
“Otherworld” - giving applications a
chance to survive OS kernel crashes

Alex Depoutovitch and Michael Stumm
University of Toronto

2

Otherworld

 Mechanism that:

– Reboots just OS kernel (microreboot)

– Preserves state of running applications

– Continues running applications so that they can:

 save the latest state and restart

and/or

 continue their execution

4

Existing fault tolerance mechanism

55

 Checkpointing
– Introduces overhead
– Most recent state is lost

 Redundant calculations
– Increases system cost and complexity

 Continuous replication
– Protects only from hardware faults

 Micro-kernels
– Not directly applicable to production OSes
– Error propagation

 Isolation (Nooks, etc.)
– Introduces overhead
– Protects from drivers and other kernel extensions failures

6

Otherworld benefits

 Works with existing OS architectures

 Protects from faults in any part of the kernel

 Does not require specialized or redundant

hardware

 Preserves the very latest application state

 Minimal or no changes to applications

 Small or zero run-time overhead

Normal operations

 Main kernel
– boots first
– manages the system

 Crash kernel: cold standby
– loaded into memory by main kernel
– is inactive
– kept protected and uninitialized

 Crash procedure (optional)
– registered by the process
– allows kernel to notify the process of

a kernel microreboot

Hardware

Main
kernel

Crash
kernel

Process Process
Crash

procedure

Active Inactive

System

Hardware

Main
kernel

Crash
kernel

Process Process
Crash

procedure

Active Inactive

System

7

On kernel crash

Main kernel instead of panic:
1. saves user thread context
2. shuts down CPUs
3. passes control to crash kernel

Crash kernel:
1. initializes itself
2. recovers state from main kernel
3. resurrects applications
4. morphs itself into main kernel

Hardware

Main
kernel

Crash
kernel

Process Process

System

Active Inactive

Crash
procedure

Hardware

Main
kernel

Crash
kernel

Process Process

System

Active Inactive

Crash
procedure

8

Recovery

Processes resurrection:
1. create new process
2. recover process information

– Memory, open files, etc.
3. call process crash procedure

and/or
4. continue process execution

Morphing into main kernel:
1. reclaim remaining memory
2. load new crash kernel
3. continue regular OS activities

Process
Crash

procedure

Hardware

Main
kernel

Crash
kernel

1 Process

Crash
procedure

2
3

System

2

Active Inactive

Process
Crash

procedure

Hardware

Main
kernel

Crash
kernel

1 Process

Crash
procedure

2
3

System

2

Active Inactive
9

1010

Resources resurrection

Resources restored automatically by
the Crash kernel

Currently we do not restore:

•Application physical memory pages
•Pages swapped to disk
•Memory mapped files
•Open files
•File buffers
•Physical screen content
•Thread execution context
•Signal handlers
•Shared memory regions

•Network sockets
•Pipes
•Pseudo terminals

That’s where crash procedure is useful…

1111

Crash procedure

 Role:
– Called when application is resurrected and ready to

run
– Receives list of resources types not resurrected

 Functions:
– Resurrects resources in application-specific way
– Identifies application data corruption
– Decides whether to :

 save data and restart the application
 continue application execution

1212

Resurrection outcome

Resource
resurrection

No crash
procedure
registered

Crash procedure registered

complete
and

successful

continue the
process execution

crash procedure is called
It can:
 Save application state and

restart application
- or -

 Continue process execution
partial

resurrection will fail
and process is
killed

13

Continuing process execution

 Process was executing system call:
– System call returns failure code
– System call will have to be re-executed

 Process was running in user space:
– Thread context was saved on the stack
– Process execution continues from where it was

stopped by the crash

1414

Application state protection

 Separate page table sets for execution in user
and kernel modes

 Kernel page tables do not map application
space, protecting it from unauthorized access

 Page tables are switched on every system call

 Kernel is allowed to write to user space only
through explicit function calls

 Introduces overhead (3%-12%)

15

Applications that benefit from Otherworld

 Database:
– Up to 140 times faster than disk resident
– More reliable in-memory databases

 Web server:
– In-memory session is 25% faster than disk persistent
– More reliable in-memory web session data

 Checkpointing
– More reliable in-memory checkpointing

 Desktop application
– Editors that can restore a document up to the last

symbol entered

1616

Evaluation

 OS
– Linux kernel 2.6.18
– KDump is used for loading the crash kernel
– 2,700 lines of added and modified code

 Applications
Application Crash procedure Modified LOC

JOE Not required 1

vi Not required 0

BLCR Not required 0

MySQL Required 75

Apache/PHP Required 115

1717

MySQL

 Popular open source database server
– 700,000 lines of code
– Supports memory-resident tables
– Amount of required changes: 75 lines of code

 Crash procedure (50 lines)
– Calls MySQL functions to retrieve in-memory data
– Saves the data to disk
– Restarts the server

 Start-up code (25 lines)
– Reads saved data
– Populates in-memory tables
– Continues normal server execution

1818

Fault injection

 Reused fault injection tool (Rio cache, Nooks)

 Different types of faults
Stack corruption Incorrect operands
Incorrect branch Random writes
Delete/change random instruction ….

 Tests ran in virtual machine

– 30 faults injected during each experiment

– For each application - 800 experiments with failures
 400 with application space protection and 400 without

– 4,000 experiments in total
– 97% – 98% success rate

Fault recovery results

Outcome Frequency

Crash kernel doesn’t boot 2%-3%

Application resurrection failure Up to 0.5%

Application data corruption:

 without protection

 with protection

Up to:
0.5% (5 cases)

0.25% (1 case)

Successful application resurrection 97%-98%

2020

Conclusion

Otherworld is a fault recovery technique:

 Allows applications to survive OS kernel crash

 Requires only minor changes to the kernel and
applications

 No or small run-time overhead

 Applicable to wide range of applications

Demo

2222

Questions

2323

Future work

 Automatic resurrection of network and IPC
resources

 Reducing microreboot and resurrection times
– Partial initialization at load time
– Page remapping instead of copying
– Exploiting device information from the main kernel

 Applying to hot kernel updates and system
rejuvenation

 Detection and prevention of data corruption

	�“Otherworld” - giving applications a chance to survive OS kernel crashes�
	Diapositive numéro 2
	Diapositive numéro 3
	Otherworld
	Existing fault tolerance mechanism
	Otherworld benefits
	Normal operations
	On kernel crash
	Recovery
	Resources resurrection
	Crash procedure
	Resurrection outcome
	Continuing process execution
	Application state protection
	Applications that benefit from Otherworld
	Evaluation
	MySQL
	Fault injection
	Fault recovery results
	Conclusion
	Demo
	Questions	
	Future work

