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1 Introduction

The motivation for my research is computational complexity. I am interested in many areas of theoretical
computer science from algorithms to models of computation to structural complexity, but the fundamental
question is always to understand the nature of computation and its complexities. This is a very broad arena,
and yet has many deep interconnections; therefore, work in even the smallest area can be motivated by, and
have repercussions to, the entire field.

My particular work is in the area of propositional proof complexity and bounded arithmetic. Not only
are these subjects closely connected to the heart of complexity theory, they are also directly interesting in
their own right: As an area of mathematics, the study of reasoning is surely as fundamental as the study of
computation; and in practice, the use of automated theorem proving and other formal or mechanical forms of
reasoning are becoming become more necessary to handle the vast amounts of data that mankind processes,
to verify our increasingly complicated machinery and computer systems, and to assist in expanding the
frontiers of mathematics. Below, I give some background into this area on the boundary of computation and
logic, and discuss some past, current and future research.

2 Background and Past Work

The primary motivation for studying propositional proof systems is the theorem of Cook and Reckhow
[8, 11] that NP=co-NP iff there exists a polynomially bounded proof system for propositional tautologies.
Many proof systems are studied and there are some notable successes in the search for lower bounds, e.g.
[13, 1], but this problem is very hard in general; nevertheless, there are many much more accessible problems
than NP vs co-NP: at one end of the scale, the detailed study of weak proof systems and their interrelations,
and at the other, capturing different forms of reasoning with stronger proof systems.

An alternative way of studying the power of different kinds of reasoning is through bounded arithmetic,
initiated in 1971 by Parikh with his systemI∆0, similar to Peano Arithmetic, but with the important re-
striction of the induction scheme to∆0 (i.e., bounded) formulas. The first logical theory designed to reason
about all “feasible,” i.e. polynomial-time concepts, and only those concepts, was Cook’s PV [10]. A fun-
damental property of PV is that its theorems translate to polynomial-size families of propositional proofs in
a propositional proof system Extended Frege (EF), and the soundness of EF is provable in PV. A succes-
sion of work on this topic beginning with [17, 21, 22, 12] and especially [2] leaves us with many different
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theories of bounded arithmetic corresponding in interesting ways to many different complexity classes and
propositional proof systems, but with the relationships intriguingly not tight.

Starting with Ignjatovic [14] and Zambella [31],[32], many authors have investigated second-order (two-
sorted) arithmetic as a means to obtain theories with simpler axiomatizations; as computation is typically
defined on strings, this makes bootstrapping the theory easier, and additionally allows capturing very weak
complexity classes that may not even contain functions such as multiplication. Theories in this vein include
V 1

1 for polynomial time [24] (later streamlined by Cook toV 1), and now many theories for classes such
asV 0 for AC0 [5], V TC0 for TC0 [20], V -Krom for NL [6], V NC1 for NC1 [7] and so on. The many
analogues between first- and second-order theories are seen to be part of a pattern formalized in the RSUV
isomorphism of Takeuti [30] and Razborov [23].

Some past work of mine has addressed the following topics:

• At the “high end” of the propositional proof system scale, in [25, 26] I present a new propositional
proof system BPLK based on Boolean programs, a novel characterization of PSPACE due to Cook
and Soltys [9]. I show that it is polynomially equivalent toG, a quantified propositional proof system
for PSPACE reasoning containing levels corresponding to levels of the polynomial-time hierarchy
[15, 18, 16, 4].

• Buss, Kraj́ıček and Takeuti [3] capture strong complexity classes from levels of the EXP-time hierar-
chy, EXPΣpi−1 [wit,poly] and2

exp
i :=EXPΣpi−1 , with Buss’s strong theoriesU i2 andV i

2 . Motivated by
this work, in [27] I present a third-order theoryW 1

1 for PSPACE. This theory inherits the advantages
of the second-order “viewpoint” described above: namely a simpler axiomatization and direct rea-
soning about string-based computation, and has a higher (third) order to represent large objects such
as computations of exponential-time machines. I also give a translation of certain theorems of this
theory into BPLK.

• More recently in [28, 29], I describe a model of third-order computation that naturally extends or-
dinary (string-based) computation and give function calculi and recursion-theoretic characterizations
of several large complexity classes including PSPACE and EXP. I extend the theoryW 1

1 to obtain
a hierarchy of theories corresponding to the levels of the EXP-time hierarchy even in the expanded
sense of third-order computation. Starting with BPLK as a base, I then define propositional proof
systems QBPi by allowing quantifiers over Boolean functions, a natural extension of the notation.
These systems have polynomial-sized proofs of translations of appropriate theorems ofW i

1.

3 Current Research and Future Directions

Here I briefly mention some specific problems and more general areas I look forward to working on in
coming years. These problems form a nicely unified topic and are of fundamental interest on the boundary
between propositional proof complexity and bounded arithmetic, yet many have been thus far been neglected
by researchers.

The main question, phrased in the language of bounded arithmetic, is how the following three classes
interact: the class of formulas allowed in the induction, the class of formulas used to define functions (i.e.,
prove totality), and the resulting complexity class of definable functions. Generally, the relationship is un-
derstood well only when the first two, namely the induction and the defining formulas, are of approximately
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the same class, and even then only for some specific classes. For example, in the case of Buss’s hierarchyS2,
if Σb

i formulas are used for both then the resulting complexity class is functions from thei− 1st level of the
polynomial-time hierarchy, but if the classes of formulas differ by more than 2 levels or so, then the answer
is not known. The complexity-theoretic consequences of various bounded arithmetic theories collapsing, or
being distinct, are really consequences of what happens to specific fragments of those theories.

A first general problem, then, is to fill in some of the gaps in how this correspondence works, possibly
by proving new witnessing theorems for existing theories, or by constructing new theories that correspond
in novel ways to complexity classes, previously captured in this way or not. Another problem is to find
theories that capture many complexity classes in a uniform way, for example all withΣB

1 -definability. Also
important to study is the witnessing problem for quantified propositional proof systems, which although
related is different and not well studied. Work by Chiari and Krajı́ček has pointed to NP search problems as
candidates for many witnessing problems but this is poorly understood.

Now, It is known that various fragments of bounded arithmetic theories can be axiomatized overS1
2 by

consistency statements of related subsystems of the quantified propositional calculusG. This characteri-
zation is frustrating to many researchers as it fails to give any insight into the combinatorial nature of the
reasoning and computation involved. Recent work by Pudlák uses combinatorial principles related to games
instead, and is an important new direction. In ongoing research, Pudlák, Neil Thapen and myself have
some preliminary results directly linking Pudlák’s combinatorial principles with existing results concerning
search problems, in particular including a new characterization of the important class PLS, or polynomial
local search. Most recently, in [19], Jan Krajı́ček, Neil Thapen and myself have obtained two alternative
characterizations of theΣb

1 consequences ofT 2
2 andT 3

2 : natural combinatorial principles related to PLS
and involving colours of a directed graph, and a very different computational model of “verifiable recursion
programs”. These are the first combinatorial characterizations of these fragments, and we believe that both
of them may generalize to the remaining theories of the bounded arithmetic hierarchy, which would be an
important and long-sought characterization.

Next is the question of whether there is any complexity-theoretic consequence to collapsing the quantifier-
free fragments of, say, two levels of Buss’sS2 hierarchy. Even for theories of greatly differing strength there
is no reason why this could not happen. The corresponding question for propositional proof systems is
whether different subsystems of the quantified propositional calculusG are equivalent for purely proposi-
tional tautologies, and there seems to be no evidence one way or the other. Possibly, existing techniques for
propositional lower bounds could be adapted to this problem with the addition of a complexity assumption.

The related problem of relativized theories of bounded arithmetic and weaker propositional proof sys-
tems is well studied and there are many specific open problems concerning lower bounds and separation
of theories. Although separations of the relativized hierarchy exist, one particular important problem is to
obtain separations using principles of fixed quantifier complexity. OurΣb

1 principles concerning recursive
programs from [19] seem especially well suited for this as they precisely characterize the fragments of the
theories in question. In ongoing research, we have some partial progress proving related propositional lower
bounds for these principles.

Now a final example of problems in this area: in some cases, the propositional proof system correspond-
ing to a complexity class has as lines in its proofs objects which are of exactly that complexity class (for
example,G, EF) yet in other cases, the objects are of seemingly greater computational power (G1, G∗1).
An interesting open problem is to find, for some of the latter type of examples, a canonical propositional
proof system whose lines are exactly the appropriate complexity class. Perhaps a general technique could
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be devised to deal with many such classes at once, and a possible starting point is to study the systems
obtained by restricting the cut rule to various classes such asΣq

1 ∪Πq
1. The more expressive formulas of the

quantified propositional calculus are also a possible way to find better tautologies for some problems such
as hex-reachability, previously studied by Buss, for which the current examples seem too easy to prove.
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