer underneath all applications, so there is no other
software component that can manage kernel reinitializa-
tion without destroying all applications running on top of
this kernel. The second property is that the kernel itself
contains data critical for running applications, such as a
physical memory page maps, location of data paged to a
disk, opened files, and network connections, which are
lost during kernel reinitialization.

To address these issues, we propose having two OS
kernels resident in physical memory. The first (main)
kernel performs all activities an OS is responsible for.
The second (crash) kernel is passive and activated only
when the main kernel experiences a critical error. When
the main kernel crashes (i.e. “panics”), instead of reboot-



ing, it passes control to the crash kernel, which is not af-
fected by the error because it has been passive and may
be protected by memory hardware. After passing control
to the crash kernel, all information on running applica-
tions in the main kernel as well as the application data
itself still exists in memory and is accessible by the crash
kernel. This allows the crash kernel to reconstruct appli-
cation state and pass control to the application without
loosing data. We refer to this reconstruction process as a
resurrection of an application.

Being able to reboot a kernel and not to destroy all
running applications would allow us to achieve a higher
level of fault tolerance and increased mean time to sys-
tem failure without having to resort to expensive methods
like checkpointing or systems redundancy. In addition,
as we will show, our methodology opens new possibili-
ties for performance improvements of those applications
that traditionally have had to sacrifice performance for
reliability, such as databases. Finally, our method sup-
ports dynamic updates of OS kernel code without requir-
ing a system reboot, extending a concept of software re-
juvenation to an OS kernel.

In the next section, we present the details of our ap-
proach and describe its technical aspects. In the third
section, we discuss changes required in applications in
order to support kernel reboot. Section 4 discusses the
reliability of our technique. We present related work in
Section 5 and close with concluding remarks.

2 Architecture

Our proposed mechanism of rebooting a kernel while
continuing application process execution is shown in
Fig. 1. Initially a computer system boots normally by
loading and initializing the (main) OS kernel. A spe-
cial region of kernel memory is reserved (for example
64 MB) for a (crash) kernel. The crash kernel image
is loaded in this region and is left there untouched and
uninitialized (Fig. 1a). In our implementation under
Linux, we use the existing KDump mechanism to load
the crash kernel into memory [7].

Any user application that wishes to be resurrected
must register with the kernel a special crash procedure,
which is located in the application address space. The
address of this procedure is stored in the process descrip-
tor in the main kernel and serves as an entry point to be
called if and when the crash kernel gains control.

Whenever the main kernel experiences a critical error,
it normally prints an error message and reboots the sys-
tem. In our case, instead of rebooting, the main kernel
passes control to the initialization point of the crash ker-
nel. The crash kernel initializes itself normally with the
only difference being that it uses only the memory region
reserved for it (Fig. 1b). In order not to corrupt any pages

Figure 1: Surviving kernel panics
a) The system functions normally. b) A critical error
occurs and control is passed to the Crash kernel c) The
Crash kernel starts up and retrieves process data from the
Main kernel d) The Crash kernel starts execution of pro-
cesses that were running when the Main kernel crashed.

that were swapped out by the main kernel, we use two
swap partitions in our system: one is used by the main
kernel, and the other by the crash kernel. The crash ker-
nel loads the same device drivers as the main kernel and
mounts the same file systems at the same mount points.
Our goal is to make the application environment in the
crash kernel as similar as possible as that of the main
kernel, so that the same resources are available to the ap-
plications after resurrection.

After the crash kernel completes initialization, it starts
a recovery phase, in which it accesses the kernel struc-
tures of the main kernel. It reads the list of processes and
selects those that have registered a crash procedure. For
each of these processes, the crash kernel forks a new pro-
cess and initializes its memory with the contents of the
memory of the corresponding process that was running
when the main kernel crashed. Pages that were resident
in memory at the time of the crash can simply be copied
to the memory space of the newly created process. Pages
that were swapped out to disk or were backed by a file
can be reread from the main kernel swap partition or cor-
responding files. This fully restores the user-mode mem-
ory space of each target process (Fig. 1c).

The crash kernel allocates a new stack and passes
control directly to the crash procedure that was regis-
tered by the process in the main kernel. From this point
on, the resurrected process continues executing with all
of its global data available as if no crash had occurred
(Fig. 1d). From the resurrected process’s point of view,
the crash procedure is similar to a signal handler: nor-
mal execution is interrupted and control is passed to the
crash procedure. Depending on the application architec-
ture, complexity, and robustness of the crash procedure
algorithm, the crash procedure can provide several levels
of recovery. In the best case, the crash procedure can re-

2



store all kernel state that was lost during the reboot (such
as locks, threads, etc.) based on information available
in the user level application space and then continue ex-
ecuting under control of the new kernel. If that is not
possible, the crash procedure can simply save important
process data (e.g., client session state, unsaved user doc-
ument data, etc.) and restart the application.

There are several problems the crash procedure has to
cope with. First, our implementation of the crash kernel
does not restore the point at which the application flow
was interrupted by the error in the main kernel. Sec-
ond, all the kernel objects the process owned, such as
network sockets, threads, etc. no longer exist. Whether
they should be resurrected by the crash kernel or the ap-
plications crash procedure depends on the target object
type.

The current implementation of the crash kernel re-
opens files that were open under the main kernel as well
as memory mapped files. In order to simplify the file re-
opening process, the main kernel stores the full file name
and opening flags in the structure that describes the open
file. This, together with the registration of a crash pro-
cedure, are the only modification we made to the code
of the main kernel so far. The crash kernel assigns the
same file descriptors to reopened files as they had in the
main kernel. Thus, the fact that files have been reopened
is transparent to the resurrected application.

In order to protect the system from critical errors in
the crash kernel, we plan in the future to allow the crash
kernel to load another crash kernel, in which case the
crash kernel starts playing the role of main kernel and
the newly loaded kernel becomes the crash kernel.

3 Evaluation

To test our mechanism, we used Linux kernel version
2.6.18 for both the main and crash kernels. We added
code to the crash kernel that retrieves information on
processes that were running at the time the main kernel
crashed and modified the fork system call so that it can
clone processes from the main kernel to the crash ker-
nel. Experimentally, we were able to successfully load
the crash kernel into memory and to pass control to it
when the main kernel experiences a critical error. After
the crash kernel initialization completes, we are able to
list all applications that were running on the system at
the time of the crash and to obtain a complete memory
dump of each application.

We evaluated our mechanism using two applications:
JOE text editor, an interactive application, and MySQL,
a database server application.

3.1 JOE editor

JOE is shipped with the Linux distribution and is an
open-source, terminal based editor capable of editing
multiple documents at the same time, with features sim-
ilar to those of the WordStar editor. Its code base size is
around 30,000 lines of C code. We found that we did not
need to know the details of JOE’s internal design or data
layout in order to be able to create a crash procedure that
can restore all opened documents after a kernel crash.
Each open document is described by a structure main-
tained in a linked list of open documents with a global
variable pointing to the head of the list. In addition, JOE
code contains a save function that saves a target docu-
ment to a file. Our crash procedure walks through the
list of all open files and calls the save function for each.
Since application memory layout and all opened files are
preserved during transition of control from the main ker-
nel to the crash kernel, all of JOE’s functions continue
to work unmodified, as if no kernel crash occurred. Be-
cause we can use unmodified JOE’s functions, our crash
procedure required only 25 lines of code. With the ex-
ception of making a system call to register the crash pro-
cedure, adding the crash procedure did not require any
additional modifications to the existing text editor code.

The JOE crash procedure we implemented is able to
operate in two modes. In the first mode, the crash proce-
dure saves to disk the contents of each file that the user
had been editing at the time of the crash so that they can
be opened later with no data loss due to the main kernel
crash. This mode is useful for automatically restoring
data after the crash. In the second mode, the crash proce-
dure restores the editor with exactly the same documents
that were open at the time of the crash and continues run-
ning. No changes to the documents are lost, and the in-
teractive user of the system sees the same screen as he
has had before the crash.

3.2 MySQL database server

To evaluate our approach with a server-type application,
we experimented with MySQL, the popular open source
database. MySQL supports multiple pluggable storage
engines (SE), which are responsible for the low-level
functions that store and retrieve data. One of these, called
MEMORY SE, implements memory-resident tables. All
tables allocated by MEMORY SE are organized inter-
nally in a linked list, which is pointed to by a global
variable, and MySQL has functions defined that scan the
table and return its rows in some internal format.

Storing data in RAM instead of disk can significantly
improve database server performance. For example, Or-
acle found performance to improve by a factor of 3 for
sequential scans and by a factor of 140 for 4-way joins

3



when all data is resident in memory [9], and Ng found
memory-resident databases to perform up to 5 times
faster than disk-resident databases [11]. However, one
of the main reasons, why in-memory database design
is problematic, is that critical data is lost when the OS
crashes. Our mechanism addresses this problem by pre-
serving the critical data across kernel crashes.

The crash procedure that we created for the MySQL
server iterates through the list of all allocated tables, calls
the appropriate functions to retrieve data rows from these
tables, and saves them to disk. Since row format is not
important for our purposes, we interpret row contents as
an array of bytes. After the crash procedure has saved all
data, it simply restarts MySQL. Furthermore, we mod-
ified MySQL to (i) read, during startup, the content of
MEMORY SE tables from disk where it was saved by the
crash procedure, and (ii) initialize the in-memory tables
with this content. Overall, MySQL has about 700,000
lines of code, and our modifications consisted of 70 new
and 5 modified lines of code. Since in the current imple-
mentation we do not restore network connections, a main
kernel crash is not completely transparent to MySQL
clients: they must reestablish their connections and reis-
sue the last database request, but the contents of the in-
memory tables is preserved across kernel crashes.

3.3 Evaluation
We tested both of the above examples in dozens of kernel
crashes and found that our approach allowed applications
to preserve their data in every case. With the exception of
few details, like broken network connections and service
delays caused by the time required to initialize the crash
kernel, the kernel crashes did not affect the end users of
the applications. Since no extra code is executed unless
a crash occurs, there is no run-time overhead. We are
currently working on resurrecting network connections
and initializing the crash kernel while the main kernel is
still operational.

4 Probability of successful resurrection

The practicality of our approach depends, to a large ex-
tent, on the probability of the bug that caused the kernel
fault leaving directly or indirectly corrupted kernel struc-
tures that are needed for recovery or a having corrupted
application memory. Previous research using both artifi-
cially created and real bugs in MVS, Linux and FreeBSD
showed that fewer than 5-12% of all bugs corrupt data
structures manipulated by components of the OS other
than the one containing the bug [1, 8, 10, 12]. Consid-
ering that most kernel crashes are caused by third-party
modules, and that we only use a relatively small sub-
set of memory and process management related struc-

tures, we expect the probability of the structures impor-
tant for process resurrection becoming corrupted to be
low. Moreover, several simple, but effective, techniques
can be used to detect such corruption, should it occur.
First, much data in the kernel is already duplicated in or-
der to speed-up operations. By carefully analyzing data
integrity, the crash kernel can often detect corruption.
Second, one could add checksums or data duplication to
the most important data structures, like process descrip-
tors and memory maps. This would introduce some run-
time overhead but will guarantee that corruption will not
go undetected.

The second concern is that the kernel bug may have
corrupted application-level data before crashing the OS .
As was shown by Chandra and Chen, the probability of
application data corruption in this case is less than 4%
[5]. It might be possible to protect application space us-
ing memory management hardware, but its performance
implications must be carefully evaluated. In addition,
some application may be able to use application-specific
methods to detect corruption.

5 Related Work

Recent research investigated several ways of preserving
application memory state across OS crashes and subse-
quent reboots. Baker and Sullivan introduced the notion
of a fixed sized, pinned region of memory called a Re-
covery Box that is accessed through a simple API and is
not destroyed during a system reboot [2]. Applications
need to be modified to periodically save critical appli-
cation state to the Recovery Box. On startup, applica-
tions recognize that a previous instance of the applica-
tion was terminated unexpectedly (possibly due to an OS
crash) and recover the critical state from the Recovery
Box. Chen et al. proposed Rio – a reliable file write-
back cache, whose contents is preserved during a reboot
and is saved to disk after system reinitialization [6]. The
authors showed that it is possible to protect contents of
this cache from being corrupted by errors in the kernel
by using memory protection hardware. In subsequent
work, Chen et al. suggested using similar techniques to
implement transactional memory and in-memory check-
points. Our approach is more generic and can be applied
to any program or kernel module rather then to certain
specialized applications, such as disk caches. Bohra et al.
suggest using network cards that support remote DMA
(RDMA) to implement a mechanism similar to Recov-
ery Box [4]. After an OS crash, another machine extracts
the contents of the memory region with application state
through an RDMA enabled network card.

All of the above techniques have the disadvantage of
saving only the specially designated region of physical
memory. Although they validate the concept that mem-

4



ory contents can survive OS crashes, they limit this mem-
ory to a specific region. This region of memory cannot be
used for any purpose other than saving application state,
so the choice of size is a trade-off between how much
physical memory is reserved for this purpose, and how
much data can be saved in it by applications. Since the
entire memory space of the application cannot be saved,
the application has to regularly update the protected re-
gion of memory with the latest, most critical data. This
introduces a constant overhead estimated by Baker et al.
to be around 5% [2].

Biederman describes KExec, a solution for fast OS re-
boots, bypassing firmware and BIOS initialization [3].
He suggests loading a second kernel image into memory
while the system is running. When the system adminis-
trator wishes to reboot the system, control is passed to
the second kernel’s initialization routine. Goyal et al.
propose using KExec for saving the full contents of phys-
ical memory to a file after a Linux system experiences a
critical kernel error [7]. The second kernel’s behavior
is modified so that it restricts itself to a small region of
memory not used by the first kernel. As a result, after
the second kernel is initialized, the memory contents of
the kernel that experienced the critical error is untouched
and can be easily and reliably be saved to disk by the
second kernel for further investigation. In this work, the
second kernel is only used to create a physical memory
dump for further investigation; there is no attempt to re-
cover applications. However, the authors demonstrated
that it is possible to pass control from one OS kernel to
another without reinitializing system memory and run-
ning firmware and BIOS initialization procedures. They
also demonstrated that it is possible to access the data of
the crashed kernel. Our work takes this idea a step fur-
ther: it restores full application memory state and contin-
ues to run the application.

6 Concluding Remarks

In this paper we presented a novel approach, which, with
minor changes to kernel and existing applications, al-
lows the applications to survive critical kernel crashes
that on current systems would result in an immediate sys-
tem reboot where all volatile application state is lost. Our
approach does not introduce any runtime performance
overhead and only requires a fixed and small memory
overhead. We applied our technique to real-world inter-
active and server-type application and demonstrated the
feasibility of our approach. We showed that the required
changes to applications are minimal and straightforward.

Although we have already obtained some encourag-
ing results, our work is at an early stage. We intend
to experiment with other types of applications, includ-
ing web servers, long-running scientific applications, and

in-memory checkpointing solutions. We plan to reduce
the impact kernel crashes have on running applications
by increasing the number of resource types that are au-
tomatically restored by the crash kernel. Currently, we
only restore open files. We plan on restoring other re-
sources next. For now, the most straightforward way to
write crash procedures is to save application state to disk
and restart the application, but we intend to investigate
how best to avoid application restarts and to allow appli-
cations simply continue execution.

We believe that our methodology can be applied not
only to increase fault tolerance of software systems but
also to solve other problems, such as extending the con-
cept of software rejuvenation to the OS kernel where OS
code can be updated without a system reboot.

References
[1] BAKER, M., ASAMI, S., DEPRIT, E., OUSETERHOUT, J., AND

SELTZER, M. Non-volatile memory for fast, reliable file sys-
tems. Proceedings of the 5th International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (1992), 10–22.

[2] BAKER, M., AND SULLIVAN, M. The Recovery Box: Using Fast
Recovery to Provide High Availability in the UNIX Environment.
Proceedings of the 1992 USENIX Summer Conference (1992),
31–43.

[3] BIEDERMAN, E. Kexec. http://lwn.net/Articles/15468/.
[4] BOHRA, A., NEAMTIU, I., GALLARD, P., SULTAN, F., AND

IFTODE, L. Remote repair of operating system state using Back-
doors. Proceedings of the International Conference on Auto-
nomic Computing (2004), 256–263.

[5] CHANDRA, S., AND CHEN, P. M. The impact of recovery mech-
anisms on the likelihood of saving corrupted state. Proceedings
of the 13th International Symposium on Software Reliability En-
gineering (2002), 91–101.

[6] CHEN, P. M., NG, W., CHANDRA, S., AYCOCK, C., RAJA-
MANI, G., AND LOWELL, D. The rio file cache: surviving oper-
ating system crashes. Proceedings of the 7th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (1996), 74–83.

[7] GOYAL, V., BIEDERMAN, E. W., AND H., N. Kdump, A Kexec-
based Kernel Crash Dumping Mechanism. Proceedings of the
Linux Symposium (2005), 169–181.

[8] GU, W., KALBARCZYK, Z., IYER, R., AND YANG, Z. Char-
acterization of linux kernel behavior under errors. Proceedings
of the International Conference on Dependable Systems and Net-
works (1993), 459–468.

[9] LEHMAN, T., SHEKITA, E., AND CABRERA, L. An evalua-
tion of the starburst memory-resident storage component. IEEE
Transactions on Knowledge and Data Engineering (1992), 555–
566.

[10] LOWELL, D. E., CHANDRA, S., AND CHEN, P. M. Explor-
ing failure transparency and the limits of generic recovery. Pro-
ceedings of the 4th Symposium on Operating System Design and
Implementation (2000), 289–304.

[11] NG, W. Design and implementation of reliable main memory.
Ph.D. thesis (1999).

[12] SULLIVAN, M., AND CHILLAREGE, R. Software defects and
their impact on system availability: A study of field failures in
operating systems. Proceedings of the 21st International Sympo-
sium on Fault-Tolerant Computing (1991), 2–9.

5


