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This dissertation concerns theories of bounded arithmetic and propositional proof systems

associated with PSPACE and classes from the exponential-time hierarchy.

The second-order viewpoint of Zambella and Cook associates second-order theories of

bounded arithmetic with various complexity classes by studying the definable functions

of strings, rather than numbers. This approach simplifies presentation of the theories and

their propositional translations, and furthermore is applicable to complexity classes that

previously had no corresponding theories. We adapt this viewpoint to large complexity

classes from the exponential-time hierarchy by adding a third sort, intended to repre-

sent exponentially long strings (“superstrings”), and capable of coding, for example, the

computation of an exponential-time Turing machine. Specifically, our main theories W i
1

and TW i
1 are associated with PSPACEΣp

i−1 and EXPΣp
i−1 , respectively. We also develop

a model for computation in this third-order setting including a function calculus, and

define third-order analogues of ordinary complexity classes. We then obtain recursion-

theoretic characterizations of our function classes for FP, FPSPACE and FEXP. We use

our characterization of FPSPACE as the basis for an open theory for PSPACE that is a

conservative extension of a weak PSPACE theory HW 0
1 .

Next we present strong propositional proof systems QBPi, which are based on the

Boolean program proof system BPLK but additionally with quantifiers on function sym-

bols. We exhibit a translation of theorems of W i
1 into polynomial-sized proofs in QBPi.
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1 . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Definability in TW i
1 and TTW 0

1 . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Definability in HW 0
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 A Universal Conservative Extension of HW 0
1 69

7 Witnessing Theorems 77

7.1 Sequent Calculus Formulations . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 A Witnessing Theorem for W i
1 . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Witnessing for TW i
1 and TTW 0

1 . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Witnessing for HW 0
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Propositional Translations 90

8.1 ΣB
∞-Theorems of W 1

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2 Quantified Boolean Program Proof Systems . . . . . . . . . . . . . . . . 99

8.3 Propositional Translations of W i
1 . . . . . . . . . . . . . . . . . . . . . . 104

v



9 Future Work 108

9.1 Specific Questions from this Dissertation . . . . . . . . . . . . . . . . . . 108

9.2 Canonical Proof System For a Complexity Class . . . . . . . . . . . . . . 109

9.3 Questions About the “Weak Fragments” of Theories and Proof Systems . 110

9.3.1 Relating the Collapse of Theories with the Collapse of Complexity

Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.3.2 Collapsing weak fragments of G or QBP . . . . . . . . . . . . . . 110

9.4 Theories and Proof Systems for Other Complexity Classes . . . . . . . . 110

Bibliography 111

vi



Chapter 1

Introduction

We often argue that a particular mathematical concept is important if it is natural, which

means that it surfaces in many places with different origins and definitions, and robust,

such that a variety of disparate formulations of it end up being equivalent or at least

closely related. Likewise, the applicability, maturity, and importance of a body of results

are greater when that field is found to have a strong connection to another. Three areas

of study intricately connected in such a useful way are computational complexity, the

proof theory of arithmetic and propositional proof complexity.

Computational complexity is the study of computation and the resources required to

perform it. A staggering number of different kinds of computation all fall into the domain

of this field. It has practical aspects, directly impacting how real computations are done

by real computers, and yet seemingly fundamental, easily explained problems remain

unsolved despite a good deal of effort. A particularly glaring example is the famous P

vs NP problem, which asks if those two classes of problems are equal. Starting from the

NP-completeness results of Cook [24] the pressure mounted with no relief, leading even

to detailed, formal analysis of known proof techniques and why they are all ineffectual at

tackling such problems [51]. Many complexity classes are studied and conjectures about

separations and hierarchies abound, yet results are elusive.

1



Chapter 1. Introduction 2

A different way of studying computational complexity is indirectly through logic,

and in particular, bounded arithmetic. Many connections between the fields are known:

among them, that complexity classes can be characterized as those sets or functions

definable in certain theories, and that predicates or functions from certain complexity

classes can be used to define new logics in various ways. Results about either area can

have implications for the other.

Bounded arithmetic and propositional proof systems are related in several ways: due

to Cook [25] and others, there are translations from formulas of bounded arithmetic

to polynomial-sized families of propositional or quantified propositional formulas which

additionally have very interesting properties relating the theories and the proof systems,

and also have complexity implications. Another connection is that a theory’s ability to

prove different kinds of consistency of related propositional proof systems has a bearing

on its power relative to other theories, and the relative complexity of proofs in the proof

systems.

Finally, the full circle back to computational complexity is completed with the work of

Cook and Reckhow in [20] and [28]. They show that NP=co-NP if and only if there exists

a polynomially bounded proof system, and additionally introduce many of the important

definitions in the area such as those of proof systems, polynomial simulations, and so on.

These results, and others concerning the complexity of witnessing proofs of quantified

propositional formulas, drive the study of propositional proof complexity and the search

for lower bounds on propositional proof systems. Fine examples are the superpolynomial

lower bounds for resolution, due to Haken [32] and bounded depth Frege systems, due to

Ajtai [2]. For many seemingly stronger systems, however, no such results are known.

While it is well understood that the study of the intrinsic hardness of computation

is crucially relevant to many fields of human endeavour, it is perhaps less well appreci-

ated that propositional proof complexity and bounded arithmetic collectively reach for

a similar goal: the study of the intrinsic hardness of reasoning. Mathematics has long
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been contributing to the benefit of mankind behind the scenes while the benefits of com-

putation are public and evident; but just as the limitations of computation have become

apparent, so now are the limitations of reasoning. As the use of automated theorem

proving and other formal or mechanical forms of reasoning become more necessary to

handle the vast amounts of data that mankind processes, to verify our increasingly com-

plicated machinery and computer systems, and to assist in expanding the frontiers of

mathematics, it will be necessary to understand more about reasoning itself.

1.1 Overview of Dissertation

In this dissertation we present bounded arithmetic theories and propositional proof sys-

tems corresponding to large complexity classes, including polynomial space (PSPACE),

(polynomially-)exponential time (EXP) and the levels of the exponential-time hierarchy.

Buss originally defined second-order (i.e., two-sorted) theories U1
2 and V 1

2 so that strong

(PSPACE and EXP) number functions could be defined by reasoning about exponential-

length computations. Then using the second sort in a completely different way, Ignjatovic,

Zambella, Cook and more recent authors have used second-order theories to great effect

to capture the string-based computation of Turing machines more simply than with pre-

vious one-sorted theories of bounded arithmetic. Furthermore, this second-order “view-

point” has allowed the development of theories for some very small complexity classes

previously not captured with one-sorted theories due to their inherent coarseness. We

combine the two approaches and extend the second-order viewpoint to higher complexity

classes in a natural way by adding a third sort to represent exponentially large objects

such as computations from these strong classes, outputs of unbounded exponential-time

functions, or even oracles. We thereby obtain the benefits of the second-order viewpoint

(simpler presentation of theories, more intuitive relationship to string-based complexity)

while retaining the ability to reason about exponential-sized objects.
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Another contribution of this dissertation is to define a calculus of functions that op-

erate on these three sorts of objects. From a complexity standpoint for the classes we are

interested in, the objects are the usual binary strings, always of polynomial length, rep-

resented by finite sets of natural numbers; numbers, which are to be thought of as short

inputs and presented in unary for the purposes of resource bounds; and finally, super-

strings: exponential-length strings indexed by standard binary strings, and not counted in

any resource bounds. This function calculus is very nicely suited for expressing the com-

putational objects reasoned about by our third-order theories of bounded arithmetic; ad-

ditionally, it is useful for discussing with one unified notation both polynomially-bounded

functions and more exotic functions dealing with exponential-sized inputs and outputs.

We define complexity classes of functions and predicates, and in each case the string

functions or string predicates in these classes constitute exactly the corresponding com-

plexity class of polynomially-bounded string functions or languages. Here the third-order

viewpoint pays off again, as it allows computation to involve exponential-length objects,

yet keeps them separate from “ordinary” inputs and thus takes care of the problem of

composability of functions.

Finally, we demonstrate translations of certain theorems of some of these theories into

polynomial-size families of propositional proofs. These translations are Cook-style in the

sense that the focus (generalized computation model notwithstanding) is on definable

functions of strings, and the propositional variables translate free string variables; this

is as opposed to the Paris-Wilkie translations in which propositional variables translate

a higher-order predicate added to the language. The first proof system we use is BPLK,

which is a standard sequent calculus modified to allow the use of Boolean programs.

These are a notation for specifying Boolean functions concisely, and formulas in this

enhanced language are PSPACE-complete to evaluate; this is somewhat analogous to the

existing translation of Σb
∞ theorems of U1

2 into G due to Kraj́ıček and Takeuti [42], as the

quantified Boolean formulas in G are also PSPACE-complete to evaluate. We also define
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quantified versions of BPLK for translating theorems of the stronger theories, which does

not seem to have an existing analogue in the literature.

The remainder of the dissertation is organized as follows: We begin in Chapter 2 by

surveying some relevant literature and presenting some important definitions and results

therefrom. This chapter includes some material and definitions that are fundamental to

this dissertation, but it also describes other results that, while relevant, are not strictly

necessary for this dissertation.

Chapter 3 addresses the language of third-order arithmetic, as well as third-order

computation, including in particular recursion-theoretic characterizations of some com-

plexity classes from the third-order point of view. This is new; although some authors

have discussed higher-order computation before, it hasn’t been fully addressed, particu-

larly not with respect to defining functions in full generality as we aim to do. Previous

higher-order theories for our classes were number-based, and thus did not follow the

newer Zambella-Cook framework of string-based theories.

Chapter 4 introduces the third-order axiom schemes and theories we will discuss: W i
1

and TW i
1, analogues of U i

2 and V i
2 (see below for the intended complexity classes), as

well as HW 0
1 , a weaker PSPACE theory based on a recursion scheme, and TTW 0

1 , an

exponential-time theory which is to W 0
1 and W 1

1 as TV 0 is to V 0 and V 1. In this chapter

we also prove some basic results such as a third-order Parikh’s theorem, and discuss

replacement schemes.

Chapter 5 concerns definability in the theories. This includes our definition of third-

order definability, which covers the most general case of arguments and function value of

any sort. These were not obvious, especially in the case of superstring-valued functions,

which are problematic as our third-order variables are unbounded. We then prove that

for i > 0, (FPSPACE(Σexp
i−1)�)+ and (FEXP(Σexp

i−1)�)+ are ΣB
i -definable in respectively W i

1

and TW i
1; restricted to strings, these classes are exactly the usual complexity classes

FPSPACEΣp
i−1 and FEXPΣp

i−1 . We also prove definability results for HW 0
1 , TTW 0

1 and
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Ŵ 1
1 . Although these results have lower-order analogues, they are nevertheless some-

what new; in particular, our theories are like Buss’s original U1
2 and V 1

2 in that they are

“unbounded domain”; later results about U i
2 and V i

2 and the exponential-time hierar-

chy pertain to Razborov’s “bounded domain” versions, which sidestep the problems of

unbounded higher-order objects.

Chapter 6 is somewhat of a side-bar into a universal conservative extension of HW 0
1 ,

a candidate for a minimal PSPACE theory. This was developed with a view to using the

Cook-Thapen [22] argument to use this open theory to show that HW 0
1 does not prove

the replacement scheme, subject to a complexity assumption.

Chapter 7 contains witnessing theorems for W i
1, TW i

1, TTW 0
1 and HW 0

1 (to match

the results about definable functions in these theories).

Chapter 8 introduces quantified propositional proof systems based on BPLK, and

then uses these systems to translate ΣB
i -theorems of W i

1.

Finally, in chapter 9 we conclude with a discussion of some open problems.



Chapter 2

Preliminaries and Related Work

In this chapter we survey various results from the literature hinted at in the introduction;

at the same time we also reprise some definitions and results that are important for the

dissertation. We intentionally omit from our focus some of the weaker systems of bounded

arithmetic and propositional proof systems about which some lower bounds are known

and concentrate instead on stronger systems and theories about which good bounds or

separations are only conjectured. The survey is organized as follows: In section 2.1 we

introduce several systems of bounded arithmetic and results concerning them and relating

them to complexity theory. In section 2.2 we present some relevant propositional proof

systems and their complexity-theoretic ramifications. Finally, section 2.3 contains a

discussion of results relating bounded arithmetic and propositional proof systems.

2.1 Bounded Arithmetic and Complexity

The study of bounded arithmetic was initiated in 1971 by Parikh with his system I∆0,

similar to Peano Arithmetic, but with the important restriction of the induction scheme

to ∆0 formulas: those whose quantifiers are bounded, i.e. of the form ∀x(x ≤ t→ φ(x))

or ∃x(x ≤ t∧φ(x)) for some term t with no occurrences of x. An important consequence

of this restriction is given by Parikh’s theorem, which states that any function which can

7
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be proved total in I∆0 can be bounded by a term in the language:

Theorem 2.1.1 (Parikh, 1971). Assume that θ(a, b) is a ∆0 formula and that

I∆0 ` ∀x∃yθ(x, y).

Then there is a term t(x) such that

I∆0 ` ∀x∃y < t(x), θ(x, y).

This theorem implies that I∆0 cannot prove theorems requiring exponentiation, or

even the existence of numbers whose length is polynomial in the length of input param-

eters. This rules out reasoning about any computations using more than linear time,

many logical constructions such as substitution and polynomial-length sequences, and so

on.

The first logical theory designed to reason about all “feasible,” i.e. polynomial-time

concepts, and only those concepts, was Cook’s PV [25]. This is an equational theory

which has function symbols for every polynomial-time function, and is defined with the

help of Cobham’s earlier characterization of polynomial-time functions as the closure of

a certain set of initial functions under composition and limited recursion on notation.

A fundamental property of PV is its connection to the propositional proof system EF,

which will be discussed in section 2.3.1. Later first-order theories IPV and CPV [23], the

former intuitionistic and the latter classical, have a more expressive language allowing

interesting properties of graph theory and combinatorics to be stated, yet are conservative

over PV, which is to say that every statement in the language of PV which is provable in

IPV or CPV is provable in PV. Kraj́ıček, Pudlák and Takeuti [41] defined a hierarchy of

theories PVi based on PV, whose lowest member, PV1, is also referred to as QPV. Using

a similar framework to that of PV, Dowd [29] defined an open theory PSA for reasoning

about PSPACE number functions and gave a translation of theorems of that theory into

a quantified propositional calculus.
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Following Cook’s work on PV, to remedy the deficiency in I∆0 Paris and Wilkie

tried adding function symbols with faster growth rates such as ω1(x) := x|x|, along with

appropriate defining axioms, to the language. The addition of ω1 in particular results

in a very interesting theory I∆0 + Ω1 with many implications for and connections to

complexity theory and propositional proof systems; Buss’s seminal dissertation [3] is the

start of a long line of research on subtheories of this important theory, and stronger

theories (e.g., U1
2 ) defined by allowing reasoning about exponential-size objects, but still

with the focus being on definable functions of numbers.

Starting with Ignjatovic [34] and Zambella [58],[59], many authors have investigated

second-order (two-sorted) arithmetic as a means to obtain theories with simpler axiom-

atizations; as computation is typically defined on strings, this makes bootstrapping the

theory easier, and additionally allows capturing very weak complexity classes that may

not even contain functions such as multiplication. Theories in this vein include V 1
1 for

polynomial time [50] (later streamlined by Cook to V 1), and now many theories for classes

such as V 0 for AC0 [14], V TC0 for TC0 [44] [45], V -Krom for NL [17], V NC1 for NC1

[18] and so on.

Also relevant to this dissertation’s focus on the exponential-time hierarchy and higher-

order bounded arithmetic is work by Clote and Takeuti [12] in which the authors present

orderN+1 theories forN -fold exponential time (a stack ofN 2’s topped by a polynomial).

The authors separate the time contribution from each variable in a multivariate function

as a way to address composability of functions, which can be seen as a coarser-grained

version of our third-order computation. (Necessarily so, in order to address such large

complexity classes).

In the remainder of this section we include some of the most relevant definitions and

statements of important theorems concerning the theories mentioned above, and discuss

some of the more interesting consequences.
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2.1.1 Definitions

Buss [3] introduced the first-order theories Si2 and T i2, which we shall describe shortly.

First, consider the following hierarchy of classes of formulas gΣb
i and gΣb

i , the definition

of which is a slight adaptation of the definition in [36]. They are defined by counting

alternations of bounded (first-order) quantifiers (this is what the ‘b’ superscript refers

to) and ignoring sharply bounded quantifiers. Buss called these classes Σb
i and Πb

i , but

following the notation of [19], we prepend a “g” to emphasize that these formulas have

i alternations in the more general sense (i.e., not requiring strict quantifier syntax).

This definition excludes mention of what language, specifically, is used, although it must

include ‘<’. This is a failure of the notation in common use, but in practise when

discussing a particular theory, the language is clear from the context.

Definition 2.1.2 (Buss, 1986). gΣb
i and gΠb

i are the smallest classes of formulas satis-

fying the following:

1. gΣb
0 = gΠb

0 are the sharply bounded formulas (meaning that all quantifiers are of

the form (Qx < |t|), Q ∈ {∀,∃} for some term t).

2. If φ is gΣb
i or gΠb

i then it is also gΣb
j and gΠb

j for all j > i.

3. If φ(x) is gΣb
i then ∀x < t(x)φ(x) is gΠb

i+1.

4. If φ(x) is gΠb
i then ∃x < t(x)φ(x) is gΣb

i+1.

5. If φ is gΣb
i (gΠb

i) then ¬φ is gΠb
i (gΣb

i respectively).

6. gΣb
i and gΠb

i are closed under ∨ and ∧.

7. gΣb
i (gΠb

i) is closed under bounded existential (universal) quantification and sharply

bounded quantification.

Now with these classes in mind, Si2 and T i2 are theories over the language L1
A consisting

of the language LPA := {0, 1,+, ·, <,=} of PA with the addition of {bx
2
c, |x|, x#y}, where
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it is intended that x#y = 2|x||y|. Both theories contain BASIC, a set of 32 open axioms

expressing properties of the symbols in the language, and in addition T i2 has the scheme

gΣb
i -IND, while Si2 has instead the scheme gΣb

i -PIND. We now define these induction

schemes in general:

Definition 2.1.3. Let Φ be a class of formulas. Then Φ-IND consists of the scheme

φ(0) ∧ ∀x(φ(x)→ φ(x+ 1))→ ∀xφ(x)

for all φ ∈ Φ, while Φ-PIND consists of

φ(0) ∧ ∀x(φ(bx
2
c)→ φ(x))→ ∀xφ(x)

(and in this case the language must include ‘bx
2
c’).

The class of induction formulas of Si2 and T i2 is often called “Σb
i with smash” to

emphasize the inclusion of ‘#’; we would call them “gΣb
i with smash”. The “2” subscript

in the names of the theories refers to the presence of the smash function in the language.

Other possibilities for this subscript include “1”, meaning that no smash function is

present, or i > 2, meaning that the function x#iy := 2|x|#i−1|y| is present; in these case

the set of open axioms defining the language would of course be different.

Clearly Si2 ⊆ T i2, and it can be shown that T i2 ⊆ Si+1
2 . Buss also defined second-

order theories U1
2 and V 1

2 , where the second-order objects are either function variables

(expressing a polynomially bounded function from numbers to numbers) or (number)

predicate variables. He first gives a definition analogous to 2.1.2 for bounded second-order

formulas, where gΣ1,b
i formulas (with smash) are classified by counting the alternations

of (unbounded) second-order quantifiers and ignoring bounded first-order quantifiers.

(The superscript “1, b” means that unbounded second-order quantifiers are counted and

bounded first-order quantifiers ignored.) U1
2 (respectively V 1

2 ) is the theory composed of

the BASIC axioms, Σ1,b
0 -Comprehension, which postulates the existence of second-order



Chapter 2. Preliminaries and Related Work 12

objects equivalent to given Σ1,b
0 predicates of one variable, and gΣ1,b

1 -PIND (respectively,

gΣ1,b
1 -IND).

Actually Buss defines several versions of each theory, varying in whether function or

predicate variables, or both, are allowed in formulas, comprehension, or induction. In all

cases, though, the Σ1,b
i -definable functions (see below) of all the versions of U i

2 (or V i
1 )

are the same, and most authors, e.g. [36], consider only the now most standard versions

Ũ i
2(BD) and Ṽ i

2 (BD). The BD stands for bounded domain and specifies that the

second-order variables are tagged with bounds, and the class of formulas allowed in the

induction is defined by counting bounded second-order quantifiers. Without these tags,

the RSUV isomorphisms (see below) would not hold.

Recent literature on higher-order theories has adopted the alternative notation ΣB
i for

(strict quantifier syntax) Σ1,b
i with bounded second-order variables, and we follow suit.

The superscript ‘B’ is intended to mean that it is alternations of bounded second-order

quantifiers that are being counted. Strictly speaking this notation is not applicable to

Buss’s original theories wherein second-order variables are unbounded; however, when

reasoning about functions of numbers, second-order variables are all implicitly bounded

in the sense that the portion of a second-order variable relevant to the truth-value of a

Σ1,b
i -formula is bounded due to the number quantifiers all being bounded. In the present

context, then, we consider ΣB
i and Σ1,b

i to be interchangeable.

A crucial definition is that of definability:

Definition 2.1.4. Let Φ be a class of formulas, T be a theory of bounded arithmetic and

f : Nk → N a function. Then f is Φ-definable in T iff there exists a formula Df (x, y) ∈ Φ

such that

T ` ∀x∃!yDf (x, y),

and Df (x, f(x)) is true in the standard model.

A function is sometimes called weakly definable to assert only that the theory proves

the existence of the y satisfying Df (x, y), but not necessarily that it is unique. In this case
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it would be also necessary to require explicitly that Df be the graph of f , and so either

there is a unique y satisfying Df (x, y) (but not provably so), or f is a multifunction.

As the final point of this subsection, we outline the theories V i, which form the

foundation for our theories in this dissertation. The language L2
A of these theories consists

of the smash-free set {0, 1,+, ·, | · |,∈2,=1,=2} of nonlogical symbols and additionally

includes variables of two sorts for numbers and finite sets of numbers (strings). The set

2-BASIC of axioms defining properties of this language is:

B1. x+ 1 6= 0 B8. (x ≤ y ∧ y ≤ x) ⊃ x = y

B2. x+ 1 = y + 1 ⊃ x = y B9. 0 + 1 = 1

B3. x+ 0 = x B10. 0 ≤ x

B4. x+ (y + 1) = (x+ y) + 1 B11. x ≤ y ∧ y ≤ z ⊃ x ≤ z

B5. x · 0 = 0 B12. x ≤ y ∨ y ≤ x

B6. x · (y + 1) = (x · y) + x B13. x ≤ y ↔ x < y + 1

B7. x ≤ x+ y B14. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)

L1. X(y) ⊃ y < |X| L2 y + 1 = |X| ⊃ X(y)

SE. X = Y ↔ [|X| = |Y | ∧ ∀i < |X|(X(i)↔ Y (i))]

Now the theory V i consists of the universal closure of these axioms plus the ΣB
i -COMP

comprehension scheme, which is

(∃Y ≤ t(x,X))(∀z ≤ a)[φ(x,X, z)↔ Y (z)]

for every φ ∈ ΣB
i . V i proves ΣB

i -IND (see Definition 2.1.3) by means of the comprehension

and a minimization scheme on sets. V 0 is a conservative extension of I∆0.

2.1.2 Definability and Witnessing Theorems

In this section we list some of the important results connecting theories of bounded

arithmetic and complexity classes through definability of functions.

The main results of Buss [3] are as follows: Firstly, that the strongly Σb
i -definable

functions of Si2 are exactly those computable in polynomial time with an oracle for a
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Σp
i−1 predicate, i.e. functions from a functional version of the well known polynomial-

time hierarchy; this function class is referred to as 2
p
i :=FPΣp

i−1 . Furthermore, if S1
2

proves that a predicate is in NP∩co-NP, then it is in fact in P. He also shows how to

relativize Si2 by adding a free second-order variable, and that an analogous definability

result connects these theories to computations with an oracle. Secondly, he shows that

S1
2(PV), which is S1

2 extended by the language of PV and axioms defining all its function

symbols, is conservative over PV. Finally, Buss shows that that the strongly Σ1,b
1 -definable

functions of U1
2 and V 1

2 are those computable in polynomial space, and those computable

in exponential time, respectively. These latter results for second order theories are ex-

tended by Buss, Kraj́ıček and Takeuti [5] to EXPΣp
i−1 [wit,poly] multifunctions for U i

2

and 2
exp
i :=EXPΣp

i−1 functions in V i
2 .

The many analogues between first- and second-order theories are seen to be part

of a pattern formalized in the RSUV isomorphism of Takeuti [57] and Razborov [49].

This isomorphism states that there are translations from first- to second-order formulas

and vice versa such that certain pairs of first- and second-order theories have the same

theorems modulo the translation. Such pairs include (Ri
j+1,U

i
j) and (Sij+1,V

i
j ) for i, j > 0.

Therefore as one might expect, in the second-order viewpoint the ΣB
i -definable functions

of V i are precisely the 2
p
i (i.e., PΣp

i−1) functions for i > 0 (and additionally FAC0 for

i = 0). The theories TV i defined to have exponentially longer induction than V i similarly

correspond to T i2.

Later results have added to what is known about definability in these theories. Of

particular interest is the fact from [4] that the definable functions of T 1
2 are exactly

those expressible as the composition of a PLS problem and a projection, where PLS

is Papadimitriou’s NP search class of polynomial local search problems. Chiari and

Kraj́ıček have extended this result to characterize the Σb
2 and Σb

3 definable multifunctions

in T 2
2 as oracle PLS problems and suggest that a more complete understanding of these

and related definabilities will be useful for proving non-conservation results. Another
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important example, which will figure prominently in the next subsection, is the Kraj́ıček-

Pudlák-Takeuti (KPT) witnessing theorem [41]:

Theorem 2.1.5 (Kraj́ıček, Pudlák and Takeuti, 1991). Let i ≥ 1 and assume that

φ(a, x, y) is an ∃Πb
i-formula. Suppose

T i2 ` ∃x∀y, φ(a, x, y)

Then there are 2
p
i+1-functions f1(a), f2(a, b1), ..., fk(a, b1, ..., bk−1) with all free variables

shown such that T i2 proves

φ(a, f1(a), b1) ∨ φ(a, f2(a, b1), b2) ∨ ... ∨ φ(a, fk(a, b1, ..., bk−1), bk)

This is also true for PVi+1 in place of T i2 and for PV1 if i = 0.

2.1.3 Relating the Collapse of Theories with the Collapse of

Complexity Classes

Since results are known characterizing fairly precisely the definable functions of many

theories, it is reasonable to expect some relation between questions of theories coinciding

versus questions of complexity classes coinciding. This is certainly the case of the S2 = T2

hierarchy under discussion, which will serve as a good example. Something to note

at the start is a nice feature of the theories Si2 and T i2, namely that each of them is

finitely axiomatizable [40]; therefore, the S2 hierarchy collapses iff S2 itself is finitely

axiomatizable.

Now, if it were the case not only that the polynomial hierarchy collapsed, but also

that this collapse was uniform enough that S2 could prove it, then the S2 hierarchy would

also collapse. This is so intuitively because some sufficiently high level of S2 would be

strong enough to prove all the induction axioms of S2, by proving them equivalent due

to the PH collapsing to induction axioms of lower quantifier complexity. There is still

however the possibility that the PH could collapse but that the proof of that fact might
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not be formalizable in S2, in which case the S2 hierarchy might still be strict. This type

of relationship seems to be typical of theories and the complexity classes of functions

definable in them; for another example see Cook [26].

In the other direction, the KPT witnessing theorem stated above implies that if the

S2 hierarchy collapses then so does the PH. Buss [7] and Zambella [58] independently

strengthen this result by showing that the collapse of the PH would in fact be provable

in S2.

A general pattern is that the collapse of complexity classes seems to be related most

closely to the collapse of particular fragments of related theories. In many cases, the

status of other fragments of the theories may have different or unknown implications.

For example, the collapse of the universal fragments of the theories Si2 does not obviously

imply the collapse of the entire theories (and thus of the PH). Another example is that

although we know that S1
2(PV) is conservative over PV, as is QPV, the KPT witnessing

theorem just discussed tells us that if S1
2 is conservative over QPV, then the PH collapses.

Finally, it is not known how the potential equality of PSPACE and PH may be related to

the question of conservativity of U1
2 over S2, although it is plausible that some relation

may hold. Certainly there are many unsolved problems of this kind which are meritorious

of further attention.

2.1.4 Candidates for Separation

The standard candidate for separating a theory from one containing it would be the

consistency of the smaller theory. However, Paris and Wilkie [47] show that even S2

augmented with an axiom stating the totality of exponentiation does not prove the con-

sistency of the induction-free Robinson’s Arithmetic Q. Not even BdCon(S1
2), a restricted

consistency statement asserting only that the bounded fragment of S1
2 is consistent, can

be proved in S2 [48]. More natural candidates, then, would be theorems of mathematics

whose proofs require reasoning about concepts which are not in the corresponding com-
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plexity class of definable functions of the weaker theory; however, actually finding these

seems to be difficult. The most natural candidates appear to be statements of consistency

of related propositional proof systems, which will be discussed in section 2.3.2.

2.2 Propositional Proof Systems and Complexity

In this section we discuss some of the many connections between propositional proof

systems, which we first formally define, and complexity. The first connection is visible

even as the definitions are presented; namely, that when formulated in a Gentzen sequent

style, many known propositional proof systems can be seen to be very similar, with the

only difference between them being the computational power of what can be written

at each line of the proof (or alternatively, what is allowed in the cut rule). Examples

are Boolean formulas in Frege systems, single literals in resolution, Boolean circuits in

extended Frege systems. Another example is the system G, which is a sequent-based

system where formulas in the sequents are quantified Boolean formulas (QBFs). These

formulas have propositional variables and also propositional quantifiers. In this case,

then, since evaluating QBFs is PSPACE-complete, the computational power which can

be harnessed in sequents is PSPACE. We can restrict G to Gi by restricting the number

of alternations of quantifiers allowed in the formulas, and the reasoning power is then

that of Σp
i predicates.

2.2.1 Preliminaries

Propositional Proof Systems

Definition 2.2.1. A proof system P for a set S is a surjective polynomial-time com-

putable function P : Σ∗ → S for some alphabet Σ.

We are interested in proof systems both for TAUT, the set of (quantifier-free) propo-

sitional tautologies, and for TAUTi, the set of quantified propositional tautologies from
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Σq
i

⋃
Πq
i , to be defined below. A P -proof of a tautology τ is a string π such that P (π) = τ .

We denote by |π| the number of symbols in π. We have the following important definition

which allows us to compare the power of proof systems:

Definition 2.2.2. If P and Q are proof systems, we say that P polynomially simulates

(p-simulates) Q and write Q ≤p P if there is a polynomial-time computable function g

such that for every string x, P (g(x)) = Q(x).

Though proof systems need not be of this form, proofs in many of the systems com-

monly studied are sequences of lines, where each line is a valid statement in some lan-

guage. Such systems then have a treelike subsystem, wherein each line may be used only

once as a hypothesis.

LK and Quantified Propositional Logic

A popular proof system is Gentzen’s sequent system LK. LK is actually a proof system

for predicate logic but we shall consider only the propositional fragment. Each line of an

LK-proof is a sequent, a string of the form Γ −→ ∆, where Γ and ∆ are possibly empty

finite sequences of propositional formulas. A sequent is satisfied if and only if either one

of the formulas on the left (the antecedent) is falsified, or one of the formulas on the

right (the succedent) is satisfied. Each sequent in a proof is either an initial sequent of

the form 0 −→, −→ 1 or a −→ a for an atom a, or it is derived from previous ones (its

hypotheses) via one of the following inference rules (this set is the same as in [15], which

is a slight modification of the ones in [36]):

weakening:

left
Γ −→ ∆

A,Γ −→ ∆
and right

Γ −→ ∆

Γ −→ ∆, A
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exchange:

left
Γ1, A,B,Γ2 −→ ∆

Γ1, B,A,Γ2 −→ ∆
and right

Γ −→ ∆1, A,B,∆2

Γ −→ ∆1, B,A,∆2

contraction:

left
Γ1, A,A,Γ2 −→ ∆

Γ1, A,Γ2 −→ ∆
and right

Γ −→ ∆1, A,A,∆2

Γ −→ ∆1, A,∆2

¬ : introduction:

left
Γ −→ ∆, A

¬A,Γ −→ ∆
and right

A,Γ −→ ∆

Γ −→ ∆,¬A

∧ : introduction:

left
A,B,Γ −→ ∆

A ∧B,Γ −→ ∆
and right

Γ −→ ∆, A Γ −→ ∆, B

Γ −→ ∆, A ∧B

∨ : introduction:

left
A,Γ −→ ∆ B,Γ −→ ∆

A ∨B,Γ,−→ ∆
and right

Γ −→ ∆, A,B

Γ −→ ∆, A ∨B

cut:

Γ −→ ∆, A A,Γ −→ ∆

Γ −→ ∆

This system is p-equivalent to Frege systems, defined in [28]. When we add the

additional rule that for a previously unused variable r and any formula φ, the sequents

r −→ φ and φ −→ r may be introduced, and further stipulate that these extension atoms

may not appear in the endsequent of a proof, we obtain a system equivalent to extended

Frege systems, from the same paper.

Quantified propositional logic is what results when we add propositional quantifiers to

our language. The semantics of ∀xφ(x, p) is that this formula is satisfied by a particular

assignment if and only if φ(0, p) ∧ φ(1, p) is. Likewise the truth value of ∃xφ(x, p) is

the same as that of φ(0, p) ∨ φ(1, p). We can define a hierarchy of quantified Boolean

semiformulas. The following is completely analogous to Definition 2.1.2:
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Definition 2.2.3. The classes Πq
i and Σq

i are defined as follows:

1. Σq
0 = Πq

0 are the quantifier-free propositional semiformulas.

2. If φ is Σq
i or Πq

i then it is also Σq
j and Πq

j for all j > i.

3. If φ(x) is Σq
i then ∀xφ(x) is Πq

i+1.

4. If φ(x) is Πq
i then ∃xφ(x) is Σq

i+1.

5. If φ is Σq
i (Πq

i ) then ¬φ is Πq
i (Σq

i respectively).

6. Σq
i and Πq

i are closed under ∨ and ∧.

7. Σq
i (Πq

i ) is closed under existential (universal) quantification.

Now, the proof system G is obtained by augmenting the set of inference rules of LK

with the following:

∀ : introduction:

left
A(B),Γ −→ ∆

∀xA(x),Γ −→ ∆
and right

Γ −→ ∆, A(p)

Γ −→ ∆,∀xA(x)

∃ : introduction:

left
A(p),Γ −→ ∆

∃xA(x),Γ −→ ∆
and right

Γ −→ ∆, A(B)

Γ −→ ∆,∃xA(x)

where B is any formula and the atom p replaced does not occur in the conclusion of the

corresponding inference. Gi is G with the restriction that all formulas appearing in a

proof must be Σq
i or Πq

i . We shall consider G not only as a proof system for TAUT, but

also for TAUTi.

Boolean Programs

Boolean programs were introduced in [21] and are a way of specifying Boolean functions.

Boolean programs are something like a generalization of the technique of using new atoms
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to replace part of a Boolean formula, which idea is the basis of extended Frege systems.

As is the case with that system, and more so with the quantified propositional calculus, it

appears that the use of Boolean programs allows formulas to be abbreviated significantly.

The following definition is from that paper:

Definition 2.2.4 (Cook-Soltys). A Boolean Program P is specified by a finite sequence

{f1, ..., fm} of function symbols, where each symbol fi has an associated arity ki, and an

associated defining equation

fi(pi) := Ai

where pi is a list p1, ..., pki
of variables and Ai is a formula all of whose variables are

among pi and all of whose function symbols are among f1, ..., fi−1. In this context the

definition of a formula is:

1. 0,1, and p are formulas, for any variable p.

2. If f is a k-ary function symbol in P and B1, ..., Bk are formulas, then f(B1, ..., Bk)

is a formula.

3. If A and B are formulas, then (A ∧B), (A ∨B) and ¬A are formulas.

The semantics are as for propositional formulas, except that when evaluating an

application fi(φ) of a function symbol, the value is defined, using the defining equation,

to be Ai(φ).

An interesting property of Boolean programs which demonstrates their comparability

to quantified Boolean formulas is the following theorem from [21]:

Theorem 2.2.5 (Cook-Soltys). A Language L is in PSPACE iff L is computed by some

uniform polynomial-size family of Boolean programs.

BPLK

Definition 2.2.6 (BPLK). The system BPLK is like the propositional system LK, but

with the following changes:
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1. In addition to sequents, a proof also includes a Boolean program which defines

functions. A BPLK-proof explicitly consists of a pair 〈π, P 〉 of the proof (sequents)

and the Boolean program defining the function symbols occurring in the sequents.

2. Formulas in sequents are formulas in the context of Boolean programs, as defined

earlier.

3. If the Boolean program contains a definition of the form

f(p) := A(p),

the new LK rules f : left

A(φ),Γ −→ ∆

f(φ),Γ −→ ∆

and f : right

Γ −→ ∆, A(φ)

Γ −→ ∆, f(φ)

may be used, where φ are precisely as many formulas as p are variables.

4. (Substitution Rule) The new inference rule subst

∆(q, p) −→ Γ(q, p)

∆(φ, p) −→ Γ(φ, p)

may be used, where all occurrences of q have been substituted for.

The following is the main result of [53, 54]:

Theorem 2.2.7. BPLK and G are polynomially equivalent.

Finally, as this dissertation concerns propositional proof systems for large complexity

classes, we would be remiss not to mention [38], in which the author describes how to

transform a propositional proof system P into a system iP that is seemingly stronger in

that it corresponds to an exponentially stronger theory. For example, iEF, constructed

from extended Frege, EF, corresponds to the theory V 1
2 for exponential time. This

construction, however, does not produce an alternate proof system for PSPACE. It is



Chapter 2. Preliminaries and Related Work 23

possible that by applying the construction to Gi, proof systems could be obtained for

levels of the exponential-time hierarchy, but this is not clear. It does, however, by

iterating the construction for EF, provide proof systems that would seem to correspond

to the N -fold exponential-time theories of [12].

2.2.2 Complexity-Related Results

The primary motivation for studying propositional proof systems is the theorem of Cook

and Reckhow [28] that NP=co-NP iff there exists a polynomially bounded proof system

for propositional tautologies. There are, fortunately, many questions about these systems

with less severe complexity-theoretic consequences than this one. One such question is

how exactly the expressive power of a line of the proof relates to the relative efficiency of

the system, which will be discussed in section 2.3.1. In this subsection we shall discuss

how other modifications to a proof system, such as the restriction to treelike proofs or

the addition of a substitution rule, affects its efficiency. We shall also talk about the

witnessing problem for proofs of quantified tautologies.

Known Simulation Results

At the bottom of the G hierarchy of proof systems, which is already well above where

the known lower bound results apply, we have G0 which is polynomially equivalent to LK

and Frege systems. It is also p-equivalent to its treelike subsystem G∗
0 (since Frege and

treelike Frege are p-equivalent [35]), something which is not known for Gi, i > 0. The

next step up are Extended Frege and Substitution Frege systems, which are p-equivalent

due to Dowd, and also Kraj́ıček and Pudlák [39]. These are also both p-equivalent to

G∗
1 for proving quantifier-free tautologies. For i > 0, Gi p-simulates G∗

i+1 for proofs of

TAUTi [36]. The converse simulation can also be shown, either directly or with the help

of results such as those in section 2.3.1 and the conservativity of Si+1
2 over T 1

2 . Another

way of stating this last result is that substitution-Gi is p-equivalent to G∗
i+1 for proofs of
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TAUTi for all i (including i = 0), and for i > 0, substitution is a derived rule in Gi [40].

Witnessing Problem for Quantified Propositional Proofs

The witnessing problem for quantified propositional proofs is the following: Given a

proof of a quantified propositional tautology in Σq
i , and values for the free variables in

the endsequent, find values for the outermost existentially quantified variables of the

endsequent satisfying it. For G∗
1 proofs, this problem is in P, and for G1 proofs (of Σq

1

tautologies), it is complete for PLS. It follows from [10] and the results in the next section

that the witnessing problem for Gi is complete for an oracle version of PLS with a Σp
i−1

oracle, defined in that paper, for each i > 0. For i = 2, the authors find an equivalent

search problem they call GLS, for generalized local search. It is open to find more natural

search problems for the rest of the cases, and it is also open to find any characterization

of the witnessing problems for Gi proofs of Σq
j tautologies for 1 ≤ j < i. Another open

problem is to find propositional proof systems whose witnessing problem corresponds to

one of the other well-studied NP search classes. This can be done unnaturally by adding

axioms asserting the totality of these search problems to EF.

2.3 Bounded Arithmetic and Propositional Proofs

In this section we discuss some connections between systems of bounded arithmetic and

propositional proof systems.

2.3.1 Translations into Propositional Logic

The most important such connection is that some classes of theorems of some bounded

arithmetic theories can be translated into families of propositional or quantified propo-

sitional tautologies. Depending on what the theory is and what class of formulas is

translated, we can draw conclusions about the lengths of proofs of these families of
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tautologies in various propositional proof systems. Furthermore, by adding reflection

principles, axioms stating the consistency of a propositional proof system, to a weaker

theory, we can axiomatize a stronger theory corresponding to that proof system.

The first result of this form is due to Cook [25] who defines a translation from equa-

tions of PV to families of propositional formulas with polynomial-size EF proofs. Fur-

thermore, any propositional proof system whose consistency PV can prove can be p-

simulated by EF. Independently, Paris and Wilkie [46] gave a translation from bounded

first-order formulas with a relation symbol R to families of propositional tautologies,

and proved that if I∆0(R) ` ∀xθ(x) then the translations of θ(x) have polynomial-size

Frege proofs. Kraj́ıček [37] extends this translation to handle second-order formulas and

shows a similar relation between V 1
1 and polynomial-sized EF proofs, and between U1

1

and quasipolynomial-sized Frege proofs.

Kraj́ıček and Pudlák [40] extended Cook’s result to show that whenever A(a) ∈ Σb
i

and Si2 ` A(a) (respectively, T i2 ` A(a)), then the translations of A(a) have polynomial-

size G∗
i (respectively, Gi) proofs. Kraj́ıček and Takeuti [42] showed a similar relation

between U1
2 and G, and such a result holds for BPLK as well [55].

2.3.2 Consistency Strength

Using the idea of Cook [25], [39], [42] and others define reflection principles i−RFN(P )

for each i and propositional proof system P , which states that P is sound for proofs of

Σq
i

⋃
Πq
i tautologies. We have that for every i, Si2 ` i − RFN(G∗

i ), T
i
2 ` i − RFN(Gi)

and U1
2 ` i−RFN(G). Furthermore, for any proof system P such that one of the above

theories, for example Si2, proves the reflection principle j − RFN(P ) for some j, the

corresponding proof system, in this case G∗
i , p-simulates P for proofs of TAUTj. In fact,

every ∀Σb
j consequence of Si2 (T i2, U1

2 ) follows from S1
2+j − RFN(G∗

i ) (Gi, G). For this

reason, these reflection principles would be candidates for separating the theories.
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The Third-Order Viewpoint

In this chapter we introduce our third-order viewpoint, first for bounded arithmetic and

then a calculus of functions.

3.1 Third-Order Bounded Arithmetic

We consider a three-sorted (“third-order”) predicate calculus with free and bound vari-

ables of the first sort named a, b, c, ... and x, y, z, ..., respectively, and free and bound

variables of the second sort named A,B,C, ... and X, Y, Z, ..., and likewise of the third

sort named A,B, C, ... and X ,Y ,Z, .... The first sort are intended to represent natural

numbers; the second, finite sets of natural numbers; and the third, finite sets of finite sets

of natural numbers. We shall refer to the second sort as “strings” and the third sort as

“superstrings”, but formally they are both finite sets. In the standard model, variables

of these types range over exactly these types of objects. A variable of unspecified sort

will be denoted with a tilde, e.g.: x̃.

The language L3
A := {0, 1,+, ·, | · |,∈2,∈3,≤,=1,=2} of nonlogical symbols is the

same as the set L2
A for V 1 but with the addition of the third-order membership predicate

A ∈3 B. We write A(B) for B ∈3 A and A(b) for b ∈2 A. We shall often omit the

subscripts on ‘=’ and ‘∈’ as there is no danger of confusion. Note in particular the

26
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absence of the smash function symbol and third-order equality, as well as the length

function being present for strings only: the expression |X| is intended to represent 1 plus

the largest element of the set X, or 0 if empty (the least upper bound of X). Such sets

may be thought of interchangeably with ordinary finite binary strings under the following

mapping, as in [16]: The set X represents the string with length |X|−1 whose ith bit (for

0 ≤ i < |X| − 1) is 1 exactly when i ∈2 X. This map is a bijection with the exception

that the string corresponding to the empty set would be undefined, so we define it to

be the empty string. Alternatively, our finite sets correspond to ordinary binary strings

whose leading bit is 1, together with the empty string. We shall sometimes refer to |X|

as the length of X, although in fact X represents a string of length |X| − 1.

Superstrings (or initial segments thereof) will also sometimes be thought of as strings

of bits. The (ordinary) strings indexing the superstring are referred to as bit-indices.

Since there is no length-function analogue for superstrings, the desired “length” (i.e.,

lexicographically maximal bit-index under consideration) will have to be specified sepa-

rately.

Number terms are defined identically as in V 1, in particular not including any ref-

erence to third-order variables. Formulas are defined as usual, with the addition of the

third-order variables and quantifiers on those variables. There is a hierarchy of classes

gΣB
i and gΠB

i of formulas in this language analogous to the hierarchies ΣB
i and ΠB

i of

second-order formulas: gΣB
i consists of those formulas with arbitrarily many bounded

first- and second-order quantifiers, and at most i alternations of third-order quantifiers,

the outer-most being restricted, i.e. equivalent to an existential quantifier. In contrast

to this more general class, (strict) ΣB
i -formulas are those consisting of at most i alter-

nating blocks of third-order quantifiers beginning with existential, followed by a formula

with no third-order quantifiers; we shall also refer to a slightly more inclusive class of for-

mulas called strict ∀2ΣB
i , consisting of a single bounded universal second-order quantifier

followed by a strict ΣB
i -formula. We shall refer to this class simply as ∀2ΣB

i , omitting the
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explicit epithet “strict”.

Note that third-order quantifiers are not bounded, and in fact there is no apparent

way to bound them (short of using an unbounded quantifier of a lower order) due to the

lack of a length function. Fortunately, in the appropriate fragments of the theories we

shall be concerned with, these variables will always be implicitly bounded, in the sense

that the bounds on lower-order quantifiers will limit what part of the superstring actually

affects the truth-value of a given formula.

3.2 Third-Order Computation and Function

Calculus

In this section we introduce our framework of third-order computation. This includes a

calculus of third-order functions that will be used later to obtain universal versions of

some theories. The intent is to capture the nature of string-based computation defined

by third-order theories of bounded arithmetic. For this reason, our primary focus is on

classes of polynomially-bounded functions (from strings to strings) or similar, as this

makes operations such as composition of functions more natural. We are consequently

interested in our classes of functions somehow maintaining an exponential-size distinction

between the three sorts, as do (standard) theories of bounded arithmetic. Furthermore,

our intent when defining third-order complexity classes is that the third-order (super-

string) arguments not count towards the resource limits of the machine.

Notwithstanding the above, we make the following definitions as general as we can.

Functions in our setting will be strongly typed, meaning that each particular function has

a fixed signature: some number of inputs of each of the three sorts (and possibly several

inputs of each sort), and a single fixed output sort. The following definition specifies

precisely the domains of the three sorts:
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Definition 3.2.1. First, D1 := N. Second, D2 := {S ⊂ N : |S| < ∞}. Finally,

D3 = {S ⊂ D2 : |S| <∞}. For convenience let D = D1 ∪ D2 ∪ D3.

(In this definition, | · | denotes set cardinality, and not the least upper bound function

symbol). In other words, the three domains corresponding to the three sorts are: the

natural numbers; finite sets of natural numbers; and finite sets of finite sets of natural

numbers. Again we shall refer to these as numbers, strings, and superstrings. Note that

these sorts are the same as the intended interpretations of the three sorts of variables in

third-order bounded arithmetic. We shall use the same typographical conventions as for

variables in third-order bounded arithmetic above to refer to members of these domains.

Function symbols in our calculi will similarly be named from the lists f, g, ...;F,G, ...;

and F ,G, ... to indicate the sort of the range of the function. Functions or objects

of unspecified sort will be named with a tilde such as ã or f̃ . We shall also consider

third-order predicates, which for simplicity we shall consider as 0-1 valued functions.

Definition 3.2.2. Let E = E1 ∪ E2 ∪ E3 be the set of all functions of fixed signature,

categorized according to the sort of the output. The 0-1 valued functions (predicates) are

referred to as E0 ⊂ E1.

3.2.1 Computation of Functions

Now, expanding the usual definition of Turing machines computing functions from binary

stings to binary strings, we define what it means for Turing machines to compute func-

tions from E. The broad overview and the intent to the definitions below is as follows: A

machine computing a function must be able to receive the appropriate number of inputs

of each of the three sorts, and also be able to output an object of the correct sort. String

inputs (i.e., finite sets of natural numbers) are presented as ordinary binary strings and

concatenated together. Numbers are presented in unary as strings. Finally, superstrings

are presented on some kind of read-only, random-access input tape, analogously to how a
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Turing machine accesses an oracle; recall that we intend for superstring inputs not to be

included in the computation of resource limits. A machine then issues queries for desired

bits of its superstring inputs by writing strings onto associated query tapes.

Numbers and strings are output as usual, but a superstring output is written to a

special write-only output tape. This allows a space-bounded machine to output very long

superstrings (longer than the space bound of the machine) simply by writing the bits in

sequence; but observe that the run-time will be as long as the output, so a polynomial-

time machine, for example, would be limited to polynomial-length superstring outputs. In

some contexts, however, it is desirable and natural for a time-bounded machine to be able

to “output” very long superstrings. One possible definition, and the one we adopt below,

is for the machine to compute one requested bit of its superstring output; the results of

many such queries over a range of query strings collectively form the superstring output

of the machine. This will arise naturally in the context of polynomial-time hierarchy

functions in third-order bounded arithmetic. The following definition formalizes the two

kinds of computation from the discussion above:

Definition 3.2.3. Let (D1)j × (D2)k × (D3)l be the domain of some function in f̃ ∈ E.

Then a machine M computes the function if for every value of the parameters,

MA1,...Al(1a1#...#1aj #A1#...#Ak)

outputs the value of the function onto a special write-only output tape, in unary in the

case of a number-valued function. The notation MA indicates that the superstring A is

presented to M analogously to an oracle; namely, with read-only random access.

Not to be confused with the above, if the function is F ∈ E3, we say that M accepts

F if W = F(a1, ..., aj, A1, ..., Ak,A1, ...,Al) is the value of the function on the indicated

inputs and

MA1,...Al(1a1#...#1aj #A1#...#Ak#X)

accepts (or outputs 1) exactly when X ∈ W.
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3.2.2 Third-Order Complexity Classes

Below we give a general meta-definition that says how to convert an ordinary function

or language class into a complexity class of third-order functions. We are interested

primarily in polynomially bounded functions, which we now define in the context of

third-order computation. The definition below says that the polynomial bound applies to

a number output or the length of a string output, and is computed using only the number

inputs and the lengths of the string inputs. Note that if there are only superstring inputs,

then the definition implies that the bound is in fact a constant.

Definition 3.2.4. A function f̃ with domain (D1)j × (D2)k × (D3)l is polynomially

bounded if there is a fixed polynomial p(n1, ..., nj+k) such that for every a ∈ D1, A ∈ D2,

A ∈ D3, either:

1. f(a,A,A) ≤ p(a, |A1|, ..., |Ak|) or

2. |F (a,A,A)| ≤ p(a, |A1|, ..., |Ak|),

as appropriate to the output sort of the function (number or string). Every function with

superstring output sort is polynomially bounded.

Now we describe some specific cases of complexity classes we are interested in. The

notation (various superscripts on the complexity classes) is from the meta-definition

below.

First, FPSPACE+ is the third-order analogue of PSPACE functions. It consists of

those polynomially bounded functions computable by a machine in polynomial space (as

a function of the string and (unary) number inputs only), where superstring outputs are

written onto a write-only output tape, allowing exponential-length superstring outputs.

The machine’s queries to its superstring inputs must also be polynomially bounded (as

a function of its inputs). FEXP+ is similarly the polynomially bounded exponential-

time functions with polynomially bounded access to superstring inputs. In contrast
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to FPSPACE+, the polynomial bound is an actual restriction as an exponential time

machine could otherwise write exponentially large strings (either as output, or as a query

to superstring inputs).

Now for the case of polynomial time, the class FP+ defined analogously to FPSPACE+

and FEXP+ has the property that superstring outputs have polynomial length, due to

the time bound of the machines; however, the class P◦ of polynomially-bounded functions

accepted by polynomial-time machines (see definition 3.2.3) does not have this restriction.

For this reason, FP+∪P◦ is in some contexts a more suitable third-order analogue of P.

This is also the case for functions from levels 2
p
i of the polynomial-time hierarchy, which

are computed by polynomial-time machines with access to an oracle from Σp
i : The third-

order class (2p
i )

+ is restricted to polynomially many bits in its superstring outputs and

so (2p
i )

+ ∪ (2p
i )
◦ is a more appropriate definition.

As a final set of examples, the predicate classes P�, NP�, (Σp
i )
�, NEXP� and (Σexp

i )�

are 0-1 valued functions, and are the characteristic functions of machines from the cor-

responding ordinary complexity classes, modified with polynomially bounded access to

superstring inputs.

We now state the meta-definition, which aims to collect and distill the notation and

concepts from the preceding discussion. The definition is somewhat vague and intended

only to give an approximate naming convention; specific instances of this definition will

need clarification.

Definition 3.2.5 (Meta-Definition). Let FC be a complexity class of string functions with

a well-understood semantics for oracle access such as a query tape, oracle gate, or similar.

Then FC+ denotes the class of polynomially bounded functions from E computed by

machines of the model of FC in the sense of definition 3.2.3, where queries to superstring

inputs are polynomially bounded (and not counted in the space bound, if any, of the

machine).

Alternatively, let C be a complexity class of languages, again with an oracle semantics.
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Then C◦ denotes the class of polynomially bounded functions F ∈ E3 for which there is a

machine MF of the model of C accepting F in the sense of definition 3.2.3, where again

the queries to superstring inputs are polynomially bounded. In this case we ordinarily

intend for the resource bounds of the computation to be determined by the arguments to

the function only, and not the special query argument X to the superstring output.

Finally, for C a class of languages, C� denotes the class of 0-1 valued functions f ∈ E0

such that there is a machine Mf from the class of C accepts exactly when the value of f

is 1, and issues only polynomially bounded queries to superstring inputs.

Some comments are in order concerning this definition. First, and most importantly,

the third-order complexity classes discussed thus far, restricted to functions from strings

to strings (or string predicates) are the usual complexity classes. There are nevertheless

some interesting observations to be made: For example P� 6=NP�, as a predicate in the

latter class can determine if a given superstring contains a 1 (up to a bound given by

a string argument), while this predicate is clearly not in P�. The usual argument for

Savitch’s theorem goes through, at least for (unrelativized) NPSPACE�: configurations

are still described by polynomial-sized strings, including queries to superstring inputs.

We conclude that PSPACE� =NPSPACE�.

Now, in order to expand our discussion to the exponential-time hierarchy, we must first

address relativizing classes of functions by adding oracles. It is most fervently desired that

the reader not confuse these third-order oracles (our generalization of ordinary oracles)

with the above use of oracle machines to receive third-order inputs. Our third-order

version of oracle relativization is defined as follows:

Definition 3.2.6. A third-order oracle Turing machine has a number of specified

write-only query tapes, each one designated with a sort. The machine may write val-

ues on these tapes which are polynomially bounded, in the sense that the numbers (in

unary), lengths of strings, and bit-indices of superstrings written are all bounded by fixed

polynomials in the machine’s (non-superstring) inputs. When the machine enters the
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special query state, these tapes are erased, and a value is returned to the machine by way

of a special read-only reply tape (with random access in the case of a superstring-valued

oracle).

Now, the ordinary exponential-time hierarchy is defined by Σexp
i (= NEXPΣp

i−1) [33].

This is equal to Σi-TIME(exp), which are the languages computed by exponential-time

alternating Turing machines with i alternations (starting with existential). Paralleling

this definition, we can define the corresponding classes of 0-1 valued functions from E0. It

is important to observe that the queries made of the Σp
i−1 oracle by the NEXP machine

in the standard definition are in general of exponential size. Our third-order oracle

machines can also issue exponentially-long queries to their oracles, but these must be in

the form of superstrings, as the string inputs to oracles are restricted to be polynomially

bounded per our definition. Consequently the complexity class of the third-order oracle

we use will be different.

We therefore define (Σexp
1 )� =NEXP� and (Σexp

i )� = (NEXP�)(Σexp
i−1)� . In other words,

each higher level of the hierarchy is obtained by augmenting nondeterministic exponential

time with a third-order oracle for the previous level. Since the queries to this oracle must

be polynomially bounded (although this still allows exponential-length superstring inputs

to the oracle), it can be seen that this relativization corresponds to unbounded access to

an ordinary oracle from the appropriate level of the quasi-polynomial-time hierarchy

(considered as a predicate on the superstring inputs): For example, if an NEXP machine

writes string and superstring inputs of lengths p(n) and 2p(n) respectively to a third-order

NEXP oracle, then the query can be answered in nondeterministic time 2(p(n))k
for some

k, which is exponential in p(n). In terms of the length of the superstring input, 2p(n), the

quantity 2(p(n))k
is quasi-polynomial.

In the hands of an NEXP machine, however, an unbounded (ordinary) oracle from

some level of the quasi-polynomial-time hierarchy is no more powerful than one from the

same level of the polynomial-time hierarchy, as the machine could simply make longer
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queries (i.e. 2(p(n))k
) of this latter oracle. Thus as predicates purely on strings, the levels

of our hierarchy correspond precisely with the levels of the ordinary exponential-time

hierarchy.

The function classes (2exp
i )+:=(FEXP(Σexp

i−1)�)+ are the polynomially bounded func-

tions computed by exponential-time Turing machines relativized with a third-order ora-

cle for a function from (Σexp
i )�, and similarly as functions purely of strings correspond to

the usual 2
exp
i .

It should be noted that (Σexp
i )� = (Πexp

i )� seems to imply that the third-order

exponential-time hierarchy collapses to the ith level, while this is not known for the

ordinary case; The difference is that the assumption Σi = Πi in the third-order context

is stronger, in that it covers also predicates on superstrings.

3.2.3 Recursion Theory of Functions

Now let us define some standard functions. The number functions {x + y, x · y}, con-

stants 0,1, etc. are as usual. The bit, string successor and concatenation functions

{bit(x, Y ), s0(X), s1(X), X _ Y } are also standard, but they are operations on binary

strings, while our string-like domain D2 consists of finite sets of natural numbers. We

therefore define these functions to operate on the strings represented by the input finite

sets, and to output the set representing the desired string. For example, the set A = {1}

represents the string 0 and has least upper bound |A| = 2. Therefore s0(A) is the set

{2} with least upper bound 3 that represents the string 00.

{|X|, X ∈ Y , 1x} respectively give the least upper bound of the set (which is one more

than the length of the string being represented by the set), the (0-1-valued) characteristic

function of Y , and a standard string of x bits (represented by a set of least upper bound

x+ 1). All of the functions described thus far are polynomially bounded.

We now define several operations on these functions. As our focus is on string func-

tions as opposed to the standard recursion-theoretic viewpoint of number functions, we
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shall comment in each case on how these operations compare to standard operations on

number functions.

First, the operation of composition defines a function f̃(x̃) = t by specifying a term

t consisting of variables among x̃ and other functions, constructed in such a way that

arities and argument types are respected. The value of f̃(x̃) is defined as the result of

evaluating this term t in the obvious way (i.e., from the inside out). Observe that this

operation allows permutation and renaming of variables.

Define f̃ (of any sort) by limited recursion from g̃, h̃ (also of any sort) and l

by f̃(0, ...) = g̃(...), f̃(x + 1, ...) = h̃(x, f̃(x, ...), ...) and either f̃(x, ...) ≤ l(x, ...) or

|f̃(x, ...)| ≤ l(x, ...), as appropriate. This operation corresponds roughly to limited recur-

sion on notation for number functions, as it iterates a function (h̃) a polynomial number

of times subject to a bound on growth. Recursion is the same operation without the

bound on growth.

Define f̃ by limited doubling recursion from g̃ and l by f̃(0, ỹ, ...) = g̃(ỹ, ...), f̃(x+

1, ỹ, ...) = f̃(x, f̃(x, ỹ, ...), ...) and either f̃(x, ỹ, ...) ≤ l(x, ...) or |f̃(x, ỹ, ...)| ≤ l(x, ...),

as appropriate. This operation corresponds roughly to limited recursion for number

functions, as it iterates a function (g̃) an exponential number of times (by doubling

the number of nestings a polynomial number of times) subject to a bound on growth.

Doubling recursion is the same operation without the bound on growth.

Define f̃ (of any sort) by limited long recursion from g̃, h̃ (also of any sort) and

l by f̃(10, ...) = g̃(...), f̃(X + 1, ...) = h̃(x, f̃(X, ...), ...) and either f̃(X, ...) ≤ l(X, ...) or

|f̃(X, ...)| ≤ l(X, ...), as appropriate. This operation is similar to the previous one in

that it iterates a function an exponential number of times; however, it differs in that the

exponentially many iterations are performed directly by using a string as an exponential-

length counter. This operation presupposes a suitable string successor function X + 1.

Define F by limited 3-comprehension from g, h ∈ E1 by F(..)(X) ↔ (|X| ≤

g(..) ∧ h(X, ..) = 0).
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For our purposes pertaining to theories of bounded arithmetic (in which superstrings

are not bounded), it is important to distinguish these “pure” operations from bounded

versions of them that only specify an initial segment of the superstring value of the

function. The computational object so defined is now a multifunction, as there are many

correct images of the multifunction for any set of parameters. For example, here is a

bounded version of F defined by limited 3-comprehension from g and h: |X| ≤ g(...) ⊃

(F(..)(X)↔ h(X, ..) = 0).

It should be noted here that the recursion operations, as well as simple composition

of functions, appear to be significantly more powerful when applied to superstring-valued

functions. This is because in the composition of two such functions, the space may not

be available to write down the intermediate value. A space-bounded computation model

would then have to query the “inner” function many times (to retrieve bits of its output

as needed) in order to compute the outer function. The composition of two polynomially

bounded number- or string-valued functions can be computed using the sum of the time

requirements (computing first one then the other function), while the required space does

not increase. For superstring-valued functions, on the other hand, the time required for

the composition as described seems in general to be the product of the time required for

each component, while the space required is the sum. If space is not bounded then the

intermediate results can be written in full, and thus time and space requirements are as

for the composition of number- or string-valued functions.

At this point we can extrapolate a bit from Cobham [13] to state a characterization

of polynomial-time functions:

Lemma 3.2.7. The complexity class FP+∪P◦ is exactly the closure of the initial functions

I = {0, 1, x+ y, x · y, 1x, |X|, s0(X), s1(X), bit(x, Y ), X _ Y,X ∈ Y} under composition,

limited 3-comprehension and limited recursion with the latter restricted to E1 ∪ E2.

Proof Sketch. Cobham’s theorem states that the polynomial-time number functions are

the closure of I ′ = {0, s0(x), s1(x), x#′y} under composition and limited recursion on
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dyadic notation. Here x#′y denotes the result of concatenating together |y| copies of the

dyadic notation for x, where |y| is the length of the dyadic notation of y.

Now, the operations and functions above implicitly treat natural numbers as strings.

In what follows, we will first show that the polynomial-time string functions are contained

in the closure of I under the operations stated. We do so by defining explicitly string-

based versions of the initial functions and operations of Cobham and then appealing to

Cobham’s theorem. Following that, we describe how to obtain all of FP+∪P◦. It is clear

that I is contained in this class, which is closed under the indicated operations, and so

the proof will be concluded.

The functions s0 and s1 in I are already string-based versions of Cobham’s s0 and

s1. With {0, 1, x + y, x · y, 1x, |X|} we can construct numbers of polynomial magnitude

(as a function of the lengths of string inputs) and thus also strings of polynomial length

(although not exactly yet the string equivalent of x#′y). A string selection function

sel(x, Y, Z) can be defined using limited recursion up to |Y |+ |Z| to concatenate together

the bits of either Y or Z depending on the value of x, thus selecting either Y or Z. Then

using this function, limited recursion and bit, we can simulate the operation of limited

recursion on dyadic notation. The string equivalent of x#′y is then easy to construct, at

which point we have all the initial functions and operations of Cobham, and thus all the

polynomial-time string functions.

We can easily extend our class of functions to number inputs by using 1x to obtain

a relevant string, and to number outputs by using |X|. To extend further to superstring

inputs, we can directly simulate the operation of a polynomial-time Turing machine, at

each step determining what bit of which superstring input is being queried, and using

X ∈ Y to provide this bit to the next-state function of the machine. Finally, with limited

3-comprehension we can extend the class to superstring outputs.

Observe that the operation of limited 3-comprehension uses a number-valued function
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as a predicate to obtain the bits of a superstring, and in this case produces exponential-

length superstrings. To obtain the smaller class FP+ (excluding P◦), we would need

an alternative way to obtain superstrings, as in this case 3-comprehension produces

exponentially longer superstrings than functions from FP+ can output. Alternatives

include a function that produces a superstring from the bits of a given string, or a more

sharply limited version of 3-comprehension. This problem is however, beyond the scope

of this dissertation.

FPSPACE+ is contained in the closure of FP+∪P◦ by limited recursion on E3, com-

position and limited 3-comprehension: First, a superstring-valued FP+∪P◦ function can

compute from the input of a PSPACE Turing machine the transition function of the

machine as a table listing the next configuration for each given configuration. Another

function in FP+∪P◦ can compose such a function with itself by reading two (polynomial-

sized) entries from this table. Therefore after applying limited recursion on these two

functions we obtain a third that outputs the 2x-step transition function and from this

it is trivial to extract the value of the original PSPACE function. Since FPSPACE+

is closed under limited recursion (as each such operation increases the space require-

ments of a function by a polynomial factor), limited 3-comprehension and composition,

we can conclude that this class is exactly the closure of the initial functions under these

operations.

FPSPACE+ is alternatively characterized as the closure of FP+∪P◦ under composi-

tion, limited 3-comprehension and limited doubling recursion restricted to E1 ∪ E2. The

step function of a PSPACE Turing machine can be iterated exponentially many times

using these operations, and conversely FPSPACE+ is closed under limited doubling re-

cursion as the recursion can be unwound with only a polynomial amount of additional

space. This characterization is analogous to the one used in Dowd [29]: initial functions

closed under limited recursion. Limited recursion in the context of number functions is

of exponential length, as is limited doubling recursion in our setting. This in turn is
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reminiscent of E2, the second level of the Grzegorczyk hierarchy [30], which is defined

similarly except with an initial function of linear growth rate as opposed to x#′y; this

was shown by Ritchie [52] to equal the linear space functions.

FEXP+ is the closure of FP+∪P◦ under composition, limited 3-comprehension and

limited doubling recursion on E3: The step function of an exponential-time Turing ma-

chine can be iterated exponentially many times. See [11] for a previous recursion-theoretic

characterization of the exponential-time number functions.

3.3 Representation Theorem

As a final section in this chapter, we connect third-order bounded arithmetic and com-

putation with a representation theorem.

Theorem 3.3.1. The predicates represented in the standard model by ΣB
0 -formulas are

precisely PH�; for i ≥ 1 those represented by gΣB
i - and gΠB

i -formulas (and also the strict

versions of these classes) are precisely (Σexp
i )� and (Πexp

i )�, respectively.

Proof. A ΣB
0 -formula has some constant number of alternations of (bounded) string quan-

tifiers. The problem of evaluating such a formula is therefore in the corresponding level

of the (third-order) polynomial time hierarchy. Similarly, evaluating a gΣB
i -formula is in

third-order Σi-TIME(exp), which is (Σexp
i )�: the formula is equivalent to one in strict

quantifier syntax, and the i alternations of third-order quantifiers are evaluated by i

alternations of nondeterministic exponential time, following which the remaining ΣB
0

subformula is evaluated deterministically in exponential time.

Conversely, standard techniques give, for an alternating Turing machine M (even one

with superstring inputs), a ΣB
0 -formula φM such that φM(x̃, C1, ..., Ck) represents the pred-

icate “C1,...,Ck code k exponential-length alternations of M on input x̃ and M accepts”.

Therefore ∃C1∀C2...φM(x̃, C) represents the predicate “M(x̃) accepts” for Σi-TIME(exp)-

machine M . Likewise, the characteristic predicate of a PH� machine is represented by a
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similar ΣB
0 -formula with a constant number of additional leading bounded string quanti-

fiers, which is altogether still ΣB
0 .



Chapter 4

Third-order Theories

In this chapter we give the definition of several third-order theories and axiom schemes,

and prove some basic properties of them.

4.1 Axiom Schemes and Theories

Our main theories are W i
1 and TW i

1, intended to correspond to levels of the exponential-

time hierarchy; they are parameterized by the type of induction. These theories are

suggested by the RSUV isomorphism and are closely connected to U i
2 and V i

2 , respectively,

although we do not claim an actual isomorphism (but one may hold with the unbounded

domain versions of these theories).

For i ≥ 0, W i
1 is a theory over L3

A. The axioms of W i
1 are B1-B14, L1, L2 and SE

of [Cook/Kolokolova], (strict) ∀2ΣB
i -IND and the following two comprehension schemes

ΣB
0 -2COMP:

(∃Y ≤ t(x,X))(∀z ≤ a)[φ(x,X,X , z)↔ Y (z)]

and ΣB
0 -3COMP:

(∃Y)(∀Z ≤ a)[φ(x,X,X , Z)↔ Y(Z)],

where in each case φ ∈ ΣB
0 subject to the restriction that neither Y nor Y , as appropriate,

42
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occurs free in φ.

W 1
1 defined above is slightly different than the version published in CSL04 [55]; it in-

cludes a string equality symbol and extensionality axiom. This predicate is ∆B
0 -definable

in the original version of the theory and can thus be conservatively added and used in

all the axiom schemes. The unusual class of formulas for which we admit induction is

in order for a replacement scheme to be provable; as a result of this scheme, W i
1 will

ultimately admit full gΣB
i -IND.

Define Ŵ i
1 to be the analogous theory with the induction scheme restricted to (strict)

ΣB
i formulas. Note that Ŵ 0

1 = W 0
1 .

TW i
1 is defined identically as above, but with the following scheme named ΣB

i -SIND

(string or set induction) in place of ∀2ΣB
i -IND:

[∀X, Y, Z((|Z| = 0 ⊃ φ(Z)) ∧ (φ(X) ∧ S(X, Y ) ⊃ φ(Y )))] ⊃ ∀Zφ(Z)

for φ ∈(strict)ΣB
i , where S(X, Y ) is the following formula expressing that Y is the lexi-

cographically next finite set after X:

|Y | ≤ |X|+ 1 ∧ ∃i ≤ |Y |[Y (i) ∧ ¬X(i) ∧ ∀j < i(X(j) ∧ ¬Y (j))∧

∀j ≤ |Y |(i < j ⊃ (X(j)↔ Y (j)))].

(This formulation is due to Phuong Nguyen). It will also turn out that TW i
1 admits

(string) induction on the more general class of formulas due to a replacement scheme.

TTW i
1 is yet another theory in this vein, with a yet stronger induction scheme named

ΣB
i -SSIND (“superstring” induction). Note that since (by design) there is no way to

bound a third-order object, the scheme refers to a term t, and restricts its attention to

the first 2t bits of the objects. It is intended that this t be some crucial bound from φ.

The scheme is:

[∀X ,Y ,Z((∀X ≤ t¬Z(X)) ⊃ φ(Z)) ∧ (φ(X ) ∧ S3(X ,Y , t) ⊃ φ(Y))] ⊃ ∀Zφ(Z)
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for φ ∈(strict)ΣB
i , where S3(X ,Y , z) is the formula

∃Z ≤ z[Y(Z) ∧ ¬X (Z)∧

∀X ≤ z(L2(X,Z) ⊃ X (X) ∧ ¬Y(X)) ∧ ∀X ≤ z(L2(Z,X) ⊃ X (X)↔ Y(X)))

and L2(X, Y ) is the formula

∃i ≤ |X|[Y (i) ∧ ¬X(i) ∧ ∀j ≤ |Y |(i < j ⊃ (X(j)↔ Y (j)))],

which is intended to mean that X < Y , considered as large numbers.

The scheme ΣB
0 -superstring-recursion is the following:

∃Xφrec(S,X ),

where φ(Y,X ) ∈ ΣB
0 , and

φrec(x,X ) ≡ ∀Y ≤ |S|(L2(Y, S) ⊃ (X (Y )↔ φ(Y,X<Y ))),

where X<Y is a chop function (i.e., X<Y (Z) abbreviates the subformula L2(Z, Y )∧X (Z)).

φ (and therefore also φrec) may have other free variables than the displayed ones, but φ

must have distinguished string and superstring free variables Y and X . φrec then has X

free as well as a new variable S. This scheme is analogous to that from [6] and follows

the presentation from [27].

The scheme ΣB
0 -superstring-halfrecursion is the following:

∃Xφhrc(S,X ),

where φ(Y,X ) ∈ ΣB
0 , and

φhrc(S,X ) ≡ ∀Y ≤ |S|(L2(Y, S) ⊃ (X (Y )↔ φ(Y,X<Y/2))),

where X<Y/2 is a chop function returning the first Y
2

(as a number) bits of X . φ and

φrec have the same free-variable conventions and requirements as in the superstring re-

cursion scheme. Then HW 0
1 is the theory W 0

1 with the addition of the ΣB
0 -superstring-

halfrecursion scheme.
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4.2 Third-Order Parikh’s Theorems

In this section we prove a generalization of Parikh’s theorem for third-order theories.

First, some definitions:

Definition 4.2.1. A formula is 2-bounded if all of its first- and second-order quantifiers

are bounded. (It may contain arbitrary third-order quantifiers).

Let T be a theory extending W 0
1 and L ⊇ L3

A be the vocabulary of T . Then T is a

2-bounded theory if it is axiomatized by 2-bounded formulas.

Definition 4.2.2. Let M = 〈M1,M2,M3〉 be a model of B1-B14, L1, L2, SE. Analogously

to the first-order case, a 2-cut in M is any subset I = 〈I1 ⊆M1, I2 ⊆M2, I3 = M3〉 closed

under x + 1 and ≤ (for numbers and strings). This last point means that if b ∈ I1 and

M |= a ≤ b for a ∈M1 (or M |= |A| ≤ b for A ∈M2), then a ∈ I1 (respectively, A ∈ I2).

For a string A ∈M2, it is equivalent to say that if |A| ∈ I1 then A ∈ I2.

This is denoted I ⊆2
e M .

Lemma 4.2.3. Let M be a third-order structure with vocabulary L and and I ⊆2
e M

be a 2-cut of M closed under all the function symbols in L. Finally, let φ(a,A,A) be a

2-bounded formula with all free variables displayed, and b, B,B ∈ I. Then

I |= φ(b, B,B) iff M |= φ(b, B,B).

Proof Sketch. This lemma is proved by induction on the quantifier complexity of φ. The

base case is quantifier-free formulas, and is clear, as all parameters are in the cut.

For the induction step, consider I |= ∀X ≤ tφ(X). All parameters (including those

in t), not shown, are from I. Then I |= φ(B) for each B ≤ t. But then M |= φ(B) for

each B ≤ t in M as all such elements are already in I, and so M |= ∀X ≤ tφ(X). The

other direction (M |= ∀X ≤ tφ(X) =⇒ I |= ∀X ≤ tφ(X)) is easier as the range of the

universal quantifier is decreased.
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The case of a first-order quantifier is very similar, and existential quantifiers are

handled symmetrically. The case of a third-order quantifier is straightforward, as the

range of the quantifier remains the same in M or I.

Note that the above lemma does not require any assumption about function symbols

being bounded by monotone terms. It also does not restrict the sorts of the range or any

component of the domain of a function symbol.

At this point it is apparent that the open axioms B1-B13, L1 and L2, the predecessor

axiom B14, SE and the comprehension and recursion schemes are satisfied in any L-closed

2-cut of any model of any 2-bounded theory T , as all are 2-bounded. In fact, the same

is true of the induction schemes, even the sharply bounded ones. This is because they

all have 2-bounded versions. The 2-bounded B-ΣB
i -SIND is:

[∀Z ≤ 0∀X ≤ |W |∀Y ≤ |W |(φ(Z) ∧ (φ(X) ∧ S(X, Y ) ⊃ φ(Y )))] ⊃ φ(W )

and the 2-bounded B-ΣB
i -IND is:

[φ(0) ∧ ∀x ≤ w(φ(x) ⊃ φ(x+ 1))] ⊃ φ(w).

These bounded induction schemes logically imply the unbounded versions. Conversely,

the unbounded schemes prove the bounded ones: for example, ΣB
i -SIND on the formula

|X| ≤ |W | ⊃ φ(X) gives

[∀X, Y, Z((|Z| = 0 ⊃ (|Z| ≤ |W | ⊃ φ(Z))) ∧ ((|X| ≤ |W | ⊃ φ(X)) ∧ S(X, Y ) ⊃

(|Y | ≤ |W | ⊃ φ(Y ))))] ⊃ ∀Z(|Z| ≤ |W | ⊃ φ(Z)).

By strengthening the hypothesis,

[∀Z ≤ 0∀X, Y (φ(Z) ∧ ((|X| ≤ |W | ⊃ φ(X)) ∧ S(X, Y ) ⊃

(|Y | ≤ |W | ⊃ φ(Y ))))] ⊃ ∀Z(|Z| ≤ |W | ⊃ φ(Z))
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and again by the fact that if S(X, Y ) then |X| ≤ |Y |,

[∀Z ≤ 0∀X ≤ |W |∀Y ≤ |W |(φ(Z)∧(φ(X)∧S(X, Y ) ⊃ φ(Y )))] ⊃∀Z(|Z| ≤ |W | ⊃ φ(Z)).

Finally,

[∀Z ≤ 0∀X ≤ |W |∀Y ≤ |W |(φ(Z) ∧ (φ(X) ∧ S(X, Y ) ⊃ φ(Y )))] ⊃ φ(W ),

which is B-φ-SIND.

Thus we have proven that all the theories described above in section 4 are in fact

2-bounded.

A corollary of the previous lemma:

Corollary 4.2.4. Let T be any 2-bounded extension of W 0
1 and let M be a model of

T . Let I ⊆2
e M be a 2-cut of M closed under all the function symbols in L. Then the

(2-bounded) axioms of T are satisfied by I, and consequently, I |= T .

We require one additional definition before stating Parikh’s theorem for first- and

second-order existential quantifiers:

Definition 4.2.5. Let T be a three-sorted theory with vocabulary L ⊇ L3
A containing the

open axioms of W 0
1 . We say that T has monotone 2-bounding if the following hold:

1. For every number-valued function symbol f ∈ L, there is a number term tf of L

such that

T ` ã ≤ b ⊃ f(ã) ≤ tf (b),

where ã is a list of variables of any order and b is a list of number variables, and

ã ≤ b abbreviates a conjunction of subformulas of the form ai ≤ bi or |Ai| ≤ bi, as

appropriate, for each ãi not a third-order variable.

2. For every string-valued function symbol F ∈ L, there is a term tF of L such that

T ` ã ≤ b ⊃ |F (ã)| ≤ tF (b).
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Theorem 4.2.6 (Third-Order Parikh’s Theorem). Let φ(x̃) be a 2-bounded formula,

all free variables displayed, and T a 2-bounded extension of W 0
1 with vocabulary L and

monotone 2-bounding.

Further, assume that T ` ∀x̃∃ỹφ(x̃, ỹ), where x̃ are of any sort and ỹ is first- or

second-order. Then there is some term t such that T ` ∀x̃∃ỹ ≤ t(x̃)φ(x̃, ỹ).

Proof. This theorem is proved by a compactness argument, and we refer the reader to

the standard model-theoretic arguments in [36] and [31] which we emulate here. Assume

the hypothesis of the theorem, and furthermore that T 6` ∀x̃∃ỹ ≤ t(x̃)φ(x̃, ỹ) for any

number term t. Then by compactness the theory

T ′ = T + {∀ỹ ≤ t(c̃)¬φ(c̃, ỹ) : t any term of L}

is consistent with c̃ new constants of the appropriate sorts.

Now, let M |= T ′ and define I ⊆2
e M by b ∈ I1 (respectively, B ∈ I2) iff there is

a term t such that M |= b < t(c̃) (M |= |B| < t(c̃)). (And I3 = M3). It is evident

that I is indeed a 2-cut of M , but for I to be L-closed, it is essential at this point for

T to have monotone 2-bounding. Otherwise, there could be some b ∈ I by virtue of

M |= b ≤ t(c̃), yet f(b) 6∈ I for f is not monotone. However, our assumption ensures

that M |= f(b) ≤ tf (t(c̃)). The monotone 2-bounding assumption implies that applying

function symbols to elements in I (which are bounded by terms in c̃) produces elements

which are also bounded, and so already in I.

I is then a model for T by the corollary, and yet I |= ∃x̃∀ỹ¬φ(x̃, ỹ), a contradiction.

4.3 Generalized Definability

In this section we present some important definitions concerning definability of functions

in third-order theories. These definitions generalize the standard kind of definability in

order to address third-order computation.
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Definition 4.3.1. Let T be a theory with vocabulary L ⊇ L3
A and Φ a set of L-formulas.

Then a function f̃ ∈ E1 ∪ E2 is Φ-definable in T if there is some φ ∈ Φ such that:

1. T ` ∀x,X,X∃!ỹφ(x,X,X , ỹ)

2. φ(x,X,X , f̃(x,X,X )) is true in the standard model for all values of the parameters.

The defining axiom for f̃ is then

f̃(x,X,X ) = ỹ ↔ φ(x,X,X , ỹ)

Now, for superstring-valued functions we must use a slightly weaker kind of defin-

ability. This is because there is no way to bound a superstring, and thus no (bounded)

way to assert the equality of two superstrings. Furthermore, our comprehension axioms

assert the existence of certain superstrings but specify only an initial segment of their

bits. Thus the following definitions:

Definition 4.3.2. For superstring variables X and Y and term t, let X =t Y abbreviate

the ΣB
0 -formula ∀Z ≤ t(X (Z)↔ Y(Z)).

Definition 4.3.3. Let T , L and Φ be as above. Let t(x,X) be a number term over

L, which in the standard model bounds the lengths of bit-indices in the output of a

function F(x,X,X ) ∈ E3. Then F is length 2t Φ-definable in T if there is some

φ ∈ Φ such that:

1. T ` ∀x,X,X∃Yφ(x,X,X ,Y)

2. T ` ∀x,X,X ,Y ,Y ′[φ(x,X,X ,Y) ∧ φ(x,X,X ,Y ′) −→ Y =t Y ′]

3. T ` ∀x,X,X ,Y ,Y ′[Y =t Y ′ ∧ φ(x,X,X ,Y) −→ φ(x,X,X ,Y ′)]

4. φ(x,X,X ,F(x,X,X )) is true in the standard model for all values of the parame-

ters.
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The defining axiom for F is then

(Y =t F(x,X,X ))↔ φ(x,X,X ,Y)

If F is length 2t Φ-definable in T for some true bound t(x,X), then we say F is Φ-

definable in T .

In sum, a length 2t-definable function in a theory T is provably total, provably unique

up to 2t bits, and the formula defining the graph of the function is provably insensitive

to bits beyond this bound. Furthermore, the true value of the function satisfies the

graph. The defining axiom specifies the bits of the value of the function up to length 2t,

but beyond this point it is undefined (although also not relevant, as far as the graph is

concerned).

Note that for suitable theories, a length 2t-definable function F is also length 2s-

definable for any s that is provably larger than t, either by modifying the defining formula

to check that the extra bits are zeroes, or by composing the function with an extender

function that adds the extra zeroes. This will be discussed further in section 6.

Note further that a superstring-valued function definable in a theory in the sense

of the previous definition can be conservatively added to the theory in the same way

as the more concretely definable functions of the previous definition (although we do

not claim at this point that the theory admits its axiom schemes such as induction or

comprehension in the augmented language). The defining axiom is deliberately vague

about specifying the value of the function, and therefore any (say) string-valued function

G defined using (i.e., as a function of) F must provably depend only on the bits of the

output of F actually fixed by the defining axiom – otherwise the uniqueness clause of

the definition of G will presumably not hold.

It may be desirable in some cases to assert that a definable function with a super-

string argument is insensitive in this way to variations in its superstring argument. The

following definition formalizes this concept:
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Definition 4.3.4. Let f̃(X , y, Y ,Y) ∈ E1 ∪ E2 be a definable function of a theory T (as

above) and t(y, Y ) a term of L, the language of T . Then f̃ is insensitive to X beyond

t if

T ` X =t X ′ −→ f̃(X , y, Y ,Y) = f̃(X ′, y, Y ,Y)

Similarly, a function F(X ) ∈ E3 that is length 2s definable in T is insensitive to X

beyond t if

T ` X =t X ′ −→ F(X ) =s F(X ′)

If f̃(y, Y ,Y1, ...,Yk) has k superstring arguments and is ti(y, Y )-insensitive to Yi for each

I, then we say that f̃ is (t1, ..., tk)-insensitive.

A restricted version of an important standard property of bounded arithmetic holds

for third-order theories:

Lemma 4.3.5. Let T be a theory with vocabulary L ⊇ L3
A and f̃ ∈ E1 ∪ E2 be a ΣB

0 -

definable function in T . Then T+ (over L+ = L ∪ {f̃}), obtained by adding the defining

axioms for f̃ to T , is a conservative extension of T . Furthermore, if A is a ΣB
i - or

ΠB
i -formula over L+, then there is a formula A− of the same class but over L such that

T ` (A↔ A−)

The lemma is proved as for Theorem 2.2 of Buss [3], although much simpler as the

latter theorem applies also to Σb
1-definable functions. Unfortunately, the proof does not

seem to go through in the case of a superstring-valued function from E3: since the defining

axiom does not specify a unique value for the output of the function, the translated

formula incorporating the defining axiom is not obviously equivalent to the original one.

However, is is possible that an additional assumption on the original formula concerning

its sensitivity to the value of the function (i.e., less than the defined length) would suffice.

This could take the form of Lemma 10.9 of [3].



Chapter 4. Third-order Theories 52

An analogue to the full Theorem 2.2 of Buss would be that ΣB
1 -definable functions

could be conservatively added; however, this only seems to be true of an appropriate

form of replacement (see section 4.5) is available, as it is in Buss’s theories.

4.4 Preliminary Facts About the Theories

In this section we enumerate some simple results concerning the various theories described

above. Most of these will be explained further in the relevant parts of future chapters.

Lemma 4.4.1. W 0
1 is a conservative extension of V , the two-sorted theory for the poly-

time hierarchy.

Proof outline. The only axioms stating the existence of third-order elements are the com-

prehension axioms. Any model of V can therefore be expanded to a model of W 0
1 merely

by adding third-order elements to satisfy each comprehension instance (ΣB
0 formula with

parameters from the model under construction). For a general ΣB
0 -3COMP instance with

free variables, we must supply an object satisfying the instance for each set of parameters

from the model assigned to the free variables. ΣB
0 formulas are closed under substitution

of formulas for free third-order variables, so ultimately each comprehension instance un-

winds to a ΣB
0 formula. In the end, adding these third-order elements will not affect the

truth-value of purely second-order formulas.

The ΣB
0 -definable functions of W 0

1 from E1∪E2, of number and string arguments, are

thus the usual polynomial-time hierarchy functions. The ΣB
1 -definable functions of W 0

1

are contained in FPH+∪FPH◦ (the third-order generalization), as the usual witnessing

argument for V can be extended to handle third-order existential quantifiers, which arise

only because of the comprehension axioms and introduction rules, and in either case are

witnessed by FPH+∪FPH◦ functions.

The ΣB
1 -definable functions of W 1

1 are exactly FPSPACE+ [55]. As it turns out,

The ΣB
1 -definable functions of Ŵ 1

1 (i.e., with more restricted induction) are also exactly
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FPSPACE+; see chapter 5. A big question is whether or not this theory proves the

replacement schemes from the next section.

The ΣB
1 -definable functions of TW 0

1 are also only FPH+∪FPH◦. TW 0
1 is a conservative

extension of TV , which is V with the addition of ΣB
∞-SIND, but TV = V . In fact,

Lemma 4.4.2. W 0
1 = TW 0

1

Proof. We use the same “shortening of cuts” technique used to prove Si+1
2 ⊇ T i2 in order

to show that W 0
1 ` ΣB

0 -SIND:

Let φ(X) ∈ ΣB
0 and A a parameter. Define

ψ(x) := ∀X ≤ x∀Y ≤ |A|∀Z ≤ |A|(φ(Y ) ∧ Plus(X, Y, Z) −→ φ(Z)).

(For a suitable function symbol Plus). Now, trivially W 1
0 ` ψ(0). Also,

W 0
1 ` (∀X∀Y (φ(X) ∧ S(X, Y ) −→ φ(Y ))) −→ (ψ(x) −→ ψ(x+ 1))

by considering the two cases of the low-order bit of X (in ψ(x + 1)) and applying the

induction step of ΣB
0 -SIND if necessary. Thus by ΣB

0 -IND, W 0
1 ` ψ(|A|). This and

the remaining hypothesis of ΣB
0 -SIND, ∀X(|X| = 0 −→ φ(X)), imply φ(A). Therefore

W 0
1 ` ΣB

0 -SIND and thus W 0
1 = TW 0

1 .

The ΣB
1 -definable functions of TTW 0

1 are EXP. This is because TTW 0
1 proves ΣB

0 -

superstring-recursion:

∃Xφrec(Y,X ),

where φ ∈ ΣB
0 , and

φrec(S,X ) ≡ ∀Y ≤ |S|(X (Y )↔ φ(Y,X<Y )),

where X<Y is a chop function. See chapter 5 for details.

Finally, concerning HW 0
1 :

Lemma 4.4.3. W 1
1 ` HW 0

1



Chapter 4. Third-order Theories 54

Proof. Recall that ΣB
0 -superstring-halfrecursion is

∃X∀Y ≤ x(X (Y )↔ φ(Y,X<Y/2)).

for φ ∈ ΣB
0 . W 1

1 can prove this directly by induction on x. The induction step, from x to

x+1, involves a single application of ΣB
0 -3COMP to produce a new superstring consisting

of the current one plus a new segment:

∃X ′∀Y ≤ x+ 1(X ′(Y )↔ (|Y | ≤ x ∧ X (Y )) ∨ (|Y | = x+ 1 ∧ φ(Y,X<Y )))

W 1
1 straightforwardly proves that this new superstring satisfies the halfrecursion up to

x+ 1.

Furthermore, the ΣB
1 -definable functions of HW 0

1 are exactly FPSPACE+; definability

and witnessing theorems are found in the following chapters.

4.5 ΣBi -Replacement Schemes in W i
1 and TW i

1

In this section we shall discuss various replacement schemes, also called collection or

choice schemes by some authors, particularly in the context of second-order theories.

These schemes allow third-order existential quantifiers to be moved past lower-order

quantifiers, and are theorems of W i
1 and TW i

1, as we shall show.

Since W 1
1 ⊃ V (=

⋃
V i), W 1

1 can ΣB
0 -define all number- and string-valued functions

of number and string arguments from the polynomial-time hierarchy. We may conserva-

tively add symbols for such functions to W i
1 or TW i

1 and use them freely in all the axiom

schemes. In particular, the string concatenation function X _ Y and pairing functions

such as 〈x, y〉, 〈X, Y 〉 and 〈X, y〉 may be added. For a third-order variable X define

X [x](X) ≡ X (〈x,X〉) and X [X](Y ) ≡ X (〈X, Y 〉), which make X into an array, with rows

indexed by number or strings respectively, each row of which is a third-order object.

Note that this notation is to abbreviate a subformula, and not a superstring-valued func-
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tion symbol; it applies only in the base theory that has no string- or superstring-valued

function symbols. With this in mind, we can state the ΣB
1 replacement schemes for L3

A:

Definition 4.5.1 (gΣB
1 Replacement Schemes). gΣB

i -1REPL is:

∀x ≤ y∃Xφ(x, y,X )↔ ∃X∀x ≤ yφ(x, y,X [x])

and gΣB
i -2REPL is:

∀X ≤ y∃Xφ(X, y,X )↔ ∃X∀X ≤ yφ(X, y,X [X]),

where in each case φ is a (general) ΣB
1 -formula which may have other free variables than

those indicated.

Theorem 4.5.2. The gΣB
i replacement schemes are theorems of W i

1.

Proof. Although the gΣB
i -1REPL scheme has a simpler proof, it can also be proved in

the same way as the gΣB
i -2REPL scheme, so we include only a proof of the latter. This

proof is analogous to and closely parallels Theorem 9.16 of Buss [3].

←: In this direction, even for W 1
1 and φ(X, y,X ) ∈ gΣB

i , it is the case that

W 1
1 ` ∃X∀X ≤ yφ(X, y,X [X]) ⊃ ∀X ≤ y∃Zφ(X, y,Z).

For a given X, ΣB
0 -3COMP is used to obtain a superstring Z behaving like X [X] up to a

relevant bound depending on φ. Then by structural induction on φ we can construct a

proof in W 1
1 that this Z satisfies φ(X, y,Z).

→: First we show that W 1
1 proves this direction of gΣB

1 -2REPL, and we do so by

structural induction on φ. The base case of the induction is when φ is ΣB
0 . Let ψ be

∀X ≤ y∃Xφ(X, y,X ). Let θ(c) be the formula

∀X ≤ (y−̇c)∃X∀Y ≤ cφ(X _ Y, y,X [Y ]).

θ(0) is a simple consequence of ψ, and W 1
1 ` ψ ∧ θ(c) ⊃ θ(c + 1) by use of ΣB

0 -3COMP

to combine two third-order objects (coding the two arrays of third-order objects for all
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strings of length smaller than y starting with X _ 0 and X _ 1 respectively) into one

third-order object coding the array for all strings of length smaller than y starting with X.

Thus W 1
1 ` ψ ⊃ θ(y) by ∀2ΣB

1 -IND, and clearly W 1
1 ` θ(y) ⊃ ∃X∀X ≤ yφ(X, y,X [X]).

Now let k > 0 and assume the present theorem holds for every member of gΣB
1 with

fewer than k third-order quantifiers. Let φ ∈ gΣB
1 have exactly k third-order quantifiers

and assume without loss of generality that φ is in prenex normal form. (Every formula is

provably in W 1
1 equivalent to one in prenex normal form). Then every third-order quanti-

fier in φ is existential, and φ(X, y,X ) is of the formQ1ã1...Qnãn∃Zψ(ã1, ..., ãn,Z, X, y,X )

for some n and ψ with k − 1 existential third-order quantifiers. Each Qi is a bounded

first- or second-order quantifier and the corresponding ãi is a variable of the appropriate

sort. By several applications of the inductive hypothesis we prove

Q1ã1...Qnãn∃Zψ(ã1, ..., ãn,Z, X, y,X ) ⊃ ∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [ã1]...[ãn], X, y,X ).

(4.5.1)

The inductive hypothesis is not needed for those Qi which are existential, nor in that

case need we add [ãi] to the formula on the right of the equivalence, yet it is harmless

and simplifies matters to do so.

Now with ΣB
0 -3COMP we can prove

∃X∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [ã1]...[ãn], X, y,X ) ⊃

∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [1][ã1]...[ãn], X, y,Z [2]) (4.5.2)

and thus piecing together implications 4.5.1 and 4.5.2 we obtain

∀X ≤ y∃Xφ(X, y,X ) ⊃ ∀X ≤ y∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [1][ã1]...[ãn], X, y,Z [2]).

We may now appeal to the inductive hypothesis once more and apply the current theorem

to the right-hand side of the previous implication, which results in

∀X ≤ y∃Xφ(X, y,X ) ⊃ ∃Z∀X ≤ yQ1ã1...Qnãnψ(ã1, ..., ãn,Z [X][1][ã1]...[ãn], X, y,Z [X][2]).
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By applying ΣB
0 -3COMP we can separate in two along the second “co-ordinate” the

object Z, quantified in the right-hand side:

∀X ≤ y∃Xφ(X, y,X ) ⊃ ∃X∃Z∀X ≤ yQ1ã1...Qnãnψ(ã1, ..., ãn,Z [X][ã1]...[ãn], X, y,X [X]).

The formula

∃X∀X ≤ yQ1ã1...Qnãn∃Zψ(ã1, ..., ãn,Z, X, y,X [X])

is a logical consequence of the right-hand side of the previous implication and so we have

proved

∀X ≤ y∃Xφ(X, y,X ) ⊃ ∃X∀X ≤ yφ(X, y,X [X]),

as required.

Now at this point we know that W 1
1 ` gΣB

1 -2REPL. Inductively, if W i−1
1 ` gΣB

i−1-

2REPL, we can show that W i
1 ` gΣB

i -2REPL as follows: Let φ ∈ gΣB
i be in prenex form.

By the inductive hypothesis, the maximal subformula ψ of φ that is gΣB
i−1 is equivalent

to some (strict) ΣB
i−1-formula ψ′. Now as in the base case for W 1

1 , we must perform a

structural induction based on the number of remaining third-order quantifiers in φ. The

base case will apply ∀2ΣB
i -IND to address a single additional third-order quantifier, and

the induction step will merge two third-order quantifiers in order to apply the induction

hypothesis.

The schemes are also provable in TW i
1:

Theorem 4.5.3. The gΣB
i replacement schemes are theorems of TW i

1.

Proof Sketch. The proof is as for the previous theorem, except that where ∀2ΣB
i -IND was

formerly used, we instead construct the X on the right-hand side by an application of

ΣB
i -SIND. Since the length of the induction is now exponentially longer, we have no need

of Buss’s trick with the leading second-order universal quantifier.

The following is an immediate, useful corollary:
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Corollary 4.5.4. Let φ ∈ gΣB
i . Then there exists ψ ∈ (strict)ΣB

i such that W i
1 ` φ↔ ψ

and TW i
1 ` φ↔ ψ.



Chapter 5

Definability in the Theories

In this chapter we prove a number of definability results showing that functions from

certain complexity classes are definable in our theories. These theorems rely heavily on

standard techniques for arithmetization of Turing machine configurations and computa-

tions; expressibility of predicates such as a “next relation”; and standard functions giving

the output of a computation or the initial configuration of a machine.

5.1 Definability in W i
1 and Ŵ 1

1

We know that W 1
1 can ΣB

0 -define all string-valued functions (of string variables) from

the polynomial-time hierarchy. In fact, W 1
1 can ΣB

1 -define all string functions com-

putable in polynomial space, and more generally, W i
1 ΣB

i -defines all functions from

(FPSPACE(Σexp
i−1)�)+, which in the case of i = 1 is simply the third-order generalization

FPSPACE+ of PSPACE.

Theorem 5.1.1. Let i ≥ 1 and f̃ ∈ (FPSPACE(Σexp
i−1)�)+. Then f̃ is ΣB

i -definable in W i
1.

Proof. First, consider a superstring-valued function F(x̃) ∈(FPSPACE(Σexp
i−1)�)+. The

third-order predicate fF(x̃, Y ) ≡ F(x̃)(Y ) is clearly in the same class. Furthermore, if

fF is ΣB
i -definable in W i

1, then the superstring-valued function F ′ whose output codes

59
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the outputs of fF for values of Y up to a bound t is also (length 2t-) ΣB
i -definable, by

essentially the same argument as the replacement schemes: By induction on y up to t, W i
1

proves that for each string Z ≤ y there is a (boundedly) unique superstring X coding the

values of fF(x̃, Y ) for the Y having Z as prefix. At the end of the induction, therefore,

the superstring X codes all the desired values of fF . If t is a true bound for F , then this

means that F is ΣB
i -definable in W i

1.

An even simpler argument shows that if string-valued functions are definable, then so

are number-valued functions. We therefore focus on the case of string-valued functions.

Let F ∈(FPSPACE(Σexp
i−1)�)+ ∩ E2, and M be a third-order-oracle PSPACE Turing

machine such that MΣBi−1 computes F and s(x̃) be a (number) term bounding the space

used by M (including M ’s output tape) on input x̃ (and thus also bounding the logarithm

of the running time). Let φM(W ,X , Y, Z, l) state that W is a computation of MΣBi−1 of

length 2l steps, with initial configuration coded by Y and final configuration coded by

Z, where X are the (read-only) superstring inputs to M . W is stored as an array of

configurations, indexed by configuration number expressed as a string, and for the sake

of simplicity φM enforces that all configurations are the same size. φM(W ,X , Y, Z, l)

states that for each configuration number smaller than 2l (bounded second order universal

quantifier) the corresponding configuration is valid and results from the previous one by

one step of M (gΣB
i subformula incorporating a ΣB

i−1 subformula for the oracle). Thus

φM is gΣB
i . For concreteness in what follows, we shall reason in the sequent formulation

LK3 −W i
1 of W i

1.

Even W 1
1 can clearly then prove

∀X ≤ |S|∃W∃Y ≤ |X|φM(W ,X , X, Y, 0);

Either the ΣB
i−1 oracle (if queried) accepts or not, and in either case computing the next

configuration is straightforward.
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Now, W i
1 proves

φM(Y ,X , A,B, l), φM(Z,X , B, C, l) −→ ∃W∃Y ≤ |A|φM(W ,XA, Y, l + 1),

since ΣB
0 -3COMP can be used to produce the third-order object W which consists of Y

and Z spliced together, and even W 1
1 can subsequently prove that such X satisfies φM as

shown. Now being careful of the order in which we do so, we may introduce quantifiers

in this sequent as follows, using the fact that all configurations in a computation are the

same size: First

φM(Y ,X , A,B, l),∃W∃Y ≤ |B|φM(W ,X , B, Y, l) −→

∃W∃Y ≤ |A|φM(W ,X , A, Y, l + 1).

Adding a hypothesis to the succedent we obtain

φM(Y ,X , A,B, l),∃W∃Y ≤ |B|φM(W ,X , B, Y, l) −→

|A| ≤ |S| ⊃ ∃W∃Y ≤ |A|φM(W ,X , A, Y, l + 1),

then by reasoning about sizes of the configurations we may add a similar hypothesis to

the second formula in the antecedent:

φM(Y ,X , A,B, l), |B| ≤ |S| ⊃ ∃W∃Y ≤ |B|φM(W ,X , B, Y, l) −→

|A| ≤ |S| ⊃ ∃W∃Y ≤ |A|φM(W ,X , A, Y, l + 1),

and then introduce a quantifier like so:

φM(Y ,X , A,B, l),∀X ≤ |S|∃W∃Y ≤ |X|φM(W ,X , X, Y, l) −→

|A| ≤ |S| ⊃ ∃W∃Y ≤ |A|φM(W ,X , A, Y, l + 1).

Then similar reasoning with the first formula in the antecedent yields

∀X ≤ |S|∃W∃Y ≤ |X|φM(W ,X , X, Y, l),∀X ≤ |S|∃W∃Y ≤ |X|φM(W ,X , X, Y, l)

−→ |A| ≤ |S| ⊃ ∃W∃Y ≤ |A|φM(W ,X , A, Y, l + 1).
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Contraction and the introduction of a final quantifier in the succedent yields a sequent

suitable for applying induction to:

∀X ≤ |S|∃W∃Y ≤ |X|φM(W ,X , X, Y, l) −→

∀X ≤ |S|∃W∃Y ≤ |X|φM(W ,X , X, Y, l + 1),

and gΣB
i -IND produces

−→ ∀X ≤ |S|∃W∃Y ≤ |X|φM(W ,X , X, Y, |X|).

Now it is easy to see that W 1
1 proves

∃Y ∃W∃Z ≤ s(|x̃|)(φM(W ,X , InitM(x̃), Z, s(x̃)) ∧OutM(Z, Y ))

for a suitable function symbol InitM and formula OutM . Thus the existence part of the

definability is obtained. The fact that the output of function F satisfies this formula is

clear given the definition of φM from the Turing machine M computing f .

Finally, uniqueness is proved as follows: Firstly, define ψ(k) to be the formula

∀A ≤ s(x̃)∀B ≤ s(x̃)∀C ≤ s(x̃)∀Z ≤ s(x̃)

(φM(sub(W , Z, k),X , A,B, k) ∧ φM(sub(Y , Z, k),X , A, C, k) ⊃ B = C),

where sub(W , Z, l) is a suitably defined functional which gives the subcomputation ofW

starting with configuration number encoded by Z and continuing for 2l steps. In other

words, sub(W , Z, l)(X) abbreviates a subformula that evaluates to the Xth bit of this

subcomputation.

Now, ψ(0) is provable in W 1
1 since the next configuration of an oracle Turing machine

is computable in linear time (with the oracle), and thus is definable even in V 1. ψ(l) ⊃

ψ(l+ 1) is immediate, and so by (ΣB
i -)induction, ψ(s(x̃)), from which uniqueness follows.
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Now we show that the case of i = 1 of the above theorem is true for Ŵ 1
1 . It is

unfortunately not clear how this result could be generalized as in the previous theorem;

it would seem that a stronger form of comprehension could be needed to construct the

initial array of all 1-step computations. This theorem is not directly analogous to any

existing theorem (for example, for U1
2 ) and so is somewhat interesting.

Theorem 5.1.2. Let f̃ ∈ FPSPACE+. Then f̃ is strict-ΣB
1 -definable in Ŵ 1

1 .

Proof. As in the previous theorem, we may restrict our attention to the case of a string-

valued function F , but we must use a slightly different argument. As before, for a

superstring-valued function F we can define the associated predicate fF(Y ). However,

for the same reason that Ŵ 1
1 does not obviously prove the replacement schemes, it does

not obviously define F ′, outputting a superstring encoding all the values of fF(Y ) for Y

up to a true bound t on F . The solution to this problem is as follows: the argument below

concerning string-valued functions shows in particular that Ŵ 1
1 proves the existence of a

computation of a given FPSPACE+ machine. Consider a machine M that computes the

values of fF(Y ) for each Y up to the bound t, in such a way that each subcomputation

is of equal length, and thus that the values of fF(Y ) are in easily-computed locations.

Now given this computation and using ΣB
0 -3COMP, Ŵ 1

1 can prove the existence and

(bounded) uniqueness of a superstring consisting of exactly the crucial bits fF(Y ) of this

computation, and this superstring is of course the value of F .

Now, let F ∈FPSPACE+∩E2 and let φM be as in the previous theorem for a machine

M computing F . Let

φ′M(W ,X , i, S) ≡ ∀X ≤ |S|∃Y ≤ |S|φM(W [X],X , X, Y, i).

This ΣB
0 formula expresses that W simultaneously encodes computations of M of length

2i from every starting configuration of length |S| to some ending configuration.

We now reason in LK3 − Ŵ 1
1 and seek to proceed by induction on i. A W provably

satisfying φ′M(W ,X , 0, S) is obtained by comprehension on a ΣB
0 formula (as computing



Chapter 5. Definability in the Theories 64

a requested bit ofW is even in polynomial time). That it satisfies φ′M(W ,X , 0, S) follows

easily so we have

∃Wφ′M(W ,X , 0, S).

Now,

∃Wφ′M(W ,X , i, S) −→ ∃Yφ′(Y ,X , i+ 1, S)

is proved by one application of ΣB
0 -3COMP: given a W satisfying φ′M(W ,X , i, S), a Y

satisfying φM(Y ,X , i+1, S) is defined by a ΣB
0 (W)-formula that for any requested initial

configuration splices together the two relevant computations from the given W .

The rest of the proof is analogous to that of the previous theorem.

5.2 Definability in TW i
1 and TTW 0

1

In this section we prove definability results for TW i
1 and TTW 0

1 .

Theorem 5.2.1. Let i ≥ 1 and f̃ ∈ (FEXP(Σexp
i−1)�)+. Then f̃ is ΣB

i -definable in TW i
1.

Proof. As in Theorem 5.1.1 we need only consider string-valued F (x̃). Let M be a third-

order oracle EXP Turing machine computing F with access to a ΣB
i−1 oracle and t(x̃)

be a number term bounding the logarithm of the running time of M on input x̃. Let

φM(W , x̃, L) state that W is a computation of MΣBi−1(x̃) of length L steps (coding a

number). Again,W is an array of configurations (although now they must be themselves

coded as superstrings as they may be of exponential size) and as before, φM ∈ gΣB
i . Since

configurations are coded by superstrings, φM actually checks only that an initial segment

of each row of W codes the relevant configuration.

As before,

W 1
1 ` ∃WφM(W , x̃,One),

where One is a constant for the string coding 1.

∃WφM(W , x̃, L) −→ ∃WφM(W , x̃, L+ 1)
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(for L + 1 a string successor function) is provable in TW i
1 by applying ΣB

0 -3COMP for

the two cases of whether or not the ΣB
i−1 oracle (if relevant) accepts. Thus by gΣB

i -SIND,

TW i
1 ` ∃WφM(W , x̃, 2t(x̃)).

Therefore

TW i
1 ` ∃Y ∃W(φM(W , x̃, 2t(x̃)) ∧OutM(W , x̃, Y ))

for a suitable formula OutM .

Uniqueness is proved analogously to in Theorem 5.1.1, except that gΣB
i -SIND is used

to prove bounded equality of the configurations in any two computations W and W ′,

and from this follows uniqueness of the string output.

Now we show that all functions from FEXP+ are ΣB
1 -definable in TTW 0

1 . This is

because TTW 0
1 proves ΣB

0 -superstring-recursion:

∃Xφrec(S,X ),

where φ ∈ ΣB
0 , and

φrec(S,X ) ≡ ∀Y ≤ |S|(L2(Y, S) ⊃ (X (Y )↔ φ(Y,X<Y ))),

where X<Y is a chop function.

Lemma 5.2.2. TTW 0
1 proves the ΣB

0 -superstring-recursion scheme

Proof. Even TW 0
1 can prove (by induction on strings Y up to length x) that φrec(S,X )∧

φrec(S,Z) implies the bits of X and Z are equal up to bit number S. Now, following the

analogous exposition from [27] for TV 0, define

φlessrec(S,X ) ≡ φrec(S,X ) ∨ [∃Y ≤ |S|(L2(Y, S) ∧ φrec(Y,X ) ∧ ¬X (Y ) ∧ φ(Y,X<Y ))],

stating that either φrec(S,X ), or that some prefix of X is correct up to position Y , where

φ(Y,X<Y ), yet ¬X (Y ). In other words, if Rev(S,X ) is a function symbol reversing the
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order of the first S bits of X (putting the most significant bits first), then Rev(S,X ) is

“less than” the unique string Y satisfying φlessrec(S,Rev(S,Y)).

Reasoning in TTW 0
1 , φlessrec(S,Z) holds, where Z is a null object, by induction on

S. Now define W by ∀X ≤ |S|[W(X) ↔ 1]. W is an “all-ones” superstring, and

if φlessrec(S,W), then φrec(S,W), which would complete the proof. Therefore assume

¬φlessrec(S,W). By ΣB
0 -SSIND for φlessrec(S,Rev(S,X )), (since Rev fixes both Z and W

above),

∃X∃Yφlessrec(S,Rev(S,X )) ∧ S3(X ,Y , S) ∧ ¬φlessrec(S,Rev(S,Y)).

Now TW 0
1 proves by induction on S that φrec(S,Rev(S,X )).

Now we show how to define EXP-time computations using ΣB
0 -superstring-recursion:

Theorem 5.2.3. Let f̃ ∈ FEXP+. Then f̃ is strict-ΣB
1 -definable in TTW 0

1 .

Proof Sketch. As in Theorem 5.1.2, the case of a superstring-valued function is a simple

modification of the argument below: first define a function outputting the computation of

a machine computing each bit of the superstring output one at a time, and then compose

with a function condensing out the bits of the superstring output.

Thus let F be string-valued and as described and M an exponential-time Turing

machine computing F , with s(x̃) a number term bounding the output size of M on input

x̃ and t(x̃) bounding the logarithm of the run-time. We describe a formula φM(x̃, Y,X )

suitable for applying the above recursion scheme to. The arguments x̃ denotes the inputs

to M , and Y and X are as in the recursion scheme. φM(x̃, Y,X ) ≡ φ1
M(x̃, Y,X ) ∨

φ2
M(x̃, Y,X ).

The disjunct φ1
M evaluates to the appropriate bit of the initial configuration of M on

input x̃ if Y is small enough.

The other disjunct φ2
M is as follows: For every two positions W1,W2 smaller than Y , if

L2(W1,W2) and W1 and W2 point to the start of configurations in X , and there is no W3
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between W1 and W2 or between W2 and Y also pointing to the start of a configuration,

then M would correctly compute bit Y of the latter configuration to be 1. Bit Y is a

function of: possibly one bit of the read-only superstring inputs among x̃ (in case of a read

operation); possibly polynomially many bits of X following W2 representing the query

tape for the superstring inputs; and finally a constant number of bits of X preceding Y

and preceding W1 +2 (Y −2W2), where ‘+2’ and ‘−2’ are intended to represent arithmetic

on strings.

φM as outlined is then clearly ΣB
0 (in fact, even ΠB

2 ).

Now, applying the ΣB
0 -superstring-recursion, TTW 0

1 ` ∃Xφrec
M (X, Y,X ). For a suit-

able formula OutM , TTW 0
1 ` ∀X∃Y (∃X (φrec

M (X, (2t(X))2,X ) ∧ OutM(X , (2t(X))2, Y ))).

Point 2 of the definability is clear, and uniqueness follows directly from the (bounded)

uniqueness of superstrings satisfying φrec
M .

5.3 Definability in HW 0
1

In this final section we show that HW 0
1 ΣB

1 -defines the PSPACE functions:

Theorem 5.3.1. Let f̃ ∈ FPSPACE+. Then f̃ is strict-ΣB
1 -definable in HW 0

1 .

Proof. We begin by addressing the case for a string-valued function F .

Therefore let F be as described and M a polynomial-space Turing machine computing

F , with s(x̃) a number term bounding the space used by M on input x̃. The idea now

is to use a superstring X to encode a sequence of adjacency matrices. The ith matrix

will indicate, for every pair of configurations of M(x̃), if one yields the other in time

at most 2i. Furthermore, these matrices will alternate with unused space, so that the

halfrecursion scheme can be applied. Each matrix will be of size exponential in x̃, and

the constructed superstring containing will be doubled in length each time a new matrix

is added, in total a polynomial number of times.
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To that end we now describe a formula φM(x̃, Y,X ) suitable for application of the

halfrecursion scheme. x̃ is the input to M and Y and X are as in the recursion scheme,

and as before, φM(x̃, Y,X ) ≡ φ1
M(x̃, Y,X ) ∨ φ2

M(x̃, Y,X ).

The disjunct φ1
M is |Y | = 2s(x̃)∧∃Z,W (Y = Z _ W ∧ (NextM(x̃, Z,W )∧Z = W )).

This subformula ignores X and directly computes bit Y , if Y is the right length to indicate

a pair of configurations.

The other disjunct φ2
M is as follows:

∃A,B,C ≤ |Y |(2|A| = 2|B| = 2|C| = |Y | − 2 ∧ Y = 02 _ A _ C

∧ X (A _ B) ∧ X (B _ C)).

This subformula verifies that Y is 00 followed by some pair of equal-length strings, and

furthermore that 2 steps in the previous adjacency matrix in X yield the transition coded

by Y .

So φM is ΣB
0 and HW 0

1 ` ∃Xφhrc
m (x̃, Y,X ). Let OutM be a suitable formula ex-

tracting the output from the least accepting configuration reachable from the start-

ing configuration of F (x̃), as coded in X . Then OutM is clearly ΣB
0 and HW 0

1 `

∀x̃∃Y (∃X (φhrc
M (x̃, 26s(x̃),X )∧OutM(X , x̃, Y ))), satisfying the existence part of the defin-

ability. Point 2 is clear and uniqueness is as in the previous theorem, using the provable

(bounded) uniqueness of superstrings satisfying the recursion schemes.

Now, the case of a number-valued function follows directly. For a superstring-valued

function F , the above argument shows that HW 0
1 proves the existence of the adjacency

matrix of a machine M computing the predicate fF(x̃, Y ) ≡ F(x̃)(Y ). Since initial

configurations of this machine for varying values of Y are ΣB
0 -definable in W 0

1 , a single

application of ΣB
0 -3COMP can construct, from the adjacency matrix of the machine, a

superstring coding the values of fF for all Y up to the desired bound; this superstring is

of course the value F(x̃). (Bounded) uniqueness is again straightforward.



Chapter 6

A Universal Conservative Extension

of HW 0
1

In this chapter we define and develop HW 0
1 , a universal theory intended to be a conser-

vative extension of HW 0
1 . We loosely follow similar constructions of universal theories

for P , NL and so on from [27] and [44, 45]; however, our situation is considerably more

complex as we have an additional sort (superstrings), and furthermore objects of that

sort are unbounded.

We start with several additional function symbols beyond those provided in L3
A: recall

the function fSE, with open defining axioms SE’ and SE”, used as open replacements

for the string extensionality axiom SE. B14’ and B14” are open replacements for B14

defining the function pd. The superstring stretch function ς(a, b,X ) is intended to return

a superstring with the initial 2a+b bits fixed such that the first 2a of them agree with the

input X , and the remainder are zeroes. The open defining axiom is:

|Y | ≤ a+ b ⊃ (ς(a, b,X )(Y )↔ |Y | ≤ a ∧ X (Y )).

All these functions are ΣB
0 -definable in W 0

1 (length sa+b-definable in the case of ς).

The open theory HW 0
1 we define below defines a succession of function symbols LPS

inductively from previous ones, and specifies a set of defining axioms for each one. This

69
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requires more care than in analogous constructions because of the unbounded nature of

our third-order objects, and the limited sense in which superstring-valued functions can

be definable. For this reason, we shall associate with each function and predicate symbol

a polynomial (i.e., term in L3
A) which will be an upper-bound on its sensitivity to its

third-order arguments, as a function of its other arguments. Each function symbol will

be provably in HW 0
1 insensitive to its third-order arguments beyond this bound, in the

sense of definition 4.3.4. To function symbols we will additionally associate a polynomial

(L3
A-term) bounding the output as a function of the number and string arguments. Each

number- or string-valued function symbol will be definable in HW 0
1 and provably bounded

by its associated polynomial t, while superstring-valued function symbols will be length-

2t-definable. These terms will be explicitly written into the names of all function symbols

defined below.

The following definition shows how to extend these sensitivity and bounding poly-

nomials to certain terms and open formulas. It also identifies a class of open formulas

called permissible formulas that are constructed with sufficient interleavings of the

superstring stretch function to ensure their value is well defined, and hence suitable for

use in defining new function symbols:

Definition 6.0.2. a) The bounding polynomials for 0, 1, x + y, x ∗ y and |X| are re-

spectively 0, 1, x + y, x ∗ y and |X|. The sensitivity polynomials for these function

symbols are all 0.

b) The bounding polynomials of pd(x) and fSE(X, Y ) are x and |X| respectively, and

sensitivity polynomials for both are 0.

c) The superstring stretch function ς(a, b,X ) has sensitivity a and bound a+ b.

d) If f̃ is a function symbol (of any type) with sensitivity s and bound t, R1, ...,Rk are su-

perstring terms with sensitivity u1, ..., uk and bound v1, ..., vk, and finally h̃1, ..., h̃j are

number or string terms with sensitivity p1, ..., pj and bounds q1, ..., qj, then (assuming
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it is syntactically correct)

f̃(ς(v1, s(q1, ..., qj),R1), ..., ς(vk, s(q1, ..., qj),Rk), h̃1, ..., h̃k)

has sensitivity u1 + ...+ uk + p1 + ...+ pj + s(q1, ..., qk) and bound t(q1, ..., qk).

e) x ∈ Y , X ∈ Y, x ≤ y, x = y and X = Y are permissible formulas with sensitivity

polynomials 0, |X|, 0, 0 and 0, respectively.

f) If R is a term of sensitivity s and bound t, and H is a string term of sensitivity u

and bound v, then X ∈ ς(t, |X|,R)) and H ∈ ς(t, v,R) are permissible formulas with

sensitivities s and s+ u respectively.

g) Any other application of a predicate symbols to terms of the appropriate type results

in a permissible formula whose sensitivity is the sum of the sensitivities of the given

terms.

h) If φ and θ are permissible formulas of sensitivity s and t, then φ ∧ θ, φ ∨ θ and ¬φ

are permissible with sensitivity s+ t, s+ t and s, respectively.

Definition 6.0.3 (LPS). LPS is the smallest class satisfying

a) LPS includes L3
A ∪ {pd,<2, fSE, ς}.

b) For each permissible open formula α(z, x,X,X ) of sensitivity s(z) over LPS and num-

ber term t over L3
A, there is a string function Fα,t,s(t) of sensitivity s(t) and bound t

with defining axiom

Fα,t,s(t)(x,X,X )(z)↔ z < t ∧ α(z, x,X,X ) (6.0.1)

intended to simulate 2-COMP.

c) For each permissible open formula α(z, x,X,X ) of sensitivity s(z) over LPS and num-

ber term t over L3
A (free variables among those of α), there is a number function gα,t,s(t)
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of sensitivity s(t) and bound t with defining axioms

gα,t,s(t)(. . .) ≤ t(. . .) (6.0.2)

gα,t,s(t)(. . .) < t(. . .) ⊃ α(gα,t,s(t)(. . .), . . .) (6.0.3)

z < gα,t,s(t)(. . .) ⊃ ¬α(z, . . .) (6.0.4)

intended to allow elimination of number quantifiers. It follows from these defining

axioms that

∃z < tα(z, . . .)↔ gα,t,s(t)(. . .) < t.

A suitable witness for these axioms is gα,t,s(t)(. . .) = min z < tα(z, . . .).

d) For each permissible open formula α(Z, . . .) of sensitivity s(|Z|) over LPS and number

term t over L3
A(free variables among those of α), there is a superstring function Fα,t,s(t)

of sensitivity s(t) and bound t with defining axiom

|Z| ≤ t ⊃ [Fα,t,s(t)(. . .)(Z)↔ α(Z, . . .)] (6.0.5)

intended to simulate 3-COMP.

e) For each permissible open formula α(Z, x,X,X ) of sensitivity s(|Z|) over LPS and

number term t over L3
A (free variables among those of α, there is a string function

Gα,t,s(t) of sensitivity s(t) and bound t with defining axioms

|Gα,t,s(t)(. . .)| ≤ t(. . .) (6.0.6)

|Gα,t,s(t)(. . .)| < t(. . .) ⊃ α(Gα,t,s(t)(. . .), . . .) (6.0.7)

Z <2 Gα,t,s(t)(. . .) ⊃ ¬α(Z, . . .) (6.0.8)

intended to allow elimination of string quantifiers. It follows that

∃Z < tα(Z, . . .)↔ |Gα,t,s(t)(. . .)| < t,

and a suitable witness is Gα,t,s(t)(. . .) = minZ < tα(Z, . . .)
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f) For each three functions G(. . .),H(x,Z, . . .) and l(x, . . .) of LPS with sensitivities

sG, sH and sl and bounds tG, tH and tl there is a function FG,H,l of sensitivity sG+sH+sl

and bound tl with defining axioms

|Y | ≤ l(0, . . .) ⊃ [FG,H,l(0, . . .)(Y )↔ ς(tG, tl,G(. . .))(Y )] (6.0.9)

|Y | ≤ l(x+ 1, . . .) ⊃ [FG,H,l(x+ 1, . . .)(Y )↔ ς(tH, tl,H(x,FG,H,l(x, . . .), . . .))(Y )]

(6.0.10)

intended to define FG,H,l by limited recursion from G and H with limit l.

Definition 6.0.4. HW 0
1 is the universal theory over LPS consisting of the universal

closures of B1-B13, B14’ and B14” (open replacements for B14 defining pd), L1, L2, SE’

and SE” (the defining axioms of fSE), the defining axiom of ς, and finally all defining

axioms 6.0.2–6.0.10 of LPS.

After the lemma, we show that HW 0
1 extends HW 0

1 .

Lemma 6.0.5. For every ΣB
0 formula φ there is an open formula α of LPS such that

HW 0
1 ` φ↔ α.

Proof outline. This follows by structural induction on φ, using cases c and e of the defi-

nition of LPS. The permissibility of the open formulas constructed is not a factor, as no

superstring-valued functions are constructed.

Theorem 6.0.6. HW 0
1 ` HW 0

1

Proof. B14 follows from B14’ and B14”. That ΣB
0 -{2,3}COMP are provable follows from

the previous lemma and cases b and d of the definition of LPS.

Finally, for any given φ ∈ ΣB
0 , LPS contains a function witnessing the φ-ss-hrc scheme:

this function is defined by limited recursion from a function that outputs X satisfying

∀Y ≤ z + 1(X (Y )↔ φ(Y,X Y/2))
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given X ′ satisfying

∀Y ≤ z(X ′(Y )↔ φ(Y,X ′Y/2)).

The correctness of this function is proved by open(LPS)-IND, which is derived in the

standard way (see [14]) in HW 0
1 from the comprehension (the fact that nonempty sets

have a largest element implies a minimization scheme that then implies induction).

To show that HW 0
1 is conservative over HW 0

1 , we inductively show that every function

of LPS is ΣB
1 -definable in HW 0

1 . In fact, this seems not to be a strong enough induction

hypothesis, so we in fact show something stronger: that each function symbol of LPS is

ΣB
0 -HR-definable, a concept that we now define:

Definition 6.0.7. Let T be a theory over L ⊇ L3
A and Φ a set of L-formulas. Then a

function f̃(x,X,X ) ∈ E1 ∪ E2 is Φ-HR-definable in T if there are φ1(Y,Z, x,X,X )

and φ2(ỹ,Z, x,X,X ) from Φ and term s(x,X) over L (all free variables displayed) such

that

1. T ` ∀x,X,X∃!ỹ∃Z(φhrc1 (s(...),Z, x,X,X ) ∧ φ2(ỹ,Z<s(...), x,X,X ))

2. f̃(x,X,X ) satisfies the defining formula in the standard model for all values of the

parameters.

Similarly, F(x,X,X ) ∈ E3 is length 2t(x,X) Φ-HR-definable in T if there are φ1, φ2 ∈

Φ and s over L (as above) such that

1. T ` ∀x,X,X∃Y∃Z

(φhrc1 (s(...),Z, x,X,X ) ∧ ∀Y ≤ t(x,X)(Y(Y )↔ φ2(Y,Z<s(...), x,X,X )))

2. F(x,X,X ) satisfies the defining formula in the standard model for all values of the

parameters.

If F is length 2t Φ-HR-definable in T for some true bound t, then we say F is Φ-HR-

definable in T .
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Some explanation of the previous definition is in order. A function f̃ that is Φ-

HR-definable in a theory T is defined syntactically by a Φ-halfrecursion (computing a

superstring) composed with a Φ-definition. In the case that Φ = ΣB
0 and T = HW 0

1 , this

corresponds to defining a superstring with a halfrecursion operation from a PH predicate,

and composing with a PH function to produce the final value. These two operations

composed in this way can produce every function in FPSPACE+, as the halfrecursion

operation can produce the computation of a PSPACE Turing Machine (or an array of

computations if a superstring-valued function is to be computed), and then a PH function

can extract the output of the machine (or collect the bits of the superstring value of the

function from the array of computations).

Now the conservativity of HW 0
1 over HW 0

1 follows from the following lemma:

Lemma 6.0.8. The functions of LPS are all ΣB
0 -HR-definable in HW 0

1 . Furthermore,

they are all provably insensitive to their superstring arguments past the claimed sensitivity

bounds.

Proof. This is proved by induction on the definition of the functions, considered in some

appropriate enumeration. At each step, the ΣB
0 -HR-definitions of all relevant function

symbols are combined into one ΣB
0 -HR-definition of the new function symbol.

Consider for example a function symbol F defined from a permissible formula α and

L3
A-term t using case d) of the definition of LPS. By the induction hypothesis, each

function symbol in α is ΣB
0 -HR-definable in HW 0

1 . Now all the formulas φ1 and φ2 from

the ΣB
1 -HR-definitions of these functions symbols can be combined into one ΣB

0 formula

φ, such that φhrc asserts the existence of one large superstring computing the value of F .

This large superstring contains subcomputations for each occurrence of a function symbol

in α, arranged in some suitable order of evaluation; each such subcomputation is followed

by another phase extracting the output of the corresponding function symbol occurrence

from the computation. Bounds on the lengths of these computations and outputs are all

known in advance, so the φ1 and φ2 formulas can be amended to reference their respective
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parts of this big superstring. Finally, a ΣB
1 -formula extracts the result from the end of

this large computation. Since α is permissible, at every step the computation is provably

well defined (i.e., provably depends only on bits of superstring outputs actually fixed by

defining axioms of the appropriate function symbols). Thus by induction on the structure

of α, F is uniquely defined to the given bound.

Case b) is similar. Cases c) and e) use the function symbols from cases b) and d)

respectively to construct a table of values of α on all inputs up to the given bound and

then extract the minimum value satisfying α. The defining axioms are then proved in

HW 0
1 directly from the definition of this table.

Finally, a function symbol F defined using case f) is computed by limited recursion.

Again, one large superstring records, one after the other, the computations of each step

of this recursion (and there are polynomially many). The ΣB
0 -HR-definition of F asserts

that this superstring exists and is defined appropriately, and the value of F is extracted

by a ΣB
0 -bit-definition.



Chapter 7

Witnessing Theorems

7.1 Sequent Calculus Formulations

In this chapter we prove some Buss-style witnessing theorems.

We begin by introducing some equivalent sequent formulations of several theories.

LK3 is like the system LK, but with the addition of the following quantifier introduction

rules:

∀ : left
φ(Ỹ ),Γ −→ ∆

∀X̃φ(X̃),Γ −→ ∆
and ∃ : right

Γ −→ ∆, φ(Ỹ )

Γ −→ ∆,∃X̃φ(X̃)

and

∃ : left
φ(Ỹ ),Γ −→ ∆

∃X̃φ(X̃),Γ −→ ∆
and ∀ : right

Γ −→ ∆, φ(Ỹ )

Γ −→ ∆,∀X̃φ(X̃)

where X̃ and Ỹ are either both second- or both third-order variables, and in the latter

two rules Ỹ may not occur in the conclusion of the inference. Formally, LK3 also adopts

the usual conventions concerning free and bound variables, as in [8].

The system LK3 −W i
1 additionally includes the ∀2ΣB

i -IND rule:

Γ, φ(b) −→ φ(b+ 1),∆

Γ, φ(0) −→ φ(t),∆
,

where b appears only as indicated and φ ∈ ∀2ΣB
i . As initial sequents we allow all substitu-

tion instances of the axioms (other than induction) of W i
1. Note that all rules of LK3−W i

1

77
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are valid in W i
1, and furthermore, LK3 −W i

1 proves the induction and comprehension

schemes of W i
1.

The system LK3 − Ŵ i
1 is as above, but with the ΣB

i -IND rule instead.

The system LK3−TW i
1 is as above, but with the ΣB

i -SIND rule instead. This rule is:

Γ, φ(X), S(X, Y ) −→ φ(Y ),∆

Γ, |X| = 0, φ(X) −→ φ(Z),∆
,

where X, Y appear only as indicated and φ ∈ ΣB
i .

The system LK3 −HW 0
1 is LK3 plus, as initial sequents, all substitution instances of

axioms of HW 0
1 .

The standard definition of an anchored cut in LK3 is extended in the usual way for

any of the above systems by allowing cuts on the descendants of principal formulas of the

appropriate induction rule, in addition to cuts on descendants of formulas in nonlogical

axioms. The anchored completeness theorem for LK3 can be extended to these systems

in the usual way to cope with the induction rules, as detailed in [56].

7.2 A Witnessing Theorem for W i
1

In this section we prove a Buss-style witnessing theorem showing that for i ≥ 1, every

ΣB
i -definable function of W i

1 is in (FPSPACE(Σexp
i−1)�)+. The witnessing theorem we wish

to prove is:

Theorem 7.2.1. Every ΣB
i -definable function of W i

1 is in (FPSPACE(Σexp
i−1)�)+.

For i = 1, the argument is somewhat easier than for i > 1 and a witnessing lemma

such as Lemma 7.2.5 below is used directly to yield a FPSPACE+ witnessing function;

this is our result from [55]. Although we focus now instead on the more difficult case of

i > 1, we nevertheless include the special case i = 1 in the statements of Theorem 7.2.2

and Lemma 7.2.5, and comment on how the argument differs.
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The proof of Theorem 7.2.1 will require several steps. The first step is to define

a slightly stronger complexity class: (FEXP(Σexp
i−1)� [wit,poly])+ is like (FEXP(Σexp

i−1)�)+,

but with the following two important differences: one, the exponential-time machine is

restricted to only polynomially many queries to its third-order oracle; and two, if the

answer to an oracle query is “yes”, then a witness to the (ΣB
i−1)

� query is returned on a

special read-only tape. The computational objects in FEXP(Σexp
i−1)� [wit,poly])+ are now

multi-functions as there could be many possible witnesses to a given oracle query, which

could of course affect the progress of the computation.

The second step is to prove the following witnessing theorem. This next theorem

differs from Theorem 7.2.1 in that there is one less assumption: that the ỹ is provably

unique. Consequently, the conclusion is weaker.

Theorem 7.2.2. Let i > 0 and Suppose W i
1 ` ∃ỹφ(x̃, ỹ), for φ(x̃, ỹ) ∈ ΣB

i with all free

variables displayed, and x̃, ỹ of any sort. Then there exists a function f̃ in the class

(FEXP(Σexp
i−1)�[wit,poly])+ such that for all values of x̃, φ(x̃, f̃(x̃)) is true in the standard

model for every possible output of f̃ . If i = 1, this function is in FPSPACE+.

The final step in the proof of Theorem 7.2.1 is as follows: Assume that a function f̃ is

ΣB
i -definable in W i

1. If i = 1 then the special case of Theorem 7.2.2 gives a FPSPACE+

witnessing function and so there is nothing more to prove. Otherwise, applying The-

orem 7.2.2, we know that f̃ ∈(FEXP(Σexp
i−1)� [wit,poly])+, computed by exponential-time

Turing machine M (with an oracle for (ΣB
i−1)

�).

Using the additional assumption that the output of f̃ is unique (boundedly so in the

case of a superstring-valued function), we now show that in fact f̃ ∈(FPSPACE(Σexp
i−1)�)+

by describing a PSPACE Turing machine M ′ that computes f̃ . (Note that this only works

for i > 1!) First, M ′ on input x̃ determines the lexicographically maximal sequence of

yes oracle answers of M by binary search, asking (non-witness) queries of the form “does

there exist a sequence of oracle answers, a computation of M and witnesses to the yes

answers that are all consistent?”. Following that, M ′ computes each bit of the output of
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M ′ in turn by asking if there exist a computation of M and witnesses for the yes answers

to the relevant queries such that the desired bit of the output of M is 1.

Now all that remains is to prove Theorem 7.2.2. For this we shall need several

definitions:

Definition 7.2.3. Let ψ ≡ ∀X ≤ t∃Xφ(X,X ) ∈ ∀2ΣB
i , with other free variables not

shown. Consider an assignment to the free variables of ψ. Then the superstring A

satisfies ψ (with respect to the assignment to the free variables of ψ) iff for every string

A of no more than t bits, φ(A,A[A]) is true in the standard model.

Definition 7.2.4. Let S be the sequent Γ −→ ∆ such that Γ
⋃

∆ ⊂ ∀2ΣB
i , i.e.

Γ = {∀Aj ≤ sj∃Ajγj(Aj,Aj, b̃)}

and

∆ = {∀Cj ≤ tj∃Cjδj(Cj, Cj, b̃)},

with {γj}
⋃
{δj} ⊂ ΣB

i−1, and although we write for simplicity the initial string and third-

order quantifiers for each formula, in fact for some of the formulas either the initial

string quantifier or both initial quantifiers may be absent.

Then i-Witnessing Functions (WFs) for S are superstring-valued functions: For

each formula from ∆

∀Cj ≤ tj∃Cjδj(Cj, Cj, b̃)

which is not ΣB
i−1 (and may or may not have the leading string quantifier as pictured),

the WF Fj is a function with arguments b̃ (for the free variables of the sequent) and

{Ak} (for the superstrings satisfying the formulas in the antecedent). The Fj must have

the property that for any assignment to the free variables b̃ of S and superstrings {Ak},

if each formula γk is satisfied by the corresponding Ak, then some δj is satisfied by the

output of Fj(A, b̃).
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Observe that the above definition of a witnessing function for a sequent is simplified

by the following factors: First, the relatively restricted class of formulas in the sequents to

be witnessed; and second, the availability of third-order functions. Without a definition

of third-order computation, these functions could be tricky to define: see [55] for one

method.

Now the theorem will follow from the following lemma:

Lemma 7.2.5. Suppose LK3 − W i
1 ` Γ −→ ∆, where Γ

⋃
∆ ⊂ ∀2ΣB

i . Then there

exist i-witnessing functions (actually, multi-functions) from (FEXP(Σexp
i−1)�[wit,poly])+ for

Γ −→ ∆. If i = 1, the witnessing functions are in FPSPACE+.

Proof of Theorem 7.2.2 from Lemma 7.2.5. Suppose W i
1 ` ∃ỹφ(x̃, ỹ), for φ(x̃, ỹ) ∈ ΣB

i

with all free variables displayed. We have two cases:

If ỹ is a number or string variable, then by Parikh’s theorem, W i
1 ` ∃ỹ ≤ t(x̃)φ(x̃, ỹ),

for some term t. By Corollary 4.5.4, W i
1 ` φ(x̃, ỹ) ↔ ∃Zψ(x̃, ỹ,Z), for some ψ ∈ ΣB

i−1.

Also,

W i
1 ` ∃ỹ ≤ t(x̃)∃Zψ(x̃, ỹ,Z)↔ ∃Z∃ỹ ≤ t(x̃)ψ(x̃, ỹ,Z).

Applying the lemma to the sequent

−→ ∃Z∃ỹ ≤ t(x̃)ψ(x̃, ỹ,Z),

we obtain a superstring-valued multi-function F (of x̃) from (FEXP(Σexp
i−1)� [wit,poly])+

satisfying that sequent, and so for particular x̃ the number or string ỹ can be obtained

by evaluating ψ(x̃, ỹ,F(x̃)) on each number (or string of length) ≤ t(x̃) in turn. Each

such evaluation is a (Σexp
i−1)

� predicate composed with a (FEXP(Σexp
i−1)� [wit,poly])+ function

(which need only be computed once), and polynomial space suffices to keep track of the

iterations; the total number of oracle queries required does not increase. The entire

computation is thus in (FEXP(Σexp
i−1)� [wit,poly])+. It is easy to see that the computed

value ỹ satisfies φ(x̃, ỹ) (for the same fixed x̃).
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Now, if ỹ is Y , a superstring variable, then as above but skipping the applica-

tion of Parikh’s Theorem, W i
1 ` ∃Yφ(x̃,Y) ↔ ∃Y∃Zψ(x̃,Y ,Z) ↔ ∃Zψ(x̃,Z [0],Z [1]),

for some ψ ∈ ΣB
i−1. Applying the lemma we again obtain a multi-function F from

(FEXP(Σexp
i−1)� [wit,poly])+ satisfying the sequent, and now after computing F and ob-

taining one possible value of F(x̃), we simply output F(x̃)[0] to the appropriate length

(determined by the bounding terms in ψ).

For the special case i = 1 the proof is similar, but when evaluating ψ(x̃, ỹ,F(x̃)) on

possible values of ỹ, the bits of F(x̃) are computed on demand by the FPSPACE+ WF,

as they cannot be computed once and stored.

All that remains is to prove the lemma:

Proof of Lemma 7.2.5. Suppose LK3 −W i
1 ` Γ −→ ∆, where Γ

⋃
∆ ⊂ ∀2ΣB

i , and con-

sider an anchored proof π of this sequent. Since both the endsequent of π and every

nonlogical axiom of LK3 −W 1
i is ∀2ΣB

i , and since the induction rule is limited to this

same class of formulas, every formula in π is ∀2ΣB
i .

We now show by induction on the number of sequents in π that WFs from the class

(FEXP(Σexp
i−1)� [wit,poly])+ exist for Γ −→ ∆. For i = 1 the only differences occur in the

induction rule, and our comments on this special case are found there; other cases apply

to FPSPACE+ WFs directly.

Base Case: The base case is that Γ −→ ∆ is either an initial sequent of LK3 or an

instance of an axiom. The only such sequents requiring WFs are those with a third-order

quantifier in the succedent, namely an instance

−→ (∃Y)(∀Z ≤ s(b̃))[φ(b̃Z)↔ Y(Z)]

of ΣB
0 -3COMP, where φ ∈ ΣB

0 , subject to the restriction that Y does not occur free in φ.

The only WF required for this sequent is computed by limited 3-comprehension on the

predicate

|Z| ≤ s(b̃) ∧ φ(b̃Z),
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which is in some level of the polynomial-time hierarchy, and thus certainly in the class

(FEXP(Σexp
i−1)� [wit,poly])+

Induction Step: The induction step has several cases depending on which rule has

been used to derive Γ −→ ∆.

1. Weakening:

The WFs from the hypothesis are modified to take any extra arguments the new

formula introduces (free variables or an existential third-order quantifier in the

antecedent) and to ignore them. If the formula is added to the succedent and

contains a third-order quantifier, a function taking the appropriate arguments and

returning an empty superstring is added as the new WF for the conclusion.

2. Contraction:

If the contraction occurs in the succedent on a formula φ with a third-order quan-

tifier, then one less WF is required for the conclusion. Construct a new WF for

φ which evaluates φ on each of the two original WFs in turn (each evaluation is

computable in (FEXP(Σexp
i−1)� [wit,poly])+) and then behaves like whichever satisfies

φ, if any. This computation requires only the sum of the time and oracle queries

used by the two original WFs.

If the contraction occurs in the antecedent on a formula φ with a third-order quanti-

fier, then all original WFs must be modified to accept one less superstring argument.

Each is modified to compute the original WF but now passing the superstring ar-

gument from φ twice.

3. Exchange, introduction of ¬, ∨ on the right and ∧ on the left:

These rules can neither introduce nor eliminate free variables. No third-order

quantifiers are added or removed, and no formula with a third-order quantifier

is changed, so the WFs from the hypothesis are used without modification for the

conclusion.
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4. Introduction of ∨ on the left and ∧ on the right:

These inferences have two hypotheses, and the principal formula is ΣB
i−1 and so

needs no WF. Any side formula which is not ΣB
i−1 will have a WF for each hypoth-

esis. As in the case of contraction, the WF for such a formula in the conclusion

evaluates the formula using each WF from the hypotheses, and then computes

whichever satisfies it, if any.

5. First- or second-order ∀ : left and ∃ : right:

The conclusion of such an inference may have less free variables than the hypothesis.

Taking for example an ∃ : right inference with principal formula ∃Xφ(X) with

the corresponding formula in the hypothesis being φ(B) and B not free in the

conclusion, all WFs for the hypothesis will have B as an argument. If this argument

is fixed to the empty string, the resulting set of WFs will suffice for the conclusion

of the inference (unless φ 6∈ ΣB
i−1, addressed below). ∀ : left is similar and in the

first-order cases one analogously substitutes 0 for eliminated variables.

If φ 6∈ ΣB
i−1 then the principal formula of the inference is ∀Aj ≤ sj∃Ajγj(Aj,Aj, b̃)

and occurs in the antecedent. In addition to the procedure above (substituting the

empty string for the eliminated free string variable), the WFs must be modified so

that any query toAj(X) becomesA[λ]
j (X), adding the empty string as an additional

argument, since in the conclusion this superstring argument to the WFs codes an

array.

6. First- or second-order ∀ : right and ∃ : left:

As in the previous case free variables are eliminated by such inferences. However,

it is not sufficient to substitute a dummy value for them as above since such a value

would not witness the new quantifier properly. For example, if the new quantifier

is universal on the right and the principal formula is false under some assignment,

the WFs (from the hypothesis) for the remaining formulas expect a value falsifying
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the principal formula. This value is found by a query to the ΣB
i−1 witness oracle,

as the formula to be falsified or satisfied is ΣB
i−1, following which the WFs for the

conclusion evaluate the WFs from the hypothesis.

If the principal formula is not ΣB
i−1, then it is ∀Cj ≤ tj∃Cjδj(Cj, Cj, b̃) and is in

the succedent. In this one special case the WF for δj has one less argument in the

conclusion, due to the string quantifier preceding the third-order quantifier. The

WF for δj alone is not modified as above, but instead computes the previous WF

over all possible values of Cj and outputs an array of all the values obtained.

7. Third-order ∃ : left:

The principal formula is ∃Ajγj(Aj,Aj,B, B, b). All WFs from the antecedent are

modified to accept superstring argument Aj instead of the free third-order variable

eliminated by the quantifier introduction.

8. Third-order ∃ : right:

If the eigenvariable B occurs in the lower sequent, then the WF for the principal

formula is defined by

f(b̃,A, Z)↔ B(Z)

If not, analogously to the lower-order cases of this rule, the new quantifier is wit-

nessed by any value and thus the WF for the new quantifier may ignore its argu-

ments and always return false. Furthermore, a constant-false predicate is supplied

in the place of the eliminated variable as an argument to the other WFs from the

hypothesis.

9. The cut rule:

The inference is

Γ −→ φ,∆ Γ, φ −→ ∆

Γ −→ ∆
.
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A WF for the conclusion proceeds in two phases: First, it evaluates its formula

using the WF from the left hypothesis, and if the output of that WF satisfies the

formula, it is returned as output. Otherwise, it emulates the WF from the right

hypothesis, and uses the WF for φ from the left hypothesis to supply a value for

the superstring argument. The whole procedure uses at most the sum of the time

and oracle query requirements of the two WFs from the hypotheses, plus a constant

number of oracle queries to evaluate formulas.

If any free variables are eliminated, then as before a dummy argument of the correct

type is supplied to the WFs.

10. ∀2ΣB
i -IND:

The inference is:

Γ, φ(b) −→ φ(b+ 1),∆

Γ, φ(0) −→ φ(t),∆
.

The WFs for the conclusion will iterate the construction from the previous case, as

the current instance of the induction rule could be simulated by t instances of the

cut rule, along with some weakenings.

More precisely, let Fφ be the WF for the instance of φ in the succedent of the

hypothesis. Let ψ be any formula in the succedent of the hypothesis (including φ)

and Fψ its WF. We construct a WF F ′
ψ for ψ in the conclusion in stages:

Fψ(0) = Fψ (other arguments suppressed).

Fψ(k) = (if ψ(Fψ(k − 1)) then Fψ(k − 1) else Fψ(k − 1,Fφ)).

Fψ(1) checks if Fψ satisfies ψ and if so, simulates Fψ. If not, Fψ(1) computes

Fψ(Fφ), that is to say, uses Fφ to provide the superstring argument corresponding

to φ.

Fψ(k) checks if Fψ(k) satisfies ψ and if so, simulates Fψ(k − 1). If not, Fψ(k)

computes Fψ(k − 1,Fφ).
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F ′
ψ, then, evaluates t and computes Fψ(t). Computing Fψ(t) requires a factor

of t more time and oracle queries than required to compute Fφ (to compose the

functions and evaluate ψ at each step) plus the requirements of Fψ, and so only

increases the time and queries of WFs by a polynomial factor.

For the special case i = 1, the WFs for the conclusion are defined as above, but

we must argue that they are computable in FPSPACE+. A WF for the conclusion

consists, essentially, of the composition of a polynomial number of FPSPACE+

functions; it can be computed by a recursive procedure of this depth, where each

instance of the recursion uses polynomial space.

7.3 Witnessing for TW i
1 and TTW 0

1

For TW i
1 and TTW 0

1 , the result we prove is obtained directly as for Theorem 7.2.2,

without the extra work of Theorem 7.2.1. First for TW i
1:

Theorem 7.3.1. Suppose TW i
1 ` ∃ỹφ(x̃, ỹ), for φ(x̃, ỹ) ∈ ΣB

i with all free variables

displayed, and x̃, ỹ of any sort. Then there exists a function f̃ ∈(FEXP(Σexp
i−1)�)+ such

that for all values of x̃, φ(x̃, f̃(x̃)) is true in the standard model.

Proof Outline. This theorem is proved analogously to Theorem 7.2.2, which is to say

with a witnessing lemma. All cases of the lemma except for induction and introduction

of a string quantifier are the same (or easier, as only ΣB
i -formulas are present) and apply

to WFs from (FEXP(Σexp
i−1)�)+: definition by cases, evaluating ΣB

i−1-formulas, etc. For the

introduction of a universal string quantifier on the right, or an existential one on the left,

we can no longer use a witness oracle query to find the correct string. In this case the

new WF will simply evaluate the formula on all strings up to the bound, increasing the

time requirements by an exponential factor.
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In the case of the stronger induction, we must now iterate the WFs from the hypothesis

an exponential number of times (i.e., up to a count given by a string in binary). The

function performing this iteration again uses an exponential factor more time than the

original functions.

And now for TTW 0
1 :

Theorem 7.3.2. Suppose TTW 0
1 ` ∃ỹφ(x̃, ỹ), for φ(x̃, ỹ) ∈ ΣB

1 with all free variables

displayed, and x̃, ỹ of any sort. Then there exists a function f̃ ∈FEXP+ such that for all

values of x̃, φ(x̃, f̃(x̃)) is true in the standard model.

Proof Outline. As for TW 1
1 we use a witnessing lemma, and all cases are the same this

time except for induction. Rather than an induction rule, now the induction axioms

are ΣB
1 formulas and so we simply allow (all substitution instances of) them as initial

sequents. An instance of the induction axiom is witnessed by a binary search for the

superstring falsifying the induction step; this binary search has an exponential number

of steps, each time fixing one bit of the superstring, and at each step a ΣB
0 formula is

evaluated, so the entire procedure is computable in exponential time.

7.4 Witnessing for HW 0
1

The following witnessing theorem for HW 0
1 is a corollary of that for W 1

1 since W 1
1 ` HW 0

1 .

Nevertheless, we outline a direct proof as it illustrates somewhat the computational

nature of the ΣB
0 -superstring-halfrecursion scheme.

Theorem 7.4.1. Suppose HW 0
1 ` ∃ỹφ(x̃, ỹ), for φ(x̃, ỹ) ∈ ΣB

1 with all free variables

displayed, and x̃, ỹ of any sort. Then there exists a function f̃ ∈FPSPACE+ such that

for all values of x̃, φ(x̃, f̃(x̃)) is true in the standard model.

Proof. Analogously to the previous theorems: All cases of the previous witnessing lemma

are the similar for the present one, except of course the induction rule is now much more
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restricted. We need one additional case for the ΣB
0 -superstring-halfrecursion scheme.

A witnessing function for the superstring quantifier ∃X on an instance of this scheme

computes a bit of X by evaluating the ΣB
0 formula φ from the scheme, and recursively

computing the bits of X required by φ. Modulo the recursive calls, this computation is

clearly in the PH. Now, the depth of the recursion is only polynomial, as each recursive

call halves the relevant number of bits of X . The witnessing function then iterates

this process for each bit of X . This entire procedure is thus computable in polynomial

space.



Chapter 8

Propositional Translations

In this chapter we discuss propositional translations of third-order theories. To begin

with, we give our translation from [55] of ΣB
∞-theorems of W 1

1 into BPLK, as an analogue

of the translation of Σb
∞-theorems of U1

2 into G, from [42]. Following that, we present a

much more general translation of theorems of W i
1 into families of proofs in a quantified

Boolean program proof system, QBPi; this more general translation uses quantification

over Boolean functions, and is in some ways reminiscent of the Protothetic of Stanis law

Leśniewski [43].

8.1 ΣB
∞-Theorems of W 1

1

Although our aim in this section is to translate the ΣB
∞-theorems of W 1

1 into BPLK,

we must in fact define a slightly stronger translation. This is because the language of

Boolean programs seems to be inherently unable to express directly the translation of a

formula with third-order variables. A slight generalization of Boolean programs, however,

does allow free third-order variables to be translated: allowing some function symbols

to remain “free”, or not defined by the Boolean program, and therefore to represent an

arbitrary Boolean function of a particular arity. Although this translation would still

seem not to be general enough for a W 1
1 proof, in which sequents in general contain

90
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ΣB
1 -formulas, an analogue of the argument of [42] applies in our case also; by means of

a witnessing argument, we show that a FPSPACE+ function, in the form of a Boolean

program function symbol, can provably witness the existential third-order quantifiers

in the succedent of each sequent in the proof. This function symbol takes as “input”

(is defined from) the free function symbols witnessing the existential quantifiers in the

antecedent, as well as free variables. Although analogous to the translation of U1
2 into the

language of G, wherein the propositional language is again insufficiently expressive, in

our case the use of free function symbols allows a significant simplification of the proof;

in the case of G this is handled by the cumbersome method of asserting that for any

formula (to be substituted in place of the inexpressible quantifier on the left), G can

prove that some PSPACE function computes a witness for the inexpressible quantifier

on the right.

Therefore we define a translation of ΣB
0 formulas in the language L3

A of W 1
1 (i.e.

possibly with free third-order variables, but no third-order quantifiers) into families of

propositional sequents in the language of Boolean programs. We then prove a witnessing-

style lemma implying that if φ(A) ∈ ΣB
∞ and if W 1

1 ` φ(A) then BPLK has short proofs

of the translations of φ. Our aim is the following theorem:

Theorem 8.1.1. If φ(A) ∈ ΣB
∞ and if W 1

1 ` φ(A) then BPLK has polynomial-sized

proofs of the translations ||φ||; furthermore, these proofs are definable in S1
2 and V 1 (or

any theory defining polytime functions).

The theorem will follow from the lemma below. The definability of the proofs follows

from the fact that they are easily constructed in polynomial time. It is important to

observe that no “free” function symbols will actually occur in the final proof (of the

translation of the ΣB
∞-theorem).

First, we can extend the definitions of a Boolean Program and of a BPLK proof as

follows:
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Definition 8.1.2. A Boolean semiprogram is like a Boolean program, except we allow

that some function symbols used in the program be undefined (“free”).

Definition 8.1.3. A BPLK-sequence is the same as a BPLK proof except that the

requirement that all function symbols occurring in the sequence be defined by the accom-

panying Boolean program is dropped. Furthermore, the accompanying Boolean program is

instead a Boolean semiprogram. Any undefined function symbol appearing in the sequence

or the semiprogram is called “free”.

The translation we shall use is below. If P1 and P2 are Boolean semiprograms, then

P1 �P2 denotes the result of concatenating P1 and P2 and removing duplicate definitions.

If the two semiprograms had conflicting definitions for a function symbol, this operations

would not be well defined; however, the function symbols used in the translations are

given particular names according to their definitions, and so it will always be the case

that any two definitions of a function symbol are identical.

Definition 8.1.4. Let φ(A1, ...,Aj, A1, ..., Ak) be ΣB
0 in the language L3

A. For parameters

m1, ...,mk, b1, ..., bj ∈ N we construct a Boolean semiprogram Pm1,...,mk

φ,b1,...,bj
and a formula

||φ||m1,...,mk

b1,...,bj
in the language of Boolean programs, with the atoms p = (pi, i = 1, ..., k),

where each pi = (pi,0, ..., pi,mk
). The mi are intended to represent the lengths of the

strings (i.e., least upper bounds of the finite sets) in the instance to be translated, while

the bi represent bounds on the lengths of strings contained in the relevant superstring.

For some values of the mi and bi, the translation will be undefined (when the superstring

bounds are too small).

By induction on the structure of φ:

• If φ is the atomic formula s = t then s and t are first-order terms with no free

first-order variables. Third-order variables do not appear in first-order terms so all

variable occurrences in s and t are of the form |Ai| for some second-order variable

Ai. Then using the value mi for this subterm the terms s and t can be evaluated to
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s and t. We define ||s = t||m1,...,mk := 1 if s = t and ||s = t||m1,...,mk := 0 otherwise.

The semiprogram Pm1,...,mk

φ := ∅.

• The case for φ ≡ t ≤ s is similar.

• If φ is the atomic formula t ∈2 Ai then we can as above evaluate t and then

||φ||mi := pi,t if t ≤ mi and ||φ||mi := 0 otherwise. Pmi
φ := ∅.

• If φ is the atomic formula Ai ∈ Aj then we have two subcases: If mi ≤ bj then

||φ||mi
bj

:= gbj
Aj

(pi,0, ..., pi,mi
, 0, ..., 0). Pmi

φ,bj
:= ∅. The intention is that gbj

Aj
be a free

function symbol of arity bj and we shall be careful not to add a definition for any

function symbol of this form to our Boolean semiprograms. Furthermore, this is the

only case in the construction where a free function symbol is produced.

If mi > bj, then ||φ||mi
bj

is undefined.

• If φ ≡ ¬ψ then ||φ||m1,...,mk

b1,...,bj
:= ¬||ψ||m1,...,mk

b1,...,bj
and Pm1,...,mk

φ,b1,...,bj
:= Pm1,...,mk

ψ,b1,...,bj
.

• If φ ≡ ψ ◦ ξ (◦ ∈ {∧,∨}), then ||φ||m1,...,mk

b1,...,bj
:= ||ψ||m

′
1,...,m

′
k′

b′1,...,b
′
j′
◦ ||ξ||m

′′
1 ,...,m

′′
k′′

b′′1 ,...,b
′′
j′′

and

Pm1,...,mk

φ,b1,...,bj
:= P

m′
1,...,m

′
k′

ψ,b′1,...,b
′
j′
� Pm′′

1 ,...,m
′′
k′′

ξ,b′′1 ,...,b
′′
j′′

. Here the lists m′, m′′, b′ and b′′ are the sublists

of m and b corresponding to which of the free variables of φ occur free in ψ and ξ.

• If φ is ∃x ≤ tψ(x) then ||φ||m1,...,mk

b1,...,bj
:=

∨
n≤t ||ψ(n)||m1,...,mk

b1,...,bj
(φ(n) is φ(x)[s/x] where

s is a constant term of value n, say

n︷ ︸︸ ︷
1 + ...+ 1). Pm1,...,mk

φ,b1,...,bj
:= Pm1,...,mk

ψ,b1,...,bj
.

• If φ is ∀x ≤ tψ(x) then ||φ||m1,...,mk

b1,...,bj
:=

∧
n≤t ||ψ(n)||m1,...,mk

b1,...,bj
. Pm1,...,mk

φ,b1,...,bj
:= Pm1,...,mk

ψ,b1,...,bj
.

• If φ is ∃X ≤ tψ(X) then ||φ||m1,...,mk

b1,...,bj
:= fm1,...,mk

φ,b1,...,bj
(p) and Pm1,...,mk

φ,b1,...,bj
is as follows:

fm1,...,mk,l
φ,b1,...,bj ,0

(p, q0, ..., ql) := ||ψ||m1,...,mk,l
b1,...,bj

for each l ≤ t

fm1,...,mk,l
φ,b1,...,bj ,i

(p, qi, ..., ql) := fm1,...,mk,l
φ,b1,...,bj ,i−1(p, 0, qi, ..., ql) ∨ f

m1,...,mk,l
φ,b1,...,bj ,i−1(p, 1, qi., , , .ql)

for l ≤ t , i ≤ l + 1
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fm1,...,mk

φ,b1,...,bj
(p) :=

∨
l≤t

fm1,...,mk,l
φ,b1,...,bj ,l+1(p)

• If φ is ∀X ≤ tψ(X) then ||φ||m1,...,mk

b1,...,bj
:= fm1,...,mk

φ,b1,...,bj
(p) and Pm1,...,mk

φ,b1,...,bj
is as follows:

fm1,...,mk,l
φ,b1,...,bj ,0

(p, q0, ..., ql) := ||ψ||m1,...,mk,l
b1,...,bj

for each l ≤ t

fm1,...,mk,l
φ,b1,...,bj ,i

(p, qi, ..., ql) := fm1,...,mk,l
φ,b1,...,bj ,i−1(p, 0, qi, ..., ql) ∧ f

m1,...,mk,l
φ,b1,...,bj ,i−1(p, 1, qi., , , .ql)

for l ≤ t , i ≤ l + 1

fm1,...,mk

φ,b1,...,bj
(p) :=

∧
l≤t

fm1,...,mk,l
φ,b1,...,bj ,l+1(p)

It is clear that for fixed φ, the size of ||φ||m1,...,mk

b1,...,bj
is polynomial in m1., , , .mk, b1, ..., bj.

Whenever we talk of BPLK proofs or BPLK-sequences involving translations of this form,

we shall insist that the associated Boolean (semi-)program extend the (semi-)program

resulting from the translation.

The following lemma is the main lemma of the proof of Theorem 8.1.1. As discussed

earlier, we shall translate sequents with third-order quantifiers as if those third-order

variables were free, and then show that BPLK can prove the existence of a function

symbol witnessing the sequent in much the same way as in the witnessing theorems from

Chapter 7. For this to work it would ordinarily be necessary for the formulas all to be

strict ΣB
1 . Unfortunately that cannot be guaranteed since the induction scheme in W 1

1

is for slightly more general formulas. We shall address this problem by first rewriting

sequents into the equivalent form given by the replacement theorem and then translating

them into the language of Boolean programs.

Lemma 8.1.5. Let LK3 −W 1
1 ` Γ −→ ∆ where Γ

⋃
∆ ⊂ ∀2ΣB

1 , i.e.

Γ = {∀Ai ≤ si∃Aiγi(Ai,Ai,B, B, b)}

and

∆ = {∀Ci ≤ ti∃Ciδi(Ci, Ci,B, B, b)},
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with {γi}
⋃
{δi} ⊂ ΣB

0 , and although we write for simplicity the initial string and third-

order quantifiers for each formula, in fact for some of the formulas either the initial

string quantifier or both initial quantifiers may be absent. Let m1, ...,mk, n1, ..., nl ∈ N

and let b1, ..., bj be bounds on the Ai and the B such that the translation below is defined.

(Sufficient bounds are easily computed by structural induction).

Then there are function symbols hm,n
i,b

and BPLK-sequences with endsequents

..., ||∀Aiγi(Ai,A[Ai]
i ,B, B, n)||m1,...,mk

b1,...,bj
, ...

−→ ..., ||∀Ciδi(Ci, C[Ci]
i ,B, B, n)||m1,...,mk

b1,...,bj
[hm,n
i,b

/gbi
Ci

], ...

where hm,n
i,b

are called witnessing function symbols and are not free, but may be defined in

terms of free function symbols (in particular, gbi
Ai

). No other free function symbols occur

in the BPLK-sequences. These sequences have size polynomial in m1, ...,mk, n1, ..., nl

and b1, ..., bj.

The notation ...[hm,n
i,b

/gbi
Ci

] in the succedent means that one should perform the transla-

tion, substituting function symbol hi,b for the free symbol gbi
Ci

wherever it occurs, including

in the definitions of other function symbols fφ, which must then be renamed in some

consistent way.

Proof. We begin with an anchored proof in LK3 −W 1
1 of the sequent in question. We

show the existence of the desired BPLK-sequence by induction on the number of sequents

in the W 1
1 proof.

Base Case: This is trivial for initial sequents and the witnessing function symbol,

if required, is defined to be the constant false predicate (not a “free” function symbol).

For translations of axioms B1-B14, L1, L2 and instances of ΣB
0 -2COMP, it follows from

the analogous result for V 1
1 and Extended Frege. For translations of instances of ΣB

0 -

3COMP, the witnessing function symbol has defining formula identical to the (translation

of the) comprehension formula, and then the translation of the instance is proved using

the introduction rule for this symbol followed by repeated substitutions and ∧ : right
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inferences (to add the universal string quantifier). This symbol will be fully defined (i.e.,

not “free”).

Induction Step: There are cases depending on the final inference of the W 1
1 proof:

1. Weakening, Exchange, introduction of ¬, ∨ on the right and ∧ on the left:

These cases are all either structural rules or not applicable to formulas with third-

order quantifiers and thus the same rule is applied in the BPLK proof. (A proof

of the hypothesis exists by the induction hypothesis). In the case of weakening,

the conclusion may have more free variables than the hypothesis. In that case new

witnessing function symbols are defined to ignore the new arguments and compute

the same values as the old ones, and these must be substituted for the old ones

(by induction on the structure of the formula it can easily be seen that a BPLK-

sequence can prove each formula equivalent to one with the new function symbols

instead).

2. Contraction:, introduction of ∨ on the left and ∧ on the right:

The only obstacle to using the identical propositional rule is that the principal

formula of a contraction inference and the side formulas of the two-hypothesis

inferences have two ancestors which will in general be witnessed by different wit-

nessing function symbols (if they occur in the succedent). The solution is to define

new witnessing function symbols by cases and then for each affected formula prove

that the translation witnessed by the new function symbol implies the disjunction

of the translations witnessed by the two old symbols.

For example, a side formula ∀Ci ≤ ti∃Ciδi(Ci, Ci) with witnessing function symbols

h′i and h′′i would have new witnessing function symbol

hi := (||δi(Ci, C[Ci]
i )||[h′i/gCi

] ∧ h′i) ∨ (||δi(Ci, C[Ci]
i )||[h′′i /gCi

] ∧ h′′i )
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in the conclusion.

3. Introduction of a first-order quantifier:

These cases are handled by the introduction of the appropriate propositional con-

nective (disjunction or conjunction). In the case of a universal quantifier on the

right or of an existential one on the left, proofs for each value of the free variable

are concatenated together. In the other cases the proof for the hypothesis is first

extended by weakening to add the other disjuncts (conjuncts on the left).

4. Introduction of a second-order quantifier:

These cases are handled the same way as in the simulation of G by BPLK, in that

essentially a big disjunction or conjunction is constructed over all values of a set of

propositional variables.

Additionally, if the principal formula is not ΣB
0 , the more work is needed. If the

principal formula is ∀Ci ≤ ti∃Ciδi(Ci, Ci) in the succedent, then a new witnessing

function symbol is defined as follows, to reflect the increased length of Ci, now that

it is an array:

h′i(p, q) := (p = r ∧ hi(q))

where r are the propositional variables associated with Ci, p are precisely as nu-

merous as r and q are the same variables as the arguments to the original hi. Then,

a derivation is inserted proving

||δi(Ci, Ci)||[hi/gCi
] −→ ||δi(Ci, C[Ci]

i )||[h′i/gCi
].

If the principal formula is ∀Ai ≤ si∃Aiγi(Ai,Ai,B, B, b) in the antecedent, then all

witnessing function symbols must be modified to supply dummy arguments to gAi
,

which now has extra arguments for Ai.
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The second-order quantifier introduction is then handled as usual.

5. Introduction of a third-order quantifier:

These cases are easy: On the left, this amounts to renaming the arguments to the

witnessing function symbols (to reflect the possibly new name of the free function

symbol) and on the right it means producing a new witnessing function symbol

defined equivalent to the existing free function symbol for that variable and sub-

stituting it into the sequent.

6. Cut, Induction:

The cut rule is handled by defining new witnessing function symbols for the con-

clusion by cases, using the witnessing function symbol for the cut formula (if there

is one). Dummy values are also substituted for the free variables present only in

the cut formula, and therefore eliminated from the sequent by the cut. Once these

symbols are substituted for the original ones, the cut rule may be applied directly.

For induction this procedure is iterated as many times as the value of the induction

bound; a separate proof for each instance of the induction step (as many as the

length of the induction) is obtained by the induction hypothesis, and these are

concatenated together, following which the procedure for cut is applied repeatedly.

For example, if the cut formula is ∀Ci ≤ ti∃Ciδi(Ci, Ci) and has witnessing function

symbol hi (in the hypothesis where it occurs on the left), then a new witnessing

function symbol hj for ∀Cj ≤ tj∃Cjδj(Cj, Cj) would be defined as follows, where h′j

is the witnessing function symbol for the hypothesis with the cut formula on the

right, and h′′j that for the hypothesis with the cut formula on the left:

hj := (||δj(Cj, C
[Cj ]
j )||[h′j/gCj

] ∧ h′j) ∨ h′′j [hi/gCj
.

Observe that in the case of cut, gCj
will not occur in the BPLK-sequence con-
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structed. Therefore in the case of a cut where the conclusion has no third-order

variables, the resulting BPLK-sequence will in fact be a BPLK-proof, as the wit-

nessing function symbol h′j for one hypothesis will be fully defined (not “free”), and

therefore so will hj.

8.2 Quantified Boolean Program Proof Systems

In this section we define strong propositional proof systems derived from BPLK by the

addition of syntax for quantifying over function symbols, which should be thought of

analogously to quantifying over the exponentially large superstrings in theories of third-

order bounded arithmetic.

Recall the definition of Boolean programs and the proof system BPLK. In the previous

section we extended these definitions to include Boolean semiprograms, allowing “free”

(i.e., undefined) function symbols to occur in formulas and function symbol definitions.

Now we extend these definitions further. To start, we define a generalization of Boolean

programs. The generalized language is defined thus:

Definition 8.2.1. The language of generalized Boolean programs (GBPs) consists

of the standard propositional language of propositional variables or atoms (p, q, etc.),

propositional connectives (∧,∨,¬) and parentheses. Additionally, it includes two sorts of

function symbols: First, fixed function symbols; and second, function symbol variables.

Formally there is a distinction between free and bound function variables. These will

be denoted respectively with f for fixed function symbols, and g and h for free and bound

function symbol variables respectively, with various sub- and super-scripts. Finally, it

includes quantifiers ∀ and ∃ (to be applied to bound function symbol variables).

Now we define a hierarchy of classes of gbp-formulas (or simply formulas if clear from

the context) over this language. This inductive definition simultaneously defines gener-
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alized Boolean programs. Analogously to a standard Boolean program, a generalized

Boolean program specifies definitions of fixed function symbols in terms of previously-

defined fixed function symbols. Free and bound function variables are intended to be

applied to lists of propositional arguments (variables or formulas) and have associated

arities. Fixed function symbols, meanwhile, additionally have arguments for function

variables, and each therefore has a list of arities: one for each function variable argu-

ment, and also a count of propositional arguments.

Definition 8.2.2 (Generalized Boolean Programs and Formula Classes). A General-

ized Boolean Program P is specified by a finite sequence {f1, ..., fm} of fixed defined

function symbols, where each symbol fi has an an associated defining equation

fi(gi; pi) := φi

where pi is a list p1, ..., pki
of variables, gi is a list of free and bound function symbol

variables, and φi is a semiformula. φi must be composed entirely of variables among pi

and function symbols among f1, ..., fi−1 and gi. If φi is a Σbp
j (Πbp

j )-semiformula, then fi

is a Σbp
j (Πbp

j ) function symbol.

In this context the definition of a semiformula is:

1. 0,1, and p are Σbp
i ∩ Πbp

i -semiformulas, for any variable p, and all i ≥ 0.

2. Σbp
i and Πbp

i both contain Σbp
i−1 ∪ Πbp

i−1 for i > 0.

3. Σbp
i and Πbp

i are closed under ∧ and ∨.

4. If φ is Σbp
i (Πbp

i ) then ¬φ is Πbp
i (Σbp

i ).

5. If f is a Σbp
i (Πbp

i ) fixed function symbol defined in P , ψ1, ..., ψk are Σbp
0 -formulas,

and g and h are lists of free and bound function symbols of the correct arities, then

f(g, h;ψ1, ..., ψk) is a Σbp
i (Πbp

i ) semiformula.



Chapter 8. Propositional Translations 101

6. If g (or h) is a free (respectively, bound) k-ary function symbol variable and ψ1,..., ψk

are Σbp
0 -semiformulas, then g(ψ1, ..., ψk) (respectively, h(ψ1, ..., ψk)) is likewise a

Σbp
0 -semiformula.

7. If φ is a Σbp
i -semiformula and h is a bound function symbol variable, then ∃hφ is

Σbp
i ; if φ is Πbp

i then so is ∀hφ. In other words, Σbp
i -semiformulas are closed under

existential function symbol variable quantification, and symmetrically for Πbp
i and

universal quantification.

Finally, if φ is a semiformula in which every bound function symbol variable h occurs

within the scope of a matching quantifier (i.e. occurs in a sub-semiformula ∃hψ or ∀hψ

of φ), then φ is a formula.

These classes of gbp-formulas are defined so that the subscript i counts the number of

alternations of function symbol quantifiers in a semantic sense (see below for semantics).

Consequently, the problem of evaluating a Σbp
i - or Πbp

i -formula with supplied values for

propositional and function symbol variables is in (Σexp
i )� or (Πexp

i )�, respectively. Con-

versely, although the definition of the classes excludes several potential ways of forming

formulas syntactically (for example, allowing function symbols to be applied only to Σbp
0 -

formulas), the translation results below imply that the formula classes are general enough

to represent all predicates from the corresponding complexity classes.

We now describe semantics for such formulas. A generalized truth assignment σ

is a map from propositional variables to {T, F} and from free function symbol variables

of arity k to k-ary Boolean functions (for each k). A formula φ obtains a truth value

from an assignment σ inductively as follows:

1. Propositional connectives are as usual.

2. An occurrence of a fixed function symbol is evaluated by first evaluating the Boolean

arguments, which must be formulas, and then substituting these truth values and
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the supplied free function symbols for the appropriate variables in the defining

formula of the function symbol.

3. An occurrence of a free function symbol variable is evaluated by first evaluating

the arguments and then applying the Boolean function specified by σ.

4. Finally, a formula ∃hφ (respectively, ∀hφ) evaluates to true if and only if for some

(every) Boolean function of the correct arity, σ, extended to assign this function

to the new free function symbol variable g, satisfies the formula φ[g/h], which is φ

with every unbound occurrence of h replaced by g.

Sequents constructed from such formulas obtain truth values as usual. A formula or

sequent is valid if it is satisfied by every truth assignment.

We may now define a PK-like proof system based on gbp-formulas:

Definition 8.2.3. The system QBP is like the propositional system LK (and therefore

includes all rules and initial sequents pf LK), but with the following changes:

• Sequents are constructed from gbp-formulas and a proof includes a generalized

Boolean program defining all fixed function symbols occurring in the proof.

• If the generalized Boolean program contains a definition of the form

f(g, p) := φ(g, p),

the new LK rules f : left

φ(g′, ψ),Γ −→ ∆

f(g′, ψ),Γ −→ ∆

and f : right

Γ −→ ∆, φ(g′, ψ)

Γ −→ ∆, f(g′, ψ)

may be used, where ψ are precisely as many Σbp
0 -formulas as p are variables, and

the lists g and g′ of free function symbol variables are the same length and arities.



Chapter 8. Propositional Translations 103

• (Substitution Rule) The new inference rule Σbp
0 -subst

∆(q, p) −→ Γ(q, p)

∆(φ, p) −→ Γ(φ, p)

may be used, where all occurrences of q have been substituted for and φ is a Σbp
0 -

formula.

• The new rules

∃ : left
φ(g),Γ −→ ∆

∃hφ(h),Γ −→ ∆
and ∀ : right

Γ −→ ∆, φ(g)

Γ −→ ∆,∀hφ(h)

may be used, where g is a free and h a bound function symbol variable of the same

arity, and g does not occur in the conclusion of the inference. Furthermore, it must

be the case that the φ(g) is φ(h)[g/h].

• The new rules

∀ : left
φ(f),Γ −→ ∆

∀hφ(h),Γ −→ ∆
and ∃ : right

Γ −→ ∆, φ(f)

Γ −→ ∆,∃hφ(h)

where f is either a free or a fixed function symbol, and h a bound function

symbol variable. Now h must have the same propositional arity (in the case of f

fixed, number of propositional arguments) as f . There is no restriction about f

occurring in the conclusion (or even in ∃hφ(h)). Also, φ(f) must be φ(h)[f/h].

The system QBPi is QBP restricted to allow only Σbp
i ∪Πbp

i -formulas in the cut rule.

Some observations: All the rules are sound, in the sense that they preserve valid-

ity. This is clear in the case of the propositional and structural rules. The free/bound

distinction on function symbol variables ensures that in the f -introduction, quantifier-

introduction and substitution rules, the substitutions in formulas such as φ(f) or φ(ψ)

never result in any free function symbol variable being caught by a quantifier. Further,

any free function symbol variable relevant to the truth-value of a formula φ always occurs

in φ and can never be hidden by defining a fixed function symbol, as these definitions

include all free and bound function symbol variables as arguments.
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8.3 Propositional Translations of W i
1

We now show how to translate theorems of W i
1 into (polynomial-size) families of proofs

in the proof systems of the last section. We begin with the definition of the propositional

translation we consider. This definition is a generalization of the translation defined

previously for ΣB
0 -formulas. We therefore use the same notation || · || to denote it. For

the sake of clarity, however, we present the definition in full below. The only differences

are the extra cases allowing the direct translation of third-order quantifiers, and the fact

that fixed function symbols defined using free function symbol variables now have these

variables listed explicitly as arguments.

Definition 8.3.1. Let φ(A1, ...,Aj, A1, ..., Ak) be gΣB
i in the language L3

A. For param-

eters m1, ...,mk, b1, ..., bj ∈ N we construct a generalized Boolean program Pm1,...,mk

φ,b1,...,bj
and

a formula ||φ||m1,...,mk

b1,...,bj
in the language of generalized Boolean programs, with the atoms

p = (pi, i = 1, ..., k), where each pi = (pi,0, ..., pi,mk
). The mi are intended to represent

the lengths of the strings in the instance to be translated, while the bi represent bounds

on the lengths of strings contained in the relevant superstring. For some values of the mi

and bi, the translation will be undefined (when the superstring bounds are too small).

By induction on the structure of φ:

• If φ is the atomic formula s = t then s and t are first-order terms with no free

first-order variables. Third-order variables do not appear in first-order terms so all

variable occurrences in s and t are of the form |Ai| for some second-order variable

Ai. Then using the value mi for this subterm the terms s and t can be evaluated to

s and t. We define ||s = t||m1,...,mk := 1 if s = t and ||s = t||m1,...,mk := 0 otherwise.

The semiprogram Pm1,...,mk

φ := ∅.

• The case for φ ≡ t ≤ s is similar.

• If φ is the atomic formula t ∈2 Ai then we can as above evaluate t and then
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||φ||mi := pi,t if t ≤ mi and ||φ||mi := 0 otherwise. Pmi
φ := ∅.

• If φ is the atomic formula Ai ∈ Aj then we have two subcases: If mi ≤ bj then

||φ||mi
bj

:= gbj
Aj

(pi,0, ..., pi,mi
, 0, ..., 0). Pmi

φ,bj
:= ∅. The intention is that gbj

Aj
be a

function symbol variable of arity bj, and of the free or bound sort according to

whether A is. This is the only case in the construction where a function symbol

variable is produced.

If mi > bj, then ||φ||mi
bj

is undefined.

• If φ ≡ ¬ψ then ||φ||m1,...,mk

b1,...,bj
:= ¬||ψ||m1,...,mk

b1,...,bj
and Pm1,...,mk

φ,b1,...,bj
:= Pm1,...,mk

ψ,b1,...,bj
.

• If φ ≡ ψ ◦ ξ (◦ ∈ {∧,∨}), then ||φ||m1,...,mk

b1,...,bj
:= ||ψ||m

′
1,...,m

′
k′

b′1,...,b
′
j′
◦ ||ξ||m

′′
1 ,...,m

′′
k′′

b′′1 ,...,b
′′
j′′

and

Pm1,...,mk

φ,b1,...,bj
:= P

m′
1,...,m

′
k′

ψ,b′1,...,b
′
j′
� Pm′′

1 ,...,m
′′
k′′

ξ,b′′1 ,...,b
′′
j′′

. Here the lists m′, m′′, b′ and b′′ are the sublists

of m and b corresponding to which of the free variables of φ occur free in ψ and ξ.

• If φ is ∃x ≤ tψ(x) then ||φ||m1,...,mk

b1,...,bj
:=

∨
n≤t ||ψ(n)||m1,...,mk

b1,...,bj
(φ(n) is φ(x)[s/x] where

s is a constant term of value n, say

n︷ ︸︸ ︷
1 + ...+ 1). Pm1,...,mk

φ,b1,...,bj
:= Pm1,...,mk

ψ,b1,...,bj
.

• If φ is ∀x ≤ tψ(x) then ||φ||m1,...,mk

b1,...,bj
:=

∧
n≤t ||ψ(n)||m1,...,mk

b1,...,bj
. Pm1,...,mk

φ,b1,...,bj
:= Pm1,...,mk

ψ,b1,...,bj
.

• If φ is ∃X ≤ tψ(X) then ||φ||m1,...,mk

b1,...,bj
:= fm1,...,mk

φ,b1,...,bj
(g, h; p) and Pm1,...,mk

φ,b1,...,bj
is as follows:

fm1,...,mk,l
φ,b1,...,bj ,0

(g, h; p, q0, ..., ql) := ||ψ||m1,...,mk,l
b1,...,bj

for each l ≤ t

fm1,...,mk,l
φ,b1,...,bj ,i

(g, h; p, qi, ..., ql) := fm1,...,mk,l
φ,b1,...,bj ,i−1(g, h; p, 0, qi, ..., ql)

∨ fm1,...,mk,l
φ,b1,...,bj ,i−1(g.h; p, 1, qi., , , .ql) for l ≤ t , i ≤ l + 1

fm1,...,mk

φ,b1,...,bj
(g, h; p) :=

∨
l≤t

fm1,...,mk,l
φ,b1,...,bj ,l+1(g, h; p)

• If φ is ∀X ≤ tψ(X) then ||φ||m1,...,mk

b1,...,bj
:= fm1,...,mk

φ,b1,...,bj
(p) and Pm1,...,mk

φ,b1,...,bj
is as follows:

fm1,...,mk,l
φ,b1,...,bj ,0

(g, h; p, q0, ..., ql) := ||ψ||m1,...,mk,l
b1,...,bj

for each l ≤ t
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fm1,...,mk,l
φ,b1,...,bj ,i

(g, h; p, qi, ..., ql) := fm1,...,mk,l
φ,b1,...,bj ,i−1(g, h; p, 0, qi, ..., ql)

∧ fm1,...,mk,l
φ,b1,...,bj ,i−1(g, h; p, 1, qi., , , .ql) for l ≤ t , i ≤ l + 1

fm1,...,mk

φ,b1,...,bj
(g, h; p) :=

∧
l≤t

fm1,...,mk,l
φ,b1,...,bj ,l+1(g, h; p)

• If φ is ∃Xψ(X ) then ||φ||m1,...,mk

b1,...,bj
:= ∃gbj+1

X
||ψ(X )||m1,...,mk

b1,...,bj+1
.

• If φ is ∀Xψ(X ) then ||φ||m1,...,mk

b1,...,bj
:= ∀gbj+1

X
||ψ(X )||m1,...,mk

b1,...,bj+1
.

Now the translation theorem is:

Theorem 8.3.2. If φ ∈ ΣB
i and W i

1 ` φ then QBPi has polynomial-size proofs of the

translations ||φ||; furthermore, these proofs are definable in S1
2 and V 1 (or any theory

defining polytime functions).

The proof of this theorem is in fact conceptually simpler than that for the previous

translation theorem. This is because the language of the translations is expressive enough

to translate the formulas in the proof directly, and so it is not necessary to construct

witnessing functions along the way.

Proof. We begin with an anchored proof in LK3 −W i
1 of the formula in question. By

induction on the number of sequents in the W i
1 proof, we show that the desired QBPi

proof exists. All formulas in the the W i
1 proof are ∀2ΣB

1 .

Base Case: This is trivial for initial sequents. For translations of axioms B1-B14,

L1, L2 and instances of ΣB
0 -2COMP, it follows from the analogous result for V 1

1 and

Extended Frege. Translations of instances of ΣB
0 -3COMP are proved as follows: A fixed

function symbol is defined with defining formula identical to the (translation of the)

comprehension formula. The translation of the instance is proved using the introduction

rule for this symbol followed by ∃ : right for the function symbol quantifier, then repeated

substitutions and ∧ : right inferences (to add the universal string quantifier).

Induction Step: There are cases depending on the final inference of the W 1
1 proof:
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1. Weakening, Exchange, Contraction, introduction of ¬, ∨, and ∧:

The same propositional rule is applied.

2. Introduction of a first-order quantifier:

These cases are handled by the introduction of the appropriate propositional con-

nective (disjunction or conjunction). In the case of a universal quantifier on the

right or of an existential one on the left, proofs for each value of the free variable

are concatenated together. In the other cases the proof for the hypothesis is first

extended by weakening to add the other disjuncts (conjuncts on the left).

3. Introduction of a second-order quantifier:

These cases are handled the same way as in the simulation of G by BPLK, in that

essentially a big disjunction or conjunction is constructed over all values of a set of

propositional variables.

4. Introduction of a third-order quantifier:

The corresponding introduction rule for function symbol variable quantifiers is ap-

plied.

5. Cut, Induction:

The propositional cut rule can be applied directly.

For induction this is iterated as many times as the value of the induction bound;

a separate proof for each instance of the induction step (as many as the length of

the induction) is obtained by the induction hypothesis, and these are concatenated

together, following which cut is applied repeatedly.
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Future Work

In this section we identify some open problems related to the work in this dissertation

and its environs. These range from general to specific and are listed below in several

categories.

9.1 Specific Questions from this Dissertation

We begin with problems directly arising from the work in this dissertation.

• The slightly unpleasant induction scheme of W 1
1 begs the question: Either prove

the replacement theorem of W 1
1 with strict ΣB

1 induction (i.e., in Ŵ 1
1 ), or show

this is impossible subject to a complexity assumption as in [22]. The theory HW 0
1 ,

with its universal conservative extension, is a good place to start, as it is possibly

amenable to proving a KPT-style witnessing theorem.

• Σb
i theorems of T i2 translate into polynomial size Gi proofs, while such theorems

of Si2 translate into polynomial size G∗
i proofs. By analogy, then, it might be

reasonable to expect theorems of TW i
1 and W i

1 to translate into daglike and treelike

propositional proofs, respectively. However, the substitution rule seems, on the

surface, to be essential in BPLK and QBPi, as it is used in our constructions to

108
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form big conjunctions or disjunctions to represent second-order quantifiers. As a

result, the treelike versions of these systems might be very weak. Is it is possible

that one of the following techniques might allow treelike translations of W i
1?: First,

the use of function-symbol quantifiers to replace some of the string quantifiers; or

second, alternative translations in which the universal closure is used instead of

free propositional variables, and thus there might be no need of using substitution

in this way.

• Related to the above problem is to categorize more precisely the power of the propo-

sitional systems: prove their consistency in corresponding theories, and investigate

their witnessing problems. There are several degrees of freedom in which to modify

the proof systems, such as alternative kinds of substitution, different versions of

the rules for introducing function symbols, and so on, and it remains to be seen

how these will affect the systems’ strength.

• Give a universal theory for exponential time and one for (third-order) polynomial

time using the recursion-theoretic characterizations of these classes, in the same

style as HW 0
1 .

• Are any of the base theories HW 0
1 , W 1

1 or TW 1
1 for these classes finitely axiomati-

zable?

• If W 1
1 is conservative over a minimal theory for PSPACE such as HW 0

1 , does this

imply any complexity collapse such as is the case for PV and S1
2? This question

applies equally to TW 1
1 and a future minimal theory for exponential time.

9.2 Canonical Proof System For a Complexity Class

It is interesting to note that in some cases, the propositional proof system corresponding

to a complexity class has as lines in its proofs objects which are of exactly that complexity



Chapter 9. Future Work 110

class (for example, G, EF, BPLK) yet in other cases, the objects are of seemingly greater

computational power (G1, G
∗
1, QBPi). An interesting open problem is to find, for some

of the latter type of examples, a canonical propositional proof system whose lines are

exactly the appropriate complexity class. Perhaps a general technique could be devised

to deal with many such classes at once.

9.3 Questions About the “Weak Fragments” of The-

ories and Proof Systems

9.3.1 Relating the Collapse of Theories with the Collapse of

Complexity Classes

As discussed in Section 2.1.3, it is plausible that the universal fragments of, for example,

W 1
1 and V might be the same without causing any complexity collapse. It would be

instructive either to collapse these fragments or to find convincing reasons why it might

be impossible.

9.3.2 Collapsing weak fragments of G or QBP

A related issue is that of provability of quantifier-free tautologies in the various subsys-

tems of G and QBP. There does not seem to be any drastic consequence to complexity

theory of showing, for example, that G1 p-simulates G (or even QBP) for such proofs.

9.4 Theories and Proof Systems for Other Complex-

ity Classes

There are many complexity classes for which no corresponding theory or proof system

is known. Examples include some NP search classes, but are by no means limited to
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these. Finding a corresponding theory and proof system and positioning them correctly

with respect to already known examples could potentially prove very instructive. For

some classes such as the NP search problems already mentioned, there is now a standard

technique for producing theories by adding a related axiom to a base theory. In other

cases, however, the situation is much more difficult.
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Grädel’s theorem. In 16th Annual IEEE Symposium on Logic in Computer Science

(LICS ’01), pages 177–186, Washington - Brussels - Tokyo, June 2001. IEEE.

[15] S. A. Cook. CSC 2429S: Proof Complexity and Bounded Arithmetic. Course notes,

URL: ”http://www.cs.toronto.edu/∼sacook/csc2429 98”, Spring 1998.



Bibliography 114

[16] S. A. Cook. CSC 2429S: Proof Complexity and Bounded Arithmetic. Course notes,

URL: ”http://www.cs.toronto.edu/∼sacook/csc2429h”, Winter 2002.

[17] Stephen Cook and Antonina Kolokolova. A second-order theory for NL. In LICS

[1], pages 398–407.

[18] Stephen Cook and Tsuyoshi Morioka. Quantified propositional calculus and a theory

for NC1. Archive for Mathematical Logic, 2005. To Appear.

[19] Stephen Cook and Phuong Nguyen. Introduction to proof complexity: Bounded

arithmetic and propositional translations. Book in Progress.

[20] Stephen Cook and Robert Reckhow. On the lengths of proofs in the propositional

calculus (preliminary version). In Conference Record of Sixth Annual ACM Sympo-

sium on Theory of Computing, pages 135–148, Seattle, Washington, 30 April–2 May

1974.

[21] Stephen Cook and Michael Soltys. Boolean programs and quantified propositional

proof systems. Bulletin of the Section of Logic, 28(3):119–129, 1999.

[22] Stephen Cook and Neil Thapen. The strength of replacement in weak arithmetic.

In LICS [1], pages 256–264.

[23] Stephen Cook and Alasdair Urquhart. Functional interpretations of feasibly con-

structive arithmetic. Annals of Pure and Applied Logic, 63(2):103–200, 10 September

1993.

[24] Stephen A. Cook. The complexity of theorem-proving procedures. In Conference

Record of Third Annual ACM Symposium on Theory of Computing, pages 151–158,

Shaker Heights, Ohio, 3–5 1971 1971.



Bibliography 115

[25] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (pre-

liminary version). In Conference Record of Seventh Annual ACM Symposium on

Theory of Computing, pages 83–97, Albuquerque, New Mexico, 5–7 May 1975.

[26] Stephen A. Cook. Relating the provable collapse of P to NC1 and the power of logical

theories. DIMACS Series in Discrete Math. and Theoretical Computer Science, 39,

1998.

[27] Stephen A. Cook. Theories for complexity classes and their propositional transla-
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