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I. OVERVIEW

The supplementary material covers additional information
on:

1) Our method, specifically the details of the linear motion
model used during tracking, more mathematical details
of cubic B-splines, as well as further details on the
loop closing module.

2) Our dataset and its geographic splits, providing a
more in-depth comparison to other related SLAM
benchmarks.

3) Our experiments, showcasing additional ablation stud-
ies, quantitative tables, qualitative results and discus-
sions.
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II. METHOD
A. Asynchronous Multi-Frames

We provide an illustration for the concept of an asyn-
chronous multi-frame compared to a synchronous multi-frame
in Fig. 1.

B. Linear Motion Model

During tracking, we estimate poses in the current asyn-
chronous multi-frame with a linear motion model, denoted by
the superscript £. In general, given timestamps ¢; < to, and
respective associated poses T, T, poses at any timestamp
t could be linearly interpolated or extrapolated as

T(t) = To(Ty 'T1)*

to — 1

ty —t1
ey

In the context of multi-frames, for each multi-frame MF; with

the representative timestamp #;, we define the linear pose

parameter &/ € RS to represent the minimal 6-DoF robot

= TyExp(aLog(T; 'T;)), where a =
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Fig. 1: Illustration of the synchronous multi-frame vs. the
asynchronous multi-frame. For simplicity, in this illustration
each async multi-frame is assumed to be a key multi-frame.
Each key multi-frame is associated with cubic B-spline motion
parameters to define the overall trajectory.

pose in the world frame at ¢;. It follows that poses at any
timestamp ¢ within MF; could be evaluated with

Tl (0) = Tha 0 (1 Log (Thu(6) ' Ti i) )

i ref
= Exp(&4)Exp (tt t Log (EXP( ENTE,( ref))) )
2

where t. and T¢,(t.r) are the respective representative
timestamp and evaluated cubic B-spline pose at ¢ of the
reference multi-frame MF,.¢. In practice, new MFs are tracked
against a reference key multi-frame, so ref refers to the MF
id of the most recent KMF.

C. Cubic B-Spline Model

We use a cumulative cubic B-spline motion model over key
multi-frames to represent the overall trajectory. We use the
linear motion model parameters estimated during tracking to
initialize cubic B-spline control points, and refine the spline
trajectory during mapping and loop closing. In general, given
n + 1 control points £§,...,£5 € RS, and a knot vector
b € R"T**1 the cumulative B-spline of order k is defined



as:
T,(0) = Exp (Bos)65) [T Bxp (Buao) . O
i=1

where Q; = Log (Exp(£¢_,) ""Exp(&5)) € RE is the relative
pose in Lie Algebra twist coordinate form between control
poses & ; and &. The superscript c is used to denote the
cubic B-spline motion model. The cumulative basis function
Bik(t) = 37_; Bjx(t) € R is the sum of basis function
B i(t). Based on the knot vector b = [bg bn+i]. the
basis function B j(t) is computed using the de Boor-Cox
recursive formula [1], [2], with the base case

Byi(t) = {1

if t e [bp, bp+1]

0 otherwise
For ¢ > 2,
t—b bpiq —t
Bp,q(t) = ﬁBp,q—l(t)‘FﬁBpﬁ-l,q—l(t)-
p+q—1 P P+aq p+1

More intuitively, each T¢ ,(¢) can be interpreted as an n-way
interpolation between the control points & with respective
interpolation weight B; (t). However, instead of directly
interpolating T¢, (t) = []\_, Exp(Bix(t)&5), we use the
cumulative formulation in Eq. 3 for accurate on-manifold
interpolation in SE(3) [3], [4].

Since we use cubic B-splines, n = 3 and k = 4. In the
context of multi-frames, we associate each key multi-frame
KMF; with a control point &§. In addition, since the key
multi-frames are not necessarily distributed evenly in time,
we cannot utilize a uniform knot vector (as typically employed
for modeling rolling-shutter cameras [4] and LiDARs [5]).
Instead, we associate each KMF; with a representative
timestamp t; as the median of all image capture times ¢;, (with
the exception of initialization, where #; is defined at the firing
time of the overlapping camera pair). We define a non-uniform
knot vector according to the representative timestamps.
Specifically, we define b = [f;_3 #;_2 tira] € RS,

D. Loop Detection

When a new KMF is selected, we run loop detection
to check if a previously-seen area is being revisited. For
computational efficiency, we only perform loop detection if
the most recent successful loop correction took place at least
a minimal number of KMFs ago. In our implementation we
set this threshold to 30.

For a newly-inserted query KMF,, the loop candidate
KMF; must pass an odometry check, a multi-camera DBoW3-
based [6] similarity check, and a multi-camera geometric ver-
ification. We detail this process in the following subsections.

1) Odometry Check: To avoid false loop detection when
the robot is staying in the same area, the odometry check
ensures that the robot must have traveled a minimal distance
since the loop candidate frame. In addition, a minimal time
and a minimal number of key frames must have passed
since the candidate frame as well. The traveling distance is
computed based on the estimated trajectory. The time and
key frame count conditions serve as complements in the case

when the estimated traveling distance is unreliable. In our
experiment, we set the traveling distance threshold to 30m,
time to 5s, and the number of KMFs to 30. Note that the
KMF threshold in odometry check is different from the KMF
threshold described at the beginning of the loop detection
section. The former specifies that a candidate KMF must be
older than 30 KMFs ago, while the latter dictates that we
will only perform loop detection for the current query KMF
if the latest loop closing happened at least 30 KMFs ago.

2) Similarity check: For candidates passing the odometry
check, we perform a multi-view version of the single-view
DBoW3-based similarity check described in ORB-SLAM [7].
The key idea is that images in the loop candidate KMF
and the query KMF should have similar appearance. We
perform similarity detection with the bag-of-words techniques
DBoW3 for place recognition [6]. For each key multi-frame,
we concatenate features extracted from all images in the
multi-frame to build the DBoW3 vocabulary and compute
the DBoW3 vector. Note that the simple concatenation
does not take into account of the fact that cameras can be
asynchronous, but we argue that the same area should have
similar appearance within the short camera firing time interval,
and false positives will be filtered by the stricter geometric
verification that factors in asynchronous sensors in the next
step.

During the similarity check, we first compute the DBoW3
similarity score between the query KMF and the neighboring
KMFs that are included in the associated local bundle
adjustment window, and we denote the minimum similarity
score as m. Next, we compute the similarity score between
the query KMF and all available candidate KMFs and denote
the top score as t. Then all the candidates that pass the
similarity check must have a similarity score that is greater
than max(0.01,m, 0.9 * t).

3) Geometric check: For each remaining candidate KMF,
we perform a geometric check by directly solving for a
relative pose between cameras in the candidate KMF and
cameras in the query KMF. To identify the camera pairs to
be matched, let us consider a setting where the camera rig
contains a set of M cameras covering a combined 360° FoV,
with the cameras denoted as Cq,...,Cjs in the clockwise
order. We also assume that the robot is on the ground plane
in this setting, i.e., the roll and pitch angles of the robot poses
remain the same when the robot revisits the same area. Since
a loop can be encountered at an arbitrary yaw angle, there are
a total of M possible scenarios of how the multiple cameras
between the candidate and the query frame can be matched,
where in scenario ¢, each camera C; in the candidate frame
is matched to camera C(;j1 )% in the query frame.

For each possible matching scenario involving M pairs
of cameras, we solve for a discrete relative pose between
each camera pair. Specifically, for each pair of cameras, we
first perform keypoint-based sparse image matching between
the associated image pair by fitting an essential matrix in a
RANSAC [8] loop. If the number of inlier matches passes
a certain threshold, we associate the inlier matches with the
existing 3D map points. Note that different from tracking,



here we draw associations in both directions: 2D keypoints
in the loop candidate image are associated to 3D map points
observed in the query image, and vice versa.

If the number of such keypoint-to-map-point correspon-
dences passes a threshold, we estimate a single relative
pose in SE(3) between the two cameras. Following [7], we
perform pose estimation with Horn’s method in a RANSAC
loop, where within each RANSAC iteration we sample a
minimal number of matches, and solve for the discrete pose
by minimizing a reprojection error. The hypothesis with the
most number of inliers is the final estimate.

The geometric check passes if at least a certain number
of camera pairs have a minimum number of inliers for the
relative pose estimation. In our full system, we perform
geometric check with the M = 5 wide cameras covering the
surroundings of the vehicle. We consider a geometric check
to be successful if there exists a matching scenario where
we can successfully estimate the discrete relative pose for at
least 2 pairs of cameras, where for each camera pair there are
at least 20 inlier correspondence pairs during sparse image
matching, 20 pairs of 2D-3D associations, and 20 pairs of
inlier correspondences after the relative pose estimation. If
there are multiple matching scenarios that pass the check, we
select the configuration with the most successfully matched
camera pairs and the most inlier correspondences.

The multi-camera geometric verification outputs
{(Cry,Cr, Ty, by, )} which is a set of triplets denoting the
camera indices of the matched camera pairs between the
loop and the query frames, along with Ty, br,» which is an
estimated rigid-body transformation from the body frame 7
at the camera capture time t;, to F} at time g, .

E. Loop Correction

If a loop candidate KMF; passes all loop detection checks,
we perform loop correction with the geometric verification
output. We first build an asynchronous multi-view version
of the pose graph in ORB-SLAM [7]. Each node « of the
pose graph is encoded by a timestamp ¢, representing the
underlying robot pose T(t,). Each edge («, 3) encodes
the relative pose constraint T, representing the rigid
transformation from T\ (tn) to Ty (ts).

Specifically, in our pose graph, the nodes are associated
with times at {#; pvkmr, U{tik,» gk, v (ki k,)» I-€.» the Tepresen-
tative timestamps of all existing KMFs, as well as the camera
times from matched camera pairs in the geometric verification
output. The edges are comprised of: (1) neighboring edges
connecting adjacent KMF nodes at times £;_; and ¢;, (2) past
loop closure edges connecting nodes associated with past
query and loop closure KMFs, and (3) the new loop closure
edges between nodes at time #, and 4, . For edges in case
(1) and (2), we compute the relative pose T3, by evaluating
(T, (t3)) ' T¢, (t) based on the current trajectory. For (3),
we use the discrete poses T4, ., estimated in the geometric
verification step in loop detection. Please refer to Fig. 2 for
an illustration of the pose graph.

We denote the local KMF windows spanning the query and
loop frames as the welding windows. In our implementation

they are the same size as the local bundle adjustment
window. To correct the global drift, we perform a pose graph
optimization (PGO) over the continuous-time cubic B-spline
trajectory. To better anchor the trajectory, the control poses
in the welding window associated to KMF; are fixed during
the pose graph optimization, where the following objective
is minimized:

EPGO({gz‘C}) = Erel({gf}) + Ereg({éz‘c})a 4)

where
Eu({&h) =3 (||e£,ﬂ<{£f}>!|i;ﬁ>v
(,6) ’
with eq5({€7}) = Log(Tpa(T5y(ta) ™ Thy(ts)) € R

(&)
sums over the relative pose errors of each edge weighted by
an uncertainty term E;lﬁ, and

Ees(€) = 3 (T UEDI).

with rf ({€7}) = Log (T7 ' T(,(f:)) € R°

is a unary regularization term weighted by uncertainty
A ! to anchor each KMF’s representative pose at T; =
T¢, (t;) evaluated before the optimization. Empirically, we
set the diagonal entries of both E;Arlﬁ and A; ' to 1.0. The
regularization term helps to better constrain the optimization
especially when there is a large loop (i.e., ¢ is much bigger
than /) and a large amount of drift to correct. p is the robust
norm and we again use the Huber loss in practice. The energy
term is minimized with the LM algorithm.

After PGO, we next update the map points with the
adjusted trajectory. If a map point is observed in multiple
images, we update the map point position with the median
of all pose corrections related to the map point. Note that
ideally, we would want to solve a global bundle adjustment
problem that jointly refines the entire trajectory and all map
points at the same time. However, with a long trajectory
and many observations from multi-view cameras, global
bundle adjustment becomes computational expensive or even
infeasible. The two-stage process described above, where we
first optimize the poses and then update the map points, is
a light-weight approximation that is sufficient under most
circumstances.

Furthermore, note some new map points in the query KMF
window have been created during recent local mappings, but
they may correspond to points already triangulated in the
previous pass through the revisited area. As a result, we next
deduplicate the re-triangulated map points. We first match
image pairs in the candidate KMF welding window and the
query KMF welding window to identify and fuse these map
points. We then perform a local bundle adjustment over the
motion and map points corresponding to the two welding
windows. The purpose of the local bundle adjustment is to
refine both map points and control poses in the query KMF
window. To anchor candidate poses, we freeze the control
poses corresponding to the candidate welding window in the
optimization.

(6)
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Fig. 2: Tllustration of the loop correction pose graph. The nodes correspond to robot poses at the representative timestamps
of all KMFs + capture times of the matched cameras in the new loop closure KMFs. The edges consist of neighboring KMF
edges, past loop closing edges, and the new multi-view loop closing edges. If n camera pairs are successfully matched during
the loop detection stage, then there should be n new loop closing edges.

III. DATASET
A. Existing SLAM Benchmarks

As described in the main paper, existing SLAM datasets fall
short in terms of geographic diversity, modern sensor layouts,
or scale. In this section, we describe the most relevant modern
SLAM datasets together with their primary limitations.

The KITTI Odometry Benchmark [9] covers 40km of
driving through Karlsruhe, Germany using a vehicle equipped
with a stereo camera pair, a 64-beam LiDAR, IMU, and RTK-
based ground truth. However, most sequences in the dataset
have relatively small numbers of dynamic objects, and all
the data is captured in sunny or overcast weather, which
is not representative of the variety of conditions which can
be encountered by commercial AVs. The NCLT dataset [10]
covers a larger distance in the University of Michigan campus
using a custom-built robotic Segway equipped with three
LiDARs an IMU and an omnidirectional camera. While the
scale of the dataset is large, its geographic diversity is lacking,
being constrained to a university campus, while at the same
time not capturing the same challenging motion patterns
which would be encountered by an SDV.

The Oxford RobotCar [11] dataset covers over 1000km of
driving in challenging conditions containing a large number
of dynamic objects as well as strong weather and lighting
variation. However, since it is focused on a single primary
trajectory it lacks geographic diversity. Moreover, it does
not provide 360° camera data in HD, which is critical for
SDVs. Similarly, the Ford Multi-AV Dataset [12] contains a
large volume of data but is focused on a relatively limited
60km route which is traversed repeatedly by multiple SDVs.
The A2D2 Dataset [13] contains a high-resolution multi-
camera multi-LiDAR setup optimized for 3D reconstruction.
However, the approximate total scale of A2D2 is still on
the order of a few hours of driving, which is insufficient
for evaluating robust SLAM system in a wide variety of
challenging conditions.

Finally, the recent 4Seasons dataset [14] covers diverse
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Fig. 3: The geographic splits of the proposed datasets. They
are designed such that train, val, and test each covers
a balanced blend of environment types (highway, urban,
industrial, residential, etc.). The splits are also selected to
have similar distributions of weather, loop closures, etc.



TABLE I: The proposed dataset, AMV-Bench, in numbers.

Split Sequences  Distance (km) Time (h)
Train 65 281 12
Validation 25 103 4
Test 26 98 5
Total 116 482 21

areas in a wide range of environments (highway, industrial,
residential, etc.) over a long time period, but lacks the HD
multi-view sensor array common in commercial SDVs.

Note that in the dataset overview table in the main paper we
label A2D2 and Ford Multi-AV as non-asynchronous dataset
on the basis that their cameras are not described as following
the LiDAR or any custom firing pattern causing more than
2-3ms of delay. While Ford Multi-AV does have cameras
firing at different frame rates, with the higher-resolution front
stereo operating at SHz and the other cameras at 15Hz, we
do not consider this as a true asynchronous setting.

Additionally, even though datasets such as Waymo
Open [15] and nuScenes [16] include asynchronous cameras,
they are focused on perception tasks and contain short
sequences (e.g., less than a minute each). Therefore, we
do not consider them in our evaluation as they are too short
to robustly evaluate SLAM algorithms.

B. Dataset Details

The dataset has been selected using a semi-automatic
curation process to ensure all splits cover similar categories
of environments, while at the same time having substantial
appearance differences between the splits.

Table I shows the high-level statistics of the train, validation,
and test partitions of the dataset. Figure 3 shows the
geographic regions of the splits.

The cameras are all RGB and have a resolution of
1920 1200 pixels, a global shutter; the (asynchronous) shutter
timestamps are recorded with the rest of the data. The
wide-angle and narrow-angle cameras have rectified FoVs of
76.6°x 52.6°and 37.8°x 24.2°, respectively.

Furthermore, the 6-DoF ground-truth was generated using
an offline HD-map based localization system, which enables
SLAM systems to be evaluated at the centimeter level.

IV. ADDITIONAL EXPERIMENTS
A. Full Implementation Details

All images are downsampled to 960x600 for both our
method as well as all baselines. In our system, we extract
1000 ORB [17] keypoints from each image, using grid-based
sampling [7] to encourage homogeneous distribution. Image
matching is performed with nearest neighbor + Lowe’s ratio
test [18] with a ratio threshold of 0.7. The initial 2D matches
between each image pair are additionally filtered by fitting an
essential matrix with RANSAC. The inlier correspondences
are used (1) as input to the multi-view PnP during tracking,
(2) for new map point triangulation during mapping, (3) for
geometric verification during loop closing.

In our system, we use the synchronous stereo camera pair
during initialization. During tracking, we match image pairs
captured by the same camera. During new map point creation,
we match images captured by the same camera between
the new KMF and four previous KMFs, and triangulate
new map points based on the 2D matches. We additionally
triangulate new map points from the stereo cameras within
the new key multi-frame. Note that we do not match between
different wide cameras in the same multi-frame due to little
overlap between them and ORB’s reduced performance in
wide baseline image matching settings. Please see Sec. [V-D.1
for details.

During tracking, we randomly sample 7 pairs of corre-
spondences within each PnP RANSAC loop to solve for
a hypothesis. The pose estimate hypothesis with the most
number of inliers becomes the final estimate.

During key frame selection, a new KMF is inserted either
(1) when the estimated local translation against reference
KMF is over 1m, or local rotation is over 1°, or (2) when
under 35% of the map points are re-observed in at least two
camera frames, or (3) when a KMF hasn’t been inserted for
20 consecutive MFs. Note that (3) is necessary to model the
spline trajectory when the robot stays stationary.

We perform bundle adjustment over a recent window of
size N = 11. We cull map points with reprojection error over
1.5 pixels.

Following [7], the uncertainty weighting Y. in both tracking
and bundle adjustment is based on the scale level where ORB
features are extracted. Keypoints extracted from larger/coarser
scale levels are less precise and therefore correspond to higher
uncertainty and lower weighting during pose estimation.

During the pose graph optimization in loop closure, the
uncertainty weighting for the relative pose error terms and
the regularization terms are all set to 1.0.

In our system and all our ablation implementations, we
declare a tracking failure if the estimated pose parameters
yield under 12 inlier PnP correspondences in total. We declare
bundle adjustment failure and not apply the bundle adjustment
update if after bundle adjustment any of the pose parameters
is changed by more than 6 meters or 20 degrees. We selected
these values empirically based on training set performance.
We stop the system in the middle of processing a sequence
if there are at least 5 successive tracking failures, or if there
are at least 5 successive bundle adjustment failures.

We use the Ceres Solver [19] for modeling and solving the
non-linear optimization problems arising in tracking, bundle
adjustment, and loop closure.

B. Third-Party Baseline Experiment Details

For all ORB-SLAM [7], [20] experiments, we lowered the
default tracking failure threshold from 30 matching inliers
to 10 matching inliers. This is to increase the tolerance for
tracking failures, as the system with 10-30 matching inliers
was able to complete larger portions of the training sequences
without much compromise of local tracking errors. Apart from
the inlier threshold,, we use all other default hyperparameters



provided for the KITTI experiments by the authors', which
extract 2000 ORB keypoints per image, while we only extract
1000 ORB keypoints for our system and all our baseline and
ablation study implementations.

We use the default KITTI hyperparameters for LDSO [21]
provided by the authors’.

For the keypoint extractor ablation study, we extract 1000
keypoints and associated features from each image for all
methods. We match features with Lowe’s ratio test. The
ratio is tuned on the training set. We use 0.7 for ORB [17]
and RootSIFT [18], [22], and 0.8 for SuperPoint [23]
and R2D2 [24]. For SuperPoint, we run the provided pre-
trained model °. For R2D2, we run the provided pre-trained
r2d2_WASF_N16 model *.

C. Metrics

In the additional experiments, aside from reporting the
median and AUC for the aggregated ATE and RPE results,
we also report the ATE and RPE errors at the 90th percentile,
i.e. x with f(z) = 0.9 where f is the cumulative error
curve. Compared to median (the 50th percentile), the 90th
percentile metric better characterizes outlier behavior, and
the AUC metric gives a better characterization of the overall
performance, while being able to model system failures.

D. Quantitative Results

In this subsection we show additional details on the main
paper results, as well as additional ablation studies.

1) Detailed main paper results: Table II and Table III
compare (1) third-party baselines, (2) our implementation of
the synchronous baselines, and (3) our main system, in the
SLAM mode and visual odometry (VO) mode respectively.
In the VO mode we disable loop closing, and relocalization
in ORB-SLAM. Figs. 4 and 5 plot the respective cumulative
error curves.

Note that some metrics of our full system with loop closure
in Table II are slightly worse than those without loop closure
in Table III. The difference can also be observed in the
DSO experiments. The difference in our system is due to
the stochasticity of the trials, instead of loop closing failures.
To support our claim, in the main paper we plot the drift
relative to the ground truth with and without loop closure
to show that loop closing successfully reduced global drifts
at all key multi-frames where loop closing was performed.
Furthermore, Table IV compares all metrics on the 8/25
validation sequences where loop closure was performed, and
shows that the 8 loop closing sequences did not contribute
to the metrics differences over all 25 validation sequences.

Table V showcases the motion model ablation study results.
For simplicity, loop closure is disabled. The asynchronous
linear motion model setting represents the trajectory with a
linear motion model parameterized by a 6-DoF pose £ at each
representative timestamp ¢;. The motion model is explained

Uhttps://github.com/raulmur/ORB_SLAM2
Zhttps://github.com/tum- vision/LDSO
3https://github.com/rpautrat/SuperPoint
“https://github.com/naver/r2d2

in detail in Sec. II. Similar to the main system, we estimate
linear motion model parameter during tracking, and we jointly
refine the linear motion model parameters along with the
map points during bundle adjustment, with the reprojection
energy similar to that of tracking. Our experiments show that
modeling the vehicle motion using cubic B-splines leads to
improved performance due to the splines’ ability to impose
a realistic motion prior on the estimated trajectories.

In the additional motion model ablation results, we also
compare with linear and cubic B-spline models that perform
interpolation in SO(3) and R? separately, instead of jointly
in SE(3). Previous works [26]-[29] have shown that the split
interpolation formulation is generally better in terms of both
computation time and trajectory representation.

The results show our main system with cubic B-spline
model and full interpolation in SE(3) has the best perfor-
mance overall. The split-interpolation motion models have
slightly worse performance in our experiments, most likely
because full interpolation in SE(3) is more apt at modeling
curvy trajectories (e.g., during turns).

Table VI and Fig. 7 compare with additional camera
configurations during tracking and mapping. In the additional
camera configurations, during local mapping we additionally
match and triangulate new map points between the wide
front left and wide front middle cameras, and between the
wide front middle and wide front right cameras within the
same key multi-frame. Note that in the settings without stereo
cameras, we still use stereo cameras (only) for initialization.

Configurations without stereo cameras have worse perfor-
mance, and we argue this is due to ORB’s poor performance
in the much harder wide-baseline image matching problem
posed by little overlap between the wide front cameras during
new map point creation. The table shows that with keypoint
extractors such as SuperPoint [23] in place of ORB, this
performance gap is significantly narrowed.

Table VII and Fig. 8 show the full results of the keypoint
extractor ablation study. Compared to ORB, SIFT and
SuperPoint finish more sequences and have better ATE, with
the caveat that feature extraction takes more time.

2) Per sequence results: Table VIII shows per-sequence
errors comparing baselines and our method, all with loop
closure. We report the mean over all three trials. If at least
one trial did not complete the sequence successfully, we do
not report results for that sequence.

3) KMF heuristics ablation: To study the effect of the
combined KMF selection heuristics that factors in both map
point reobservability and motion, we perform an ablation
study where we run our stereo + synchronous discrete-time
motion model implementation with a reobservability-only
KMF heuristic. Table IX shows that our stereo implementation
with a reobservability-only heuristic performs worse than
the stereo system with the more robust combined heuristic.
Table X compares the number of key frames inserted by ORB-
SLAM2, our stereo sync with a reobservability-only heuristic,
and our stereo sync with a reobservability+motion heuristic.
The key frame numbers are taken from a randomly-selected
trial. The table shows that our reobservability-only heuristic
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TABLE II: Baseline methods. M=monocular, S=stereo, A=all cameras.

RPE-T (cm/m) RPE-R (rad/m) ATE (m)
Method @0.5 @09 AUC(%) @0.5 @09 AUC(%) @0.5 @09 AUC(%) SR (%)
LDSO-M [21] | 42.72 - 28.08 8.02E-05 - 54.23 | 594.39 - 44.67 62.67
ORB-M [7] 34.00 - 25.66 5.49E-05 - 63.77 | 694.37 - 42.65 64.00
ORB-S [20] 1.85 - 65.70 | 3.29E-05 - 70.47 30.74 - 74.31 77.33
Sync-S 1.30 - 77.54 2.91E-05 - 78.37 24.53 - 77.44 84.00
Sync-A 2.15 - 68.46 3.47E-05 - 70.47 58.18 - 75.01 74.67
Ours-A 0.35 1.99 88.63 | 1.13E-05  6.50E-05 88.17 6.13  322.95 88.82 92.00
Baselines: RPE-T Baselines: RPE-R Baselines: ATE
T‘; LDSO-M f LDSO-M % LDSO-M
< ORB-M < ORB-M < ORB-M
= ---- ORB-S = ---- ORB-S = ---- ORB-S
= —— SyncS = —— SyneS = —— Sync-S
== Sync-A == Sync-A == Sync-A
— Ours-A — Ouwrs-A — Ours-A
0 20 40 60 80 0.0000 0.0005 0.0010 0.0015 0.0020 0 1000 2000 3000 4000
Error threshold (cm/m) Error threshold (rad/m) Error threshold (m)

Fig. 4: Cumulative error curves comparing all baseline methods and our full system, with loop closure.

TABLE III: Baseline methods, all in the visual odometry (VO) mode with loop closing (and relocalization in ORB-SLAM)

disabled.

% under threshold

RPE-T (cm/m) RPE-R (rad/m) ATE (m)
Method @05 @09 AUC%) | @05 @09  AUC%) | @05 @09 AUC@%) | SR (%)
DSO-M [25] 30.99 - 32.93 3.88E-05 - 58.98 801.99 - 41.87 64.00
ORB-M (VO) [7] 45.22 - 20.33 4.93E-05 - 64.91 849.64 - 40.62 58.67
ORB-S (VO) [20] 2.24 - 64.91 2.99E-05 - 72.30 45.28 - 74.61 66.67
Sync-S (VO) 1.27 - 77.77 2.80E-05 - 78.72 24.07 - 77.64 85.33
Sync-A (VO) 1.97 - 69.46 2.96E-05 - 73.39 55.24 - 75.11 70.67
Ours-A (VO) 0.35 2.14 88.79 1.11E-05  6.30E-05 88.47 6.53 299.30 89.04 92.00
Baselines (VO): RPE-T Baselines (VO): RPE-R Baselines (VO): ATE
DSO-M % DSO-M % DSO-M
ORB-M < ORB-M < ORB-M
---- ORB-S ES ---- ORB-S £ ---- ORBS
—— SyncS = —— SyncS = —— SyneS
== Sync-A == Sync-A == Sync-A
— Ours-A — Ours-A — Ours-A
20 40 60 80 0.0000 0.0005 0.0010 0.0015 1000 2000 3000 4000
Error threshold (cm/m) Error threshold (rad/m) Error threshold (m)

Fig. 5: Cumulative error curves comparing all baseline methods and our full system, without loop closure.

TABLE IV: Ablation study on loop closure on 8 validation sequences where loop closing was performed.

RPE-T (cm/m)

RPE-R (rad/m)

ATE (m)

Method ‘ @05 @09 AUC(%) ‘ @05 @09  AUC(%) ‘ @05 @09 AUC(%) ‘ SR (%)
OursA (VO) | 027 099 9667 | 951E-06 3.07E-05 9573 | 387 2508 9767 | 100.00
Ours-A 028 092 9678 | 983E-06 319505 9588 | 297 20.58 9773 | 100.00




TABLE V: Ablation study on motion models. All experiments in visual odometry (VO) mode with loop closing disabled.
Split indicates interpolation in SO(3) and R? separately [26] instead of jointly in SE(3).

RPE-T (cm/m) RPE-R (rad/m) ATE (m)
Method @05 @09 AUC(%) | @0.5 @09  AUC%) | @05 @09 AUC@%) | SR (%)
Sync Assumption 1.97 - 69.46 2.96E-05 - 73.39 55.24 - 75.11 70.67
Linear (Split) 0.36 2.51 88.08 1.10E-05  7.96E-05 87.79 6.25 580.23 87.43 92.00
Linear 0.41 2.71 87.76 1.11E-05 5.99E-05 88.39 6.09 429.86 88.31 89.33
Cubic B-Spline (Split) 0.38 3.34 87.86 1.12E-05  9.01E-05 87.69 5.15 588.96 87.34 92.00
Cubic B-Spline 0.35 2.14 88.79 1.11E-05  6.30E-05 88.47 6.53 299.30 89.04 92.00
Ablation (Motion Model): RPE-T Ablation (Motion Model): RPE-R Ablation (Motion Model): ATE
0.8 . .
% 0.6 2 ) % .6
Z04 g 0.
:\—'(),2 Sync-A ENE Sync-A ;\—'(J_j Sync-A
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Fig. 6: Cumulative error curves of the motion model ablation study. (Top) The three comparisons in the main paper. (Bottom)
All comparisons in the additional experiments.

TABLE VI: Ablation study on camera rigs in the VO mode, all initialized with the stereo cameras. s = stereo, wf = wide-front,
wb = wide-back, v is used for intra-frame new map point creation during mapping. The last row in the ORB table represents
the main system.

Camera Config RPE-T (cm/m) RPE-R (rad/m) ATE (m) SR (%)

s wf wb | @.5 @09 AUC(%) @0.5 @0.9 AUC(%) | @0.5 @09 AUC(%)

v 0.70 - 79.86 1.93E-05 - 80.48 11.44 - 75.75 88.00
= v Vv 0.41 8.52 84.88 1.21E-05  2.48E-04 85.86 9.00  802.88 84.92 90.67
= v 6.07 - 49.00 4.58E-05 - 52.96 53.76 - 55.05 57.33
E v v 1.16 - 63.94 1.65E-05 - 74.34 18.63 - 72.10 74.67
o v Y v 0.36 3.43 88.43 1.12E-05  5.35E-05 88.60 595  298.08 89.05 92.00

v v v 0.35 2.14 88.79 1.11E-05  6.30E-05 88.47 6.53 299.30 89.04 92.00
= v 0.64 19.44 82.97 1.59E-05  5.77E-04 83.09 1640 463.41 85.09 82.67
£ v v 0.44 1.62 92.83 1.01E-05  3.48E-05 93.43 8.33 106.31 93.92 97.33
g v 1.06 - 78.32 2.88E-05 - 76.73 21.08 - 73.48 88.00
og v v 0.54 1.85 89.42 1.84E-05  6.51E-05 88.31 10.62  413.52 87.67 96.00
g v Y v 0.38 1.22 95.66 1.04E-05  2.63E-05 95.86 5.38 86.67 96.38 100.00
& v v v 0.41 1.28 95.28 1.03E-05  2.54E-05 95.90 6.83 78.06 96.34 98.67
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Fig. 7: Cumulative error curves of the camera ablation study. (Top) The three configurations in the main paper. (Middle) All
camera configurations in the additional experiments. (Bottom) All camera configurations with SuperPoint in place of ORB as
the keypoint extractor in the additional experiments. Camera configuration legend order corresponds to the order in the table.

TABLE VII: Ablation study for keypoint extractors in the VO mode. Time is the average feature extraction time per image

using 24 CPU cores.

. RPE-T (cm/m) RPE-R (rad/m) ATE (m)
Method ‘ Time (5) ‘ @05 @09 AUC(%) @05 @09 AUC%) | @05 @09 AUC@%) | SR (%)
RootSIFT [22] 0.10 | 041 226 9406 | L.I1E-05  2.69E-05 9584 | 6.66 123.72 9150 | 98.67
SuperPoint [23] 035 | 041 128 9528 | 103E-05 2.54E-05 9590 | 683 78.06 9634 | 98.67
R2D2 [24] 20.50 | 041 - 84.09 | 1.40E-05 - 8372 | 742 - 86.62 | 88.00
ORB [17] 001 | 035 214 8879 | LIIE-O5S 6.30E-05 8847 | 653 299.30 89.04 | 92.00

in general inserts fewer key frames than ORB-SLAM?2, and
that the combined heuristic selects almost twice as many
key frames during highway sequences, when the vehicle is
driving very fast in a highly repetitive scene.

E. Qualitative Results

1) Qualitative Trajectories:
a) Full Results for Ours-A vs. ORB-SLAM?2: Fig. 9
and Fig. 11 showcase the trajectories in all 25 validation
sequences, comparing ORB-SLAM?2 using only the stereo

cameras to our full system using all 7 asynchronous cameras.
Fig. 10 depicts the trajectories ins all 65 training sequences.

In the following paragraphs, we qualitatively showcase the
failure cases of our main paper ablation study baselines.

b) Motion Model Ablation: Fig. 12 plots failure cases of
the linear motion model and the discrete-time motion model
with a wrong synchronous assumption. The linear motion
model trial failed early due to repeated mapping failures in a
challenging case with dynamic objects, and the synchronous
model had huge estimation errors during complex maneuvers



TABLE VIII: Per sequence errors of all baselines and our method. Errors averaged over all three trials at all evaluated
timestamps. - denotes at least one trial did not successfully complete the sequence. RPE-T(cm/m), RPE-R(rad/m), ATE(m).

Monocular Stereo All-Camera
Sequence LDSO-M ORB-M ORB-S Sync-S Sync-A Ours-A
RPE-T RPE-R ATE|RPE-T RPE-R ATE|[RPE-T RPE-R ATE|RPE-T RPE-R ATE|[RPE-T RPE-R ATE |RPE-T RPE-R ATE
day_no_rain_0 - - - - - - 295 8.44E-05 40.96 0.51 1.70E-05 6.17 = = = 0.46 1.25E-05 7.38
day_no_rain_| | 4645 1.61E-03 22575| 125 2.78E-05 543| 129 307E-05 5.09| 090 657E-05 274| 166 6.55E-05 843| 022 LOOE-05 055
day_no_rain_2 - - -| 546 489E05 5275 1.72 737E05 12.04| 041 245E-05 554 - - -| 029 120E-05 353
day_no_rain_3 21.63 2.63E-05 382.04 - - - 1.53 3.33E-05 13.03 0.33 2.00E-05 295 0.85 1.71E-05 5.18 0.17 1.16E-05 2.71
day_no_rain_4 - - -| 3193 433E-05 42690| 0.64 2.17E-05 885| 096 3.61E-05 10.17 - - -| 096 257E-05 3.74
day_no_rain_5 - - - - - -| 106 277E-05 664| 125 S.11E05 649| 261 528E-05 7.83| 044 155E-05 118
day_no_rain 6 | 411 LI3E-04 17.04| 174 491E05 47.99 - - -| 079 401E-05 24.63| 327 2.00E-04 73.84| 024 124E-05 20.11
day_no_rain_7 0.72 3.35E-05 1.75 2.74 1.52E-04 50.96 0.64 1.58E-05 1.41 0.28 1.84E-05 0.38 0.50 1.61E-05 1.80 0.23 1.64E-05 0.49
day_no_rain_8 - - -| 44.84 7.88E-05 41175 - - -| 182 480E-05 2681| 1.63 3.13E-05 23.36| 040 1.28E-05 530
day_no_rain 9 | 1747 431E-04 74.46| 2615 147E-04 571.95 - - -| 037 182E05 270 - - -| 033 170E-05  2.07
day_no_rain_10| 31.34 4.76E-05 110.64| 14.70 3.54E-05 73.36 1.12 3.73E-05 7.43 0.33 1.66E-05 291 0.41 1.55E-05 2.66 0.27 9.05E-06 1.96
day_no_rain_11 1.18 2.50E-05 11.79 2.47 3.16E-05 8223 0.73  2.50E-05 3.12 0.26 1.53E-05 1.70 0.28 1.49E-05 2.86 0.24 1.12E-05 1.38
day_rain_0 23.37 2.41E-05 652.45 - - - - - - 1.59 5.73E-05 65.56 4.06 2.88E-05 73.63 0.31 1.33E-05 12.56
day_rain_1 - - -| 19.60 343E-05 22822 - - -| 049 333E-05 7385 - - -| 031 152E-05 3.01
day_rain_2 845 275B-05 34.99| 19.52 8.92E-05 82.56| 1185 6.23E-04 130.85 - - - - - -| 077 205E-05 491
day_rain_3 - - -] 31.31 1.11E-04 219.47 - - - - - - - - - 0.37 1.15E-05 14.46
day_rain_4 2391 3.19E-04 138.17| 29.49 1.94E-04 173.28 5.19 1.79E-04 27.15 6.59 4.39E-05 83.15 - - - 0.72 2.14E-05 7.21
day_rain_5 11.88 240E-05 2551 | 4.65 27IE-05  8.62| 1032 1.92E-04 1870| 044 3.60E05 086| 186 3.28E-05 290| 0.6 1.23E-05  0.51
hwy_no_rain_0 - = = = = = = = = 221 4.02E-05 218.65 2.51 3.25E-05 190.31 0.41 1.52E-05 52.94
hwy_no_rain_I - - - - - -| 292 3.26E-05 49.79| 321 9.19E-05 88829 | 291 4.01E-05 9270 | 0.59 149E-05 22.54
hwy_no_rain_2 - - - - - - - - - 3.08 3.30E-05 324.44 3.34 3.56E-05 395.12 0.45 1.40E-05 377.00
hwy_no_rain_3 - - - - - - 9.04 7.69E-05 852.20 5.53 7.38E-05 185.56 3.38 5.60E-05 8441 0.48 1.50E-05 36.58
hwy_rain_0 - - - - - - - - -| 074 257E-05 171.41| 138 1.86E-05 168.77| 031 9.69E-06 63.98
hwy_rain_1 - - - - - - - - - - - - - - - - - -
hwy_rain_2 - - - - - - - - - - - - - - - - - -
TABLE IX: Ablation study for the impact of the KMF-selection heuristics on the system performance.
Method KMF Heuristics RPE-T (cm/m) RPE-R (rad/m) ATE (m) SR (%)
reobservability ~ motion \ @0.5 @09 AUC(%) @05 @09 AUC(%) | @05 @09 AUC(%) 7
Sync-S v 2.90 - 65.24 | 3.28E-05 - 71.39 | 68.56 - 68.02 82.67
Sync-S v v 1.30 - 77.54 | 2.91E-05 - 78.37 | 24.53 - 77.44 84.00

TABLE X: Number of KMFs selected per validation sequence, comparing ORB-SLAM?2, ours stereo with reobservability-only
heuristics, and ours stereo with a combined heuristics. Empty cells correspond to unfinished sequences.

sequence ORB-S [20]  Ours-S (r-only)  Ours-S (combined)
day_no_rain_0 1718 1322 1759
day_no_rain_1 2249 1645 2054
day_no_rain_2 3795 2370 2690
day_no_rain_3 1245 969 1399
day_no_rain_4 2364 1734 2143
day_no_rain_5 - 1455 2034
day_no_rain_6 3373 - 2983
day_no_rain_7 501 464 633
day_no_rain_8 1724 1121 2104
day_no_rain_9 - 1598 1744
day_no_rain_10 1263 982 1505
day_no_rain_11 1593 1107 1559
day_rain_0 - 1522 2838
day_rain_1 - 1902 3043
day_rain_2 1097 - -
day_rain_3 1952 2181 -
day_rain_4 2520 2339 3119
day_rain_5 383 408 531
hwy_no_rain_0 3646 3507 6532
hwy_no_rain_1 2400 2094 3994
hwy_no_rain_2 3358 2495 4632
hwy_no_rain_3 2124 2242 4484
hwy_rain_0 1835 2316 5132
hwy_rain_1 - - -

hwy_rain_2
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Fig. 8: Cumulative error curves of the keypoint extractor ablation study. Our experiments show that while ORB features
still remain competitive, SuperPoint features lead to the best overall performance, especially in terms of translational error.

However, this comes at a much higher computational cost.

such as reversing and parking.

c) Camera Ablation: Fig. 13 plots trajectories estimated
with different camera configurations, highlighting failure cases
resulted from camera configurations with a narrower field
of view in challenging conditions like view obstruction, low
light, rainy environments and low-textured highway driving.

d) Keypoint Extractor Ablation: Fig. 14 plots trajec-
tories estimated by SLAM systems that use ORB, Root-
SIFT [22] and SuperPoint [23] respectively as the keypoint
extractor. RootSIFT and SuperPoint trajectories visually align
better with the ground truth and are able to complete more
challenging rainy highway sequences.

2) Loop Closure: Figure 15 shows a failure case consisting
in a false positive loop detection in the stereo setting. The
large bus dominates the field of view of both cameras while
also having rich texture due to the lights, ad, efc., causing
a loop to be incorrectly closed. Multi-view loop closure
correctly rejects this case and many similar others. This
highlights the importance of multiple cameras for robust
SLAM in the real world. For more qualitative results on
the loop closure in the main system, please refer to the
supplementary video.

3) Qualitative Map: Figures 16, 17, 18, and 19 showcase
visualizations of some of the maps produced by AMV-
SLAM. Please refer to our supplementary video for additional
qualitative results.
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Fig. 10: Estimated trajectories in all 65 train sequences, comparing ORB-SLAM?2 (stereo) with our full system (all seven

cameras).
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day rain 5 hwy no rain 0 day rain 5 hwy no rain 3

500
20,
100

300 10

v (m

\

=200

100

100 200 0

x (m)

200

100 3 2 1 0 30 20
x (m)

10 0
x (m)

10 20 30
x (m)

Fig. 12: Motion model ablation trajectories comparing our asynchronous cubic B-spline model, an asynchronous linear
motion model, and a discrete-time motion model falsely assuming all cameras are synchronous. (Leftmost) Zoomed-in view
on a segment where the linear motion model failed. The vehicle was at an intersection with many dynamic objects. (Right)
Maneuvers in the validation set. The linear motion model is missing in the middle sequence because it failed before reaching
the maneuver.
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Fig. 13: Camera ablation trajectories estimated with (1) all 7 cameras, (2) all 3 wide front cameras + the stereo pair, and (3)
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that was making a turn. Front-all failed due to repeatedly inconsistent bundle adjustment results, while stereo persisted with
a visible rotation error. The second-left scenario is a rainy dusk environment with high volume of traffic. The two scenarios
on the right correspond to fast highway driving.
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Fig. 14: Keypoint extractor ablation trajectories estimated with ORB, RootSIFT and SuperPoint. RootSIFT and SuperPoint
have smaller absolute errors overall and finish a higher percentage of the challenging rainy highway sequences.
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Fig. 15: Example where stereo-only loop detection fails due to the presence of the same large bus in two geographically
distant frames. This sample is from the training set sequence titled day_rain_7.

#f

Fig. 16: Qualitative example of the 3D structure produced by the AMV-SLAM system. Note the system’s ability to sharply
reconstruct the road boundaries, in addition to the surrounding vegetation. This example is from the training set sequence
titled day_rain_5.



Fig. 17: Reconstructed point cloud from the training sequence day_rain_5. Post-processed to include colors from the
original camera images. Best viewed in electronic format.

Fig. 18: Reconstructed point cloud from the training sequence day_no_rain_0.



Fig. 19: Overview of a reconstruction produced from the training set sequence day_rain_7 by our system. The point
cloud is colored by the height (Z) of each point, in the map reference frame.
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