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In this thesis, we present some results in computational complexity. We consider two

approaches for showing that #P has polynomial-size circuits. These approaches use ideas

from the interactive proof for #3-SAT. We show that these approaches fail. We discuss

whether there are instance checkers for languages complete for the class of approximate

counting problems. We provide evidence that such instance checkers do not exist. We

discuss the extent to which proofs of hierarchy theorems are constructive. We examine

the problems that arise when trying to make the proof of Fortnow and Santhanam’s

nonuniform BPP hierarchy theorem more constructive.
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Chapter 1

Introduction

Computational complexity is the study of the relationship between the resources available

to a computational model and the problems that can be solved by this model. Typically,

the resources considered include time, space, randomness, nondeterminism, and nonuni-

formity. Problems that can be solved using a specific set of resources are grouped together

to form a complexity class. In this thesis, we will present some results in computational

complexity.

The class P is the set of languages accepted by polynomial-time Turing machines, and

the class NP is the set of languages accepted by nondeterministic polynomial-time Turing

machines. The most important open question in computer science today is whether

P = NP. This question has been studied for over 30 years, without resolution. In [KL82],

Karp and Lipton suggest a possible approach for showing P 6= NP. They show that

if every language in EXP, the class of languages accepted by exponential-time Turing

machines, is accepted by a family of polynomial-size circuits, then P 6= NP.

The class #P is a class of function problems. Informally, problems in #P involve

counting the number of different solutions to a question. The problem #SAT (comput-

ing the number of satisfying assignments for a formula of the propositional calculus) is

complete for #P. Every language in P#P (the class of languages that can be decided in
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Chapter 1. Introduction 2

polynomial time given access to an oracle for a #P-complete problem) has an interac-

tive proof [LFKN92]. This means that languages in P#P are “easy” when interaction is

allowed; that is, each language in P#P can be decided by a probabilistic polynomial-time

verifier that interacts with a computationally unbounded prover. Furthermore, the inter-

active proofs for P#P are the simplest known non-trivial interactive proofs for NP-hard

languages. It is plausible that such interaction can be converted into nonuniformity. If

this is the case, then #P has polynomial-size circuits. Since P#P ⊆ EXP, and since ev-

ery language in EXP has a two-prover interactive proof [BFL91], showing that #P has

polynomial-size circuits would be a significant first step toward showing that EXP has

polynomial-size circuits.

In Chapter 2, we consider two related approaches for showing that #P has polynomial-

size circuits. Like the interactive proof for #SAT, these approaches both rely on the idea

of arithmetizing propositional formulas. Given a propositional formula, we can construct

a multivariable polynomial of degree at most two in each variable, such that for every

{0, 1}-valued assignment to the polynomial’s variables, the polynomial evaluates to 1 if

and only if the corresponding truth assignment satisfies the formula, and the polynomial

evaluates to 0 otherwise.

The first approach we consider is showing that for every 2n-variable polynomial of

degree at most two in each variable, there exists a polynomial-size (in n) circuit that,

given oracle access to the polynomial and given values for the first n variables, sums the

polynomial over all {0, 1}-valued assignments to the remaining n variables. Intuitively,

the first n variables are used to specify a propositional formula, and the remaining n

variables are used to specify a truth assignment to that formula. We show that, in fact,

there are polynomials for which such a circuit does not exist.

Note that in the first approach, we consider arbitrary polynomials of degree at most

two in each variable. These polynomials do not necessarily correspond to arithmetizations

of propositional formulas. The second approach we consider attempts to deal with this
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by considering only a subset of polynomials of degree at most two in each variable.

In particular, we consider those polynomials that have small low-degree descriptors. A

small low-degree descriptor for an n-variable polynomial p is a low-degree polynomial in

log(n) variables that can be used to efficiently compute any coefficient of p. We show

that for each n there exists a polynomial-size circuit that, given oracle access to any

n-variable polynomial that is of degree at most two in each variable and has a small low-

degree descriptor, sums the polynomial over all {0, 1}-valued assignments to its variables.

However, we then show that there exist propositional formulas whose arithmetizations

do not have small low-degree descriptors.

Polynomials with small low-degree descriptors have coefficients that (given the de-

scriptor) are easy to compute. We show that, in general, computing a coefficient of a

polynomial is hard. In particular, we show that given an expression in n variables and

involving operations {+,−,×}, such that the expression is of degree at most two in each

variable, the problem of computing the coefficient of a given term is P#P-complete.

The class #P involves exact counting. In Chapter 3, we investigate approximate

counting. In an approximate counting problem, we specify an approximation parameter

r and require that the answer c′ be such that c/r ≤ c′ ≤ r · c, where c is the exact count.

Every P#P-complete language and every language in P has an instance checker. Intro-

duced by Blum and Kannan [BK95], an instance checker for a language L is an efficient

procedure that can be used to verify the output of a Turing machine that purportedly

decides L. Instance checkers are closely related to interactive proofs. It is not known

if instance checkers exist for languages complete for any NP-hard natural class strictly

contained in P#P (of course, it is not even known if such a class exists). Assuming the

polynomial-time hierarchy doesn’t collapse, the class of approximate-counting problems

is an NP-hard class that is strictly contained in P#P. We provide evidence that instance

checkers do not exist for languages complete for the class of approximate counting prob-

lems.
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Recently, the existence of instance checkers has been used to prove results about

probabilistic computation. In particular, the existence of instance checkers has been

used to prove a hierarchy theorem for probabilistic polynomial time with small advice.

By the Time Hierarchy theorem, for any constant d ≥ 0 there exists a language that can

be decided in polynomial time but not in time nd. An analogous theorem is not known for

probabilistic polynomial time with bounded error (BPTIME). However, using an instance

checker for an EXP-complete language, Barak [Bar02] shows that for any constant d ≥ 0,

there exists a language that can be decided in BPP (probabilistic polynomial time with

bounded error) with log log n bits of advice but not in BPTIME(nd) with log log n bits of

advice. Fortnow and Santhanam [FS04] improve this result by reducing the advice from

log log n bits to one bit.

In Chapter 4, we discuss the extent to which proofs of hierarchy theorems are con-

structive. We consider such a proof to be constructive if rather than simply establishing

that C1 ( C2 for some complexity classes C1 and C2, the proof presents a language L such

that L ∈ C2 − C1. Furthermore, we require a constructive proof to establish how hard it

is, given a Turing machine M that satisfies the resource bounds of class C1, to find an

input x on which M differs from L. We present the proof of Fortnow and Santhanam’s

hierarchy theorem, and discuss the problems that arise when trying to make this proof

more constructive.



Chapter 2

Does #P have polynomial-size

circuits?

In this chapter, we consider two related approaches for showing that the class #P has

polynomial-size circuits. We show that these approaches - the “2n-variable polynomial

approach” and the “small low-degree descriptor approach” - do not work. Finally, we

show that the problem of computing a coefficient of a multivariable polynomial given an

expression for the polynomial is P#P-complete.

2.1 The class #P

The class #P is a class of function problems. Each language L ∈ NP has a corresponding

counting problem #L ∈ #P. For each language L ∈ NP, there is a polynomial-time

computable witness relation RL such that x ∈ L iff there exists a string y of length

polynomial in |x| where RL(x, y) holds. Such a string y is known as a witness for x’s

membership in L. The problem #L is to compute, for an input x, the number of witnesses

for x’s membership in L. Note that the problem #L depends on the choice of witness

relation RL, and hence #L is not uniquely determined by L.

Equivalently, #P can be defined in terms of counting the number of accepting com-

5
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putation paths of a polynomial-time nondeterministic Turing machine.

Definition 2.1.1 (#P). Let f : Σ∗ → N be a function. f ∈ #P iff there exists a

polynomial-time nondeterministic Turing machine M such that for all x ∈ Σ∗, f(x) is

the number of accepting computation paths of M on input x.

The language SAT is the set of satisfiable formulas of the propositional calculus. The

corresponding counting problem, #SAT, is to count the number of satisfying assignments

for a propositional formula. #SAT is #P-complete, and remains #P-complete when

restricted to formulas that are in 3-CNF (conjunctive normal form with at most three

literals per clause).1 This restricted problem is called #3-SAT.

2.2 Interactive proofs

The class NP is the set of languages L such that for each string x ∈ L, there is a

polynomial-size proof of x’s membership in L. The proof is simply a string (the witness)

whose correctness can be efficiently checked by a verifier. Instead of requiring a proof

to be a single string, what if we allow a prover and verifier to have a “conversation” by

sending strings to each other? This leads to the idea of interactive proofs, introduced

in [GMR89, BM88]. Every language in P#P has an interactive proof [LFKN92]. In

fact, interactive proofs for P#P-complete languages are the simplest known non-trivial

interactive proofs for NP-hard languages. This makes the class P#P a logical starting

point for investigating the idea that interaction can be converted into nonuniformity.

In an interactive proof, a computationally unbounded prover P attempts to convince

a probabilistic polynomial-time verifier V of the truth of a statement (for example, that

some string x is in some language L). P and V exchange one or more messages, and at

the end V either accepts or rejects. If the statement being proved is indeed true then V

1In fact, #SAT is #P-complete even when restricted to formulas in 2-CNF.
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always accepts, and otherwise V almost always rejects.

Definition 2.2.1 (Interactive proof). Let L be a language. We say that L has an

interactive proof if there exists a pair of interactive Turing machines (P, V ) such that V

is probabilistic polynomial-time and the following two properties hold:

1. (Completeness) For all x ∈ L, (P, V ) accepts input x with probability 1.

2. (Soundness) For all (computationally unbounded) machines P ′ and for all x /∈ L,

say |x| = n, the probability that (P ′, V ) accepts input x is at most 1/nc for all c

and sufficiently large n.

We call P the prover and we call V the verifier. IP is the class of languages that have

interactive proofs. For a polynomially length-bounded function f , we say that f has an

interactive proof if the language L = {(x, y) | f(x) = y} has an interactive proof.

Every language L ∈ NP has a trivial interactive proof. On input x ∈ L, the prover

P sends the verifier V a witness y for x’s membership in L, and V simply checks that

the witness relation RL(x, y) holds. If x /∈ L then no prover will be able to find a y that

makes V accept.

Similarly, every language L ∈ coRP has a trivial interactive proof. A language L is

in coRP if there exists a probabilistic polynomial-time Turing machine M such that for

all inputs x, M accepts x with probability 1 if x ∈ L, and M rejects x with probability

at least 1/2 if x /∈ L. On input x, the prover P does nothing and the verifier V runs L’s

coRP machine |x| times on x, accepting iff every such run accepts. Clearly, if x ∈ L then

V always accepts and if x /∈ L then V accepts with probability at most 1/2|x|.

The known interactive proofs for all NP-hard classes contained in P#P are either

trivial (as in the case of NP) or use all the ideas used in interactive proofs for P#P-

complete languages.2 As an example of the latter case, the simplest known interactive

2The coNP language GRAPH-NONISOMORPHISM has a non-trivial interactive proof that does not
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proof for TAUTOLOGIES, a coNP-complete language, involves showing that the number

of satisfying assignments for a propositional formula F is exactly 2n (where n is the

number of variables in F ) and hence this interactive proof uses all the ideas used in

the interactive proof for #SAT. On the other hand, the known interactive proofs for

PSPACE ⊇ P#P do require additional ideas that are not needed for P#P [Sha92].

The original proof that P#P ⊆ IP [LFKN92] used the #P-complete problem PER-

MANENT. Babai and Fortnow [BF91] then gave a proof using #3-SAT. Their interactive

proof for #3-SAT is based on the idea of arithmetizing 3-CNF formulas. In section 2.2.1,

we will show how to arithmetize a propositional formula, and in section 2.2.2, we will

present the interactive proof for #3-SAT. Then, motivated by the ideas used in the in-

teractive proof, we will investigate approaches for showing that #3-SAT (and hence #P)

has polynomial-size circuits.

2.2.1 Arithmetizing propositional formulas

Babai and Fortnow [BF91] and Shamir [Sha92] introduce the idea of arithmetizing propo-

sitional formulas. They show how, given a 3-CNF formula F , we can efficiently construct

a multivariable polynomial p such that for every {0, 1}-valued assignment to p’s variables,

p evaluates to 1 iff the corresponding truth assignment satisfies F and p evaluates to 0

iff the corresponding truth assignment does not satisfy F .

Definition 2.2.2 (Arithmetization). Let F be a propositional formula on variables

x1, . . . , xn, and let p be a polynomial on variables x1, . . . , xn. We say that p is an arith-

metization of F if the following holds:

• Let τ : {x1, . . . , xn} → {true, false} be a truth assignment, and let a1, . . . , an ∈

{0, 1} be such that for each i, ai = 1 iff τ(xi) = true. Then p(a1, . . . , an) = 1 if τ

satisfies F , and p(a1, . . . , an) = 0 otherwise.

use the ideas used in interactive proofs for P#P-complete languages. However, this language is not known
to be NP-hard.
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Note that if p is an arithmetization of a propositional formula F , then the number

of satisfying truth assignments for F is equal to the sum of p over all {0, 1}-valued

assignments to its variables. We will use the following notation for such a sum.

Notation 2.2.1 (S(p)). Let p be a polynomial. Say p’s variables are x1, . . . , xn. Then,

S(p) denotes the sum
∑

(x1,...,xn)∈{0,1}n p(x1, . . . , xn).

We now show how to arithmetize a 3-CNF formula. Let F = C1 ∧ C2 ∧ · · · ∧ Cm

be a 3-CNF formula on variables x1, . . . , xn, where each Ci is a clause. We begin by

arithmetizing each clause. So consider a clause Ci, and first consider the case where Ci

has exactly three literals. Say Ci = (`i1 ∨ `i2 ∨ `i3), where each `ij is a literal. For any

literal `, let ¯̀ be its negation. Then, define formula C ′
i as follows:

C ′
i = (`i1 ∧ `i2 ∧ `i3) ∨ (`i1 ∧ `i2 ∧ ¯̀

i3) ∨ (`i1 ∧ ¯̀
i2 ∧ `i3) ∨ (¯̀i1 ∧ `i2 ∧ `i3)

∨ (`i1 ∧ ¯̀
i2 ∧ ¯̀

i3) ∨ (¯̀i1 ∧ `i2 ∧ ¯̀
i3) ∨ (¯̀i1 ∧ ¯̀

i2 ∧ `i3)

Now consider the case where Ci has exactly two literals, say Ci = (`i1 ∨ `i2). Then, define

formula C ′
i as follows:

C ′
i = (`i1 ∧ `i2) ∨ (`i1 ∧ ¯̀

i2) ∨ (¯̀i1 ∧ `i2)

Finally, if Ci has exactly one literal, let C ′
i = Ci. Note that in each case, C ′

i is logically

equivalent to Ci. To construct an arithmetization pi(x1, . . . , xn) from C ′
i, we proceed as

follows:

• We replace each ∧ with × (multiplication).

• We replace each ∨ with + (addition).

• We replace each negated variable ¬xj with (1− xj).

It is easy to see that pi is an arithmetization of C ′
i (and hence an arithmetization of Ci).

The key idea is that any truth assignment that satisfies C ′
i satisfies exactly one of its
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∧-clauses. Then, p = p1 · p2 · . . . · pm is an arithmetization of F . This means that the

number of truth assignments that satisfy F is exactly S(p).

Note that the degree of each variable in p will be equal to the number of times the

variable appears in formula F . In fact, we can efficiently construct a polynomial p′ of

degree at most two in each variable such that the number of truth assignments that

satisfy F is exactly S(p′).

We begin by constructing from F a formula F ′ such that each variable appears at most

three times in F ′, and such that F ′ has the same number of satisfying truth assignments as

F . Initially, F ′ = F . Then, for each variable xi, if xi appears k > 2 times in F ′ we create k

variables xi,1, . . . , xi,k, and replace the j-th occurrence of xi in F ′ with xi,j. Also, if k > 2,

we add the clauses Di = (xi,1 → xi,2) ∧ (xi,2 → xi,3) ∧ . . . (xi,k−1 → xi,k) ∧ (xi,k → xi,1)

to F ′. Otherwise, we let Di be the empty conjunction. Since any truth assignment that

satisfies F ′ must set xi,1, . . . , xi,k to the same value, the number of truth assignments that

satisfy F ′ is the same as the number of truth assignments that satisfy F .

Now, F ′ = C1∧· · ·∧Cm∧D1∧· · ·∧Dn. We arithmetize each Ci using the same method

as before, and we call each such arithmetization pi. Then, p1 · p2 · . . . · pm is a polynomial

that is of degree at most one in each variable that appears in a Di and of degree at most

two in each variable that does not appear in a Di. It remains to arithmetize each Di.

We need the arithmetization of each Di to be of degree at most one in each variable.

However, since each variable that appears in a Di appears twice in that Di, if we follow the

method used to arithmetize the Ci then the arithmetization will be of degree two in each

variable. Instead, we arithmetize each Di = (xi,1 → xi,2) ∧ (xi,2 → xi,3) ∧ · · · ∧ (xi,k−1 →

xi,k)∧ (xi,k → xi,1) as qi = xi,1 · xi,2 · . . . · xi,k + (1− xi,1) · (1− xi,2) · . . . · (1− xi,k), and we

arithmetize each empty conjunction Di as qi = 1. Then, p′ = p1 ·p2 · . . . ·pm ·q1 ·q2 · . . . ·qn

is an arithmetization of F ′, and p′ is of degree at most two in each variable. Furthermore,

we have that the number of truth assignments that satisfy F is exactly S(p′).
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2.2.2 An interactive proof for #3-SAT

We now present the interactive proof for #3-SAT described in [BF91].

On input (F, α), where F is a propositional formula on variables x1, . . . , xn, the prover

P wishes to convince the verifier V that the number of truth assignments to x1, . . . , xn

that satisfy F is α.

P starts by selecting a prime q such that 2n < q < 2n+1, and sends q to V who verifies

that q is indeed prime (and if not, V rejects). All arithmetic will now be performed over

the field Fq.

The prover then computes, as described in section 2.2.1, a polynomial p(y1, . . . , ym)

that is of degree at most two in each variable such that S(p) is the number of truth

assignments that satisfy F . Note that m will be polynomial in n. P now wishes to

convince V that S(p) = α. The interaction then proceeds in m rounds.

Let α0 = α. In round 1, P computes the degree-2 polynomial

p1(y1) =
∑

(y2,...,ym)∈{0,1}m−1

p(y1, . . . , ym)

and sends the coefficients of a polynomial p′1, supposedly equal to p1, to V . V checks

that p′1(0)+p′1(1) = α0, and if not, V rejects. V then randomly selects r1 ∈ Fq, computes

α1 = p′1(r1), and sends r1 to P . P ’s new goal is to convince V that∑
(y2,...,ym)∈{0,1}m−1

p(r1, y2, . . . , ym) = α1.

Similarly, in round i, P computes the degree-2 polynomial

pi(yi) =
∑

(yi+1,...,ym)∈{0,1}m−i

p(r1, . . . , ri−1, yi, . . . , ym)

and sends the coefficients of a polynomial p′i, supposedly equal to pi, to V . V checks that

p′i(0) + p′i(1) = αi−1, and if not, V rejects. V then randomly selects ri ∈ Fq, computes

αi = p′i(ri), and sends ri to P . P ’s new goal is to convince V that∑
(yi+1,...,ym)∈{0,1}m−i

p(r1, . . . , ri, yi+1, . . . , ym) = αi.
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After round m, V computes p(r1, . . . , rm) and checks if this equals αm. If so, V

accepts, and otherwise, V rejects.

It is easy to see that if α is in fact the number of truth assignments that satisfy F

and P is an honest prover (one that correctly sends polynomial pi at each round i) then

(P, V ) accepts (F, α).

Now suppose that α is not the number of truth assignments that satisfy F . Consider

the probability that any cheating prover P ′ convinces V to accept (F, α). Recall that

after each round, P ′ has a new statement that it is trying to prove. Since α is not the

number of truth assignments that satisfy F , we have
∑

(y1,...,ym)∈{0,1}m p(y1, . . . , ym) 6= α0.

If V accepts (F, α), we have p(r1, . . . , rm) = αm. In this case we have that before round

1, P ′ is trying to prove a false statement, but after round m, P ′ is trying to prove a true

statement. Then there exists an i such that before round i, P ′ is trying to prove a false

statement, but after round i, P ′ is trying to prove a true statement. That is, there exists

an i such that ∑
(yi,...,ym)∈{0,1}m−i+1

p(r1, . . . , ri−1, yi, . . . , ym) 6= αi−1 (2.1)

but ∑
(yi+1,...,ym)∈{0,1}m−i

p(r1, . . . , ri, yi+1, . . . , ym) = αi. (2.2)

Fix i, suppose that (2.1) holds, and consider the probability that both (2.2) holds and V

doesn’t reject in round i. Since (2.1) holds, we have pi(0) + pi(1) 6= αi−1. For V to not

reject in round i, we must have p′i(0)+p′i(1) = αi−1. Therefore, we must have pi 6= p′i. By

the definition of V , we have p′i(ri) = αi. For (2.2) to hold, we must have pi(ri) = αi, and

hence we must have pi(ri) = p′i(ri). But note that pi and p′i are degree-2 polynomials and

since pi 6= p′i, these polynomials can agree on at most two points. Since ri is randomly

chosen, the probability that pi(ri) = p′i(ri) is 2/|Fq| < 2/2n. That is, the probability that

both (2.2) holds and V doesn’t reject in round i is less than 2/2n. Then, since there are

at most m rounds, the probability that P ′ convinces V to accept (F, α) is < 2m/2n.
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Note that V needs to evaluate p only once, and that it is enough for V to have oracle

access to p. Also note that arithmetic is performed over the field Fq simply to ensure

that the αi and the coefficients of the pi do not get too big; performing arithmetic over

Fq ensures that each such number can be represented using n + 1 bits. Alternatively,

arithmetic can be performed over the integers, and each ri can be randomly selected

so that 0 ≤ ri ≤ 2n. In this case, the αi and the coefficients of the pi will still have

representation length polynomial in n.

Recall that we would like to consider approaches for showing that #3-SAT has

polynomial-size circuits. Since we would like to explore whether interaction can be con-

verted into nonuniformity, we will consider approaches that are based on the ideas we

have seen in the interactive proof for #3-SAT. In particular, we will consider approaches

for showing that there are polynomial-size3 circuits that, given oracle access to a poly-

nomial p of degree at most two in each variable, compute S(p). If such polynomial-size

circuits exist, then #3-SAT has polynomial-size circuits.

2.3 The linear combination approach

For an n-variable polynomial p of degree at most two in each variable and for a particular

point ~a, p(~a) is simply some fixed4 linear combination of p’s coefficients. Similarly,

the S(p) is a fixed linear combination of p’s coefficients. Now, suppose that the only

information we are given about such a polynomial p is its value at each point in a set

T . Each such value is the value of some linear combination of p’s coefficients. Let V be

the set of linear combinations of p’s coefficients associated with the points in T . Note

that the linear combination associated with S(p) is either independent of or dependent

on the linear combinations in V . If it is independent, then we have no information about

3Here we mean polynomial in the number of variables, n.
4By “fixed”, we mean that the coefficients of the linear combination will be the same for all n-variable

polynomials p of degree at most two in each variable.
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the value of S(p), and if it is dependent, then the value of S(p) is simply a fixed linear

combination of the values we have been given.

Suppose that for each n, there exists a set T of points, with |T | polynomial in n,

such that for polynomials p on n variables and of degree at most two in each variable,

the linear combination of p’s coefficients associated with S(p) is dependent on the linear

combinations of p’s coefficients associated with the points in T . Then for each n there

exists a circuit Cn of size polynomial in n that, given oracle access to any polynomial

p on n variables and of degree at most two in each variable, computes S(p). However,

Kabanets and Shpilka [KS03] show that any such set T has exponential size.

Theorem 2.3.1 (Kabanets, Shpilka). Let n ∈ N, and let F be a field such that

|F | > 2n. Assume there exist k points ~a1, . . . , ~ak ∈ F n and k coefficients α1, . . . , αk ∈ F ,

such that for every polynomial p ∈ F [x1, . . . , xn] of degree at most two in each variable,

we have that

S(p) =
k∑

i=1

αi · p(~ai).

Then k ≥ 2n.

Proof. We begin by defining some notation that we will use.

For ~v ∈ Fm, we will let (~v)i denote the i-th coordinate of ~v.

For ~v, ~w ∈ Fm, we will let ~v · ~w denote the component-wise multiplication of ~v and

~w. That is, ~x = ~v · ~w will be the point such that (~x)i = (~v)i · (~w)i for each i. Then, ~v2

will denote ~v · ~v, and for ~v1, . . . , ~vj ∈ Fm,
∏j

i=1 ~vi will denote ~v1 · ~v2 · . . . · ~vj.

Finally, for ~v, ~w ∈ Fm, we will let 〈~v, ~w〉 denote the inner product of ~v and ~w. That

is, 〈~v, ~w〉 =
∑m

i=1(~v)i · (~w)i.

Now, let ~a1, . . . , ~ak ∈ F n and α1, . . . , αk ∈ F , and suppose that for every polynomial

p ∈ F [x1, . . . , xn] of degree at most two in each variable, we have that

S(p) =
k∑

i=1

αi · p(~ai). (2.3)
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For 1 ≤ i ≤ n, let ~vi = (2(~a1)i−1, 2(~a2)i−1, . . . , 2( ~ak)i−1). Then, for S ⊆ {1, . . . , n},

let

~vS =
∏
i∈S

~vi.

We will show that the ~vS are linearly independent, and hence k ≥ 2n.

Let S, T ⊆ {1, . . . , n}, and consider the inner product 〈~α, ~vS · ~vT 〉, where ~α =

(α1, α2, . . . , αk). Define polynomial q(x1, . . . , xn) =
∏n

i=1(2xi − 1)ei , where for each i,

ei =


2 if i ∈ S ∩ T ,

0 if i /∈ S ∪ T ,

1 otherwise.

Now, we have

〈~α, ~vS · ~vT 〉 =
k∑

i=1

αi · q(~ai).

Then, since q is of degree at most two in each variable, we have by (2.3) that

〈~α, ~vS · ~vT 〉 = S(q).

However, note that

S(q) =

 0 if ei = 1 for some i,

2n otherwise.

Then, since S 6= T iff there exists i such that ei = 1, we have

〈~α, ~vS · ~vT 〉 =

 0 if S 6= T,

2n if S = T.

Suppose that
∑

T⊆{1,...,n} βT · ~vT = ~0, where each βT ∈ F . To show that the ~vT are

linearly independent, we need to show that each βT = 0.
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Let S ⊆ {1, . . . , n} and consider βS. We have

2n · βS =
∑

T⊆{1,...,n}

βT · 〈~α, ~vS · ~vT 〉

=
∑

T⊆{1,...,n}

βT ·
k∑

i=1

αk · ( ~vS)k · ( ~vT )k

=
∑

T⊆{1,...,n}

k∑
i=1

αk · ( ~vS)k · βT · ( ~vT )k

=
k∑

i=1

αk · ( ~vS)k ·
∑

T⊆{1,...,n}

βT · ( ~vT )k

=
k∑

i=1

αk · ( ~vS)k ·

 ∑
T⊆{1,...,n}

βT · ~vT


k

=

〈
~α, ~vS ·

∑
T⊆{1,...,n}

βT · ~vT

〉
= 〈~α, ~vS ·~0〉

= 0

Therefore, βS = 0. �

Recall that for any n-variable polynomial p of degree at most two in each variable,

S(p) is some fixed linear combination of p’s coefficients. Similarly, for each point ~x, p(~x)

is some fixed linear combination of p’s coefficients. It follows from Theorem 2.3.1 that

for such a polynomial p, the linear combination of p’s coefficients associated with S(p)

is independent of the linear combinations of p’s coefficients associated with evaluating p

on each value in any set T of points with |T | < 2n. That is, knowing the value of such

a polynomial p at each point in such a set T does not in any way constrain the value of

S(p) – for each α ∈ F , there exists an n-variable polynomial p′ of degree at most two in

each variable such that p′ takes on the same values as p on T and S(p′) = α.

Corollary 2.3.2 Let n ∈ N, let F be a field such that |F | > 2n, and let p ∈ F [x1, . . . , xn]

be a polynomial of degree at most two in each variable. If the only information we have
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about p is its value at fewer than 2n points, then we have no information whatsoever

about the value of S(p). That is, if we are only given the value of p at fewer than 2n

points, we cannot rule out any α ∈ F as a possible value of S(p).

Note that if a circuit C is given oracle access to a polynomial p ∈ F [x1, . . . , xn], then

the only information that C has about p is p’s value at the points corresponding to C’s

oracle queries. This is the case even if C makes its queries adaptively. Combining this

fact with Corollary 2.3.2, we get the following additional corollary.

Corollary 2.3.3 Let n ∈ N and let F be a field such that |F | > 2n. Suppose Cn is a

circuit that, given oracle access to a polynomial p ∈ F [x1, . . . , xn] of degree at most two

in each variable, makes at most k (possibly adaptive) oracle queries and outputs S(p).

Then k ≥ 2n.

2.4 The 2n-variable polynomial approach

A polynomial-size circuit can make at most polynomially many oracle queries. Conse-

quently, by Corollary 2.3.3, if we want polynomial-size circuits that, given oracle access

to an n variable polynomial p of degree at most two in each variable, compute S(p), it is

not possible to have only one circuit for each n. We need more nonuniformity.

In this section, we will consider allowing a polynomial amount of precomputation on

each 2n-variable polynomial p of degree at most two in each variable. We will view a

{0, 1}-valued assignment to the first n variables of such a polynomial as specifying (the

arithmetization of) a propositional formula on n variables. So, given a {0, 1}-valued

assignment ~x to the first n variables, we would like to sum p over all {0, 1}-valued

assignments to the remaining n variables. Suppose there exists a circuit Cn that, given

oracle access to any 2n-variable polynomial p(~x, ~y) of degree at most two in each variable,

given polynomially many bits of precomputation on p, and given an input ~x, computes

S(p(~x, ~y)). We will show that such a circuit Cn must make exponentially many oracle
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queries in the worst case.

Theorem 2.4.1 Let n ∈ N, let F be a field such that |F | > 2n, and let k ∈ N. Suppose

Cn is a circuit that, given oracle access to a polynomial p ∈ F [x1, . . . xn, y1, . . . , yn] of

degree at most two in each variable, given n · 2n/3 − 1 bits of precomputation on p, and

given any input ~x ∈ {0, 1}n, makes at most k (possibly adaptive) oracle queries and

outputs
∑

~y∈{0,1}n p(~x, ~y). Then k ≥ 2n/3.

Before proving the theorem, we prove the following lemma.

Lemma 2.4.2 Let n ∈ N, let F be a field such that |F | > 2n, and let k ∈ N. Suppose Cn

is a circuit that, given oracle access to 2n/3 polynomials p0, p1, . . . , p2n/3−1 ∈ F [x1, . . . , xn]

of degree at most two in each variable, and given n ·2n/3−1 bits of precomputation on the

tuple (p0, p1, . . . p2n/3−1), queries each polynomial (possibly adaptively) at most k times

and outputs (a0, a1, . . . a2n/3−1), where ai = S(pi) for each i. Then k ≥ 2n.

Proof. Let Cn be a circuit that, given oracle access to 2n/3 polynomials

p0, p1, . . . , p2n/3−1 ∈ F [x1, . . . , xn]

of degree at most two in each variable, and given n · 2n/3 − 1 bits of precomputation on

the tuple (p0, p1, . . . p2n/3−1), queries each polynomial at most 2n− 1 times and outputs a

tuple (a0, a1, . . . , a2n/3−1) ∈ F 2n/3
. We say that the circuit succeeds if ai = S(pi) for each

i. We will show that the circuit does not always succeed.

Let P be the set of all n-variable polynomials over F of degree at most two in each

variable.

Fix a string s ∈ {0, 1}n·2n/3−1, and consider running Cn using s as the precomputed

string.

Partition P2n/3
into sets P2n/3

1 , . . . ,P2n/3

m so that the following conditions hold:
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1. For each i, if ~p, ~q ∈ P2n/3

i then the oracle queries made and responses seen by Cn

when it is run with oracle access to ~p are identical to the oracle queries made and

responses seen by Cn when it is run with oracle access to ~q.

2. For all ~p, ~q ∈ P2n/3
, if the oracle queries made and responses seen by Cn when it is

run with oracle access to ~p are identical to the oracle queries made and responses

seen by Cn when it is run with oracle access to ~q, then there exists i such that

~p, ~q ∈ P2n/3

i .

Now, fix 1 ≤ i ≤ m and consider running Cn on tuples in P2n/3

i . Note that Cn will

give the same output for each tuple in P2n/3

i , since Cn will make the same queries and

get the same responses. However, Cn makes fewer than 2n queries to each polynomial to

which it is given oracle access. Then, by Corollary 2.3.2, the value of each sum that Cn is

trying to compute is completely unconstrained by the oracle queries made and responses

seen by Cn. That is, for each integer 0 ≤ j < 2n/3 and each b ∈ F , there exist one or

more polynomials p ∈ P such that p is consistent with the responses that Cn receives

from its j-th oracle and S(p) = b. Furthermore, the number of such polynomials p is

independent of the value of b. Then, for each tuple (b0, b1, . . . , b2n/3−1) ∈ F 2n/3
, there exist

one or more tuples (p0, p1, . . . , p2n/3−1) ∈ P2n/3
such that for each j, pj is consistent with

the responses that Cn receives from its j-th oracle and S(pj) = bj. Again, the number

of such tuples (p0, p1, . . . , p2n/3−1) is independent of the value of (b0, b1, . . . , b2n/3−1). But

note that each such tuple will be in Pi. This means that Cn will succeed on exactly

1

|F |2n/3
<

1

2n·2n/3

of the tuples in P2n/3

i .

So, when Cn is run using any fixed precomputed string, it will succeed on fewer than

1

2n·2n/3 of the tuples in P2n/3
. But there are only 2n·2n/3−1 precomputed strings. This

means that for more than (
1− 2n·2n/3−1

2n·2n/3

)
=

1

2
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of the tuples in P2n/3
, Cn will not succeed no matter which precomputed string it uses.

�

We are now ready to prove the theorem.

Proof. (Theorem 2.4.1)

Let Cn be a circuit that, given oracle access to a polynomial p ∈ F [x1, . . . xn, y1, . . . , yn]

of degree at most two in each variable, given n ·2n/3−1 bits of precomputation on p, and

given any input ~x ∈ {0, 1}n, makes at most k oracle queries and outputs
∑

~y∈{0,1}n p(~x, ~y).

Suppose for the sake of contradiction that k ≤ 2n/3 − 1

We will construct a circuit Dn that contradicts Lemma 2.4.2. Dn will have oracle

access to 2n/3 polynomials p0, p1, . . . , p2n/3−1 ∈ F [x1, . . . xn] of degree at most two in each

variable, along with n · 2n/3 − 1 bits of precomputation on (p0, p1, . . . p2n/3−1). We will

refer to the precomputed string as s.

For i ∈ N such that i < 2n, let ī = ī1 . . . īn denote the n-bit binary representation of

i.

Let q ∈ F [x1, . . . xn, y1, . . . , yn] be defined as follows:

q(x1, . . . , xn, y1, . . . , yn) =
2n/3−1∑

i=0

ri,1(x1) · ri,2(x2) · · · ri,n(xn) · pi(y1, . . . , yn)

where for each i and k,

ri,k(z) =

 z if īk = 1,

1− z if īk = 0.

Note that for 0 ≤ i < 2n/3 and for each ~y ∈ F n, we have q(̄i1, ī2, . . . , īn, ~y) = pi(~y).

Also, note that q is of degree at most two in each variable.

For any ~x, ~y ∈ F n, Dn can compute q(~x, ~y) by making at most 2n/3 oracle queries.

Now, Dn will simulate Cn running with oracle access to q and with precomputed

string s. For 0 ≤ i < 2n/3, Dn will let ai be the output of Cn on input (̄i1, ī2, . . . , īn). So

Dn will run Cn 2n/3 times. On each such run, Cn will make at most 2n/3− 1 queries to q.
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To answer each such query, Dn will make at most 2n/3 queries to its oracles. Then, the

total number of queries made by Dn will be at most

(2n/3) · (2n/3 − 1) · (2n/3) = 2n − 2n/3 < 2n.

This means that Dn will not query any of its oracles more than 2n − 1 times.

Dn will output (a0, a1, . . . , a2n/3−1). If the precomputed string s used by Dn is the

same as the precomputed string that Cn would use on q, then for each i we will have

ai = S(pi). �

Note that Theorem 2.4.1 can easily be generalized to (m + n)-variable polynomials

of degree at most two in each variable, where m ≥ n and where we view a {0, 1}-valued

assignment to the first m variables of such a polynomial as specifying (the arithmetization

of) a propositional formula on n variables.

2.5 The small low-degree descriptor approach

So far, the only restriction we have placed on the polynomials that we have considered is

that they are of degree at most two in each variable. However, not every such polynomial

will be the arithmetization of some propositional formula. In fact, for each n, there are

double-exponentially many n-variable polynomials of degree at most two in each variable,

but only exponentially many 3-CNF formulas in n variables. So, despite the results we

have seen so far, it may still be the case that there are polynomial-size circuits for #3-

SAT. We need to place additional restrictions on the polynomials we consider.

In this section, we will consider polynomials whose coefficients have a “simple” de-

scription. Specifically, we will consider polynomials that have a small low-degree descrip-

tor. For each n, there are only exponentially many n-variable polynomials of degree at

most two in each variable that have such a descriptor. We will show that there exist

polynomial-size circuits for computing S(p) for polynomials p that have small low-degree
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descriptors. However, we will also show that there exist propositional formulas whose

arithmetizations do not have small low-degree descriptors.

For an n-variable polynomial p, a small low-degree descriptor q is a low-degree log(n)-

variable polynomial that we can use to efficiently compute any coefficient of p.

Definition 2.5.1 (Small degree-k descriptor). Let n ∈ N, let F be a field, and let

p ∈ F [x1, . . . , xn] be a polynomial of degree at most two in each variable, say

p(~x) =
∑

~i∈{0,1,2}n

ci1i2...inxi1
1 xi2

2 . . . xin
n .

Suppose there exists a polynomial q ∈ F [x1, . . . , xlog n] of degree at most k in each variable

such that for all ~i ∈ {0, 1, 2}n,

ci1i2...in = q((i1i2 . . . i n
log n

), (i n
log n

+1i n
log n

+2 . . . i 2n
log n

), . . . , (i (log n−1)n
log n

+1
i (log n−1)n

log n
+2

. . . in))

where q’s arguments are viewed as ternary numbers. Then we say that q is p’s small

degree-k descriptor.

If we know that an n-variable polynomial p of degree at most two in each variable has

a small degree-k descriptor q, then we can compute S(p) by evaluating p at each point in

a set S ⊆ {0, 1}n of size polynomial in n and then taking a linear combination of these

values (recall that by Theorem 2.3.1, this can’t be done for general p). Note that it is

enough to know that q exists - we don’t need to actually use q.

Theorem 2.5.1 Let F be a field and let n, k ∈ N. There exist m ≤ nlog(k+1) points

~w1, . . . , ~wm ∈ {0, 1}n and m coefficients α1, . . . , αm ∈ F , such that for every polynomial

p ∈ F [x1, . . . , xn] that is of degree at most two in each variable and has a small degree-k

descriptor q, we have that

S(p) =
m∑

i=1

αi · p( ~wi).

Proof. Say the coefficients of p ∈ F [x1, . . . , xn] are a1, a2, . . . , a3n , and say the coeffi-

cients of p’s degree-k descriptor q are b1, b2, . . . , bnlog(k+1) .
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Now, for each ~x ∈ F n, p(~x) is a linear combination of the ai. Since q is p’s small

degree-k descriptor, we have that for each ai there exists ~y ∈ F log n such that ai = q(~y).

But for each ~y ∈ F log n, q(~y) is a linear combination of the bi. This means that for each

~x ∈ F n, p(~x) is a linear combination of the bi. That is, for each ~x ∈ F n, there exist

c1, . . . , cnlog(k+1) ∈ F such that p(~x) =
∑nlog(k+1)

i=1 ci · bi.

For convenience, if p(~x) =
∑nlog(k+1)

i=1 ci · bi, we will say that ~x and (c1, . . . , cnlog(k+1))

correspond to each other.

Consider the set

V =

(c1, . . . , cnlog(k+1)) | ~x ∈ {0, 1}n and p(~x) =
nlog(k+1)∑

i=1

ci · bi

 .

Let V ′ ⊆ V be a set of linearly independent vectors that span V . Note that |V ′| ≤ nlog(k+1).

Let T ⊆ {0, 1}n be a set of minimal size such that for every vector ~v ∈ V ′, there exists

~x ∈ T such that ~x corresponds to ~v. Note that |T | ≤ |V ′| ≤ nlog(k+1).

Let ~z ∈ {0, 1}n, and say that p(~z) =
∑nlog(k+1)

i=1 ci · bi. The vector (c1, . . . , cnlog(k+1)) ∈ V

is a linear combination of vectors in V ′. But then p(~z) is a linear combination of values

in the set {p(~x) | ~x ∈ T }.

So, once we compute p(~x) for all ~x ∈ T , we can take a linear combinations of these

values to find the value of p(~z) at any ~z ∈ {0, 1}n. But this means that S(p) is simply a

linear combination of values in the set {p(~x) | ~x ∈ T }. �

Theorem 2.5.1 implies that for each k ∈ N, there exists a family of polynomial-size

circuits {Cn} such that for each n, circuit Cn, given oracle access to any n-variable

polynomial p that is of degree at most two in each variable and has a small degree-

k descriptor, computes S(p). However, it is not clear if this family is uniform. The

theorem simply tells us that for each n, there exists a polynomial-size set of points T

such that we can compute S(p) by evaluating p at each point in T and then taking a

linear combination of these values. What is not clear is whether given n, we can efficiently

compute T and the coefficients of the linear combination.
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Unfortunately, Theorem 2.5.1 also implies that by restricting our attention to poly-

nomials that have small low-degree descriptors, we have in fact been too restrictive - it

follows from Theorem 2.5.1 that there exist propositional formulas whose arithmetiza-

tions do not have small low-degree descriptors.

Corollary 2.5.2 Let F be a field and let k ∈ N. There exists a propositional formula

whose arithmetization does not have a small degree-k descriptor.

Proof. Let n ∈ N be sufficiently large so that 2n > nlog(k+1). As given by Theorem

2.5.1, let ~w1, . . . , ~wm ∈ {0, 1}n and α1, . . . , αm ∈ F , with m ≤ nlog(k+1), be such that for

every polynomial p ∈ F [x1, . . . , xn] that is of degree at most two in each variable and has

a small degree-k descriptor, we have S(p) =
∑m

i=1 αi · p( ~wi).

Let ~y = (y1, . . . , yn) ∈ {0, 1}n be such that ~y is different from every ~wi.

Define propositional formula A = `1∧`2∧· · ·∧`n, where for each i, `i = xi if yi = 1 and

`i = ¬xi otherwise. Note that A has exactly one satisfying truth assignment. Following

the procedure described in section 2.2.1, the arithmetization of A is

pA(x1, . . . , xn) =

(∏
yi=1

xi

)
·

(∏
yi=0

(1− xi)

)
.

Note that pA(~y) = 1, and for all ~z ∈ {0, 1}n such that ~z 6= ~y, we have pA(~z) = 0. But

then
m∑

i=1

αi · pA( ~wi) =
m∑

i=1

αi · 0 = 0,

even though

S(pA) = 1.

This means that pA does not have a small degree-k descriptor. �

2.6 Computing the coefficients of a polynomial

The coefficients of a polynomial have played an important role in this chapter. We have

seen that for a polynomial p, S(p) is some linear combination of p’s coefficients. We have
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also seen that there exist polynomial-size circuits for computing S(p) for polynomials p

whose coefficients have a “simple” description. In this section, we show that, in general,

computing even a single coefficient of a polynomial is hard. More specifically, we show

that given an arithmetic expression for a low-degree polynomial, the problem of comput-

ing the coefficient of a given term is P#P-complete. We begin by formally defining the

problem.

Definition 2.6.1 (Degree-k arithmetic expression). Let E(x1, . . . , xn) be an expression

on integers, variables x1, . . . , xn, and operations {+,−,×}, such that E is of degree at

most k in each variable. Then we say that E is a degree-k arithmetic expression.

Definition 2.6.2 (k-COEFFICIENT). Given an expression E(x1, . . . , xn) such that E is

a degree-k arithmetic expression, and given a term xi1
1 xi2

2 · · ·xin
n such that each ij ∈

{0, . . . , k}, the function problem k-COEFFICIENT is to compute the coefficient of the

term xi1
1 xi2

2 . . . xin
n in E.

Note that while k-COEFFICIENT is a function problem, there is a natural deci-

sion problem associated with it. An instance of the decision problem is of the form

〈E, xi1
1 xi2

2 · · ·xin
n , s, m, b〉, and the acceptance condition is that:

• E(x1, . . . , xn) is a degree-k arithmetic expression;

• i1, . . . , in ∈ {0, . . . , k}, s ∈ {+,−}, m ∈ N, b ∈ {0, 1}; and

• the coefficient c of the term xi1
1 xi2

2 · · ·xin
n in E has sign s, |c| ≥ 2m, and the m-th

bit of |c| (counting from the right starting at 0) is b.

It is clear that we can solve the function problem in polynomial time given an oracle for

the decision problem, and vice-versa. Therefore, for simplicity, we will only refer to the

function problem, even when dealing with classes of decision problems.

Theorem 2.6.1 The problem 1-COEFFICIENT is in P, and for k ≥ 2, the problem k-

COEFFICIENT is P#P-complete.
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We will first consider the problem 1-COEFFICIENT.

Lemma 2.6.2 The problem 1-COEFFICIENT is in P.

Proof. Let E(x1, . . . , xn) be a degree-1 arithmetic expression, and let i1, . . . , in ∈ {0, 1}.

We will describe a polynomial-time algorithm to compute the coefficient of the term

xi1
1 xi2

2 · · ·xin
n in E.

Without loss of generality, we may assume that each ij = 1. To see this, suppose

ij = 0 for some j. Then we simply let E ′ be E with every occurrence of xj replaced with

0, and we find the coefficient of the term x1x2 · · ·xn in E ′.

Let b0, . . . , bn be such that bi is the sum of all coefficients of terms of total degree i in

E. That is,

bi =
∑

c is the coefficient
of a term of total

degree i in E(x1,...,xn)

c

Then, the coefficient of x1x2 · · ·xn is bn. Note that for any 0 ≤ k ≤ n, we have

E(k, k, . . . , k) =
n∑

i=0

ki · bi. (2.4)

Consider the system of (n + 1) equations on (n + 1) variables b0, . . . , bn defined by sub-

stituting k = 0, 1, . . . , n in equation (2.4). This is a Vandermonde system, and hence it

has a unique solution. This solution can be found in time polynomial in |E|. That is, we

can find bn in time polynomial in |E|. �

We now consider the problem k-COEFFICIENT for k ≥ 2.

Lemma 2.6.3 Let k ∈ N. The problem k-COEFFICIENT is in P#P.

Proof. Consider the unsimplified expansion (i.e. before like terms are collected) of an

arithmetic expression E(x1, . . . , xn). For any term xi1
1 xi2

2 · · ·xin
n , let pos(E, xi1

1 xi2
2 · · ·xin

n )

be the sum of all positive coefficients of xi1
1 xi2

2 · · ·xin
n in the unsimplified expansion of E,

and let neg(E, xi1
1 xi2

2 · · ·xin
n ) be the absolute value of the sum of all negative coefficients
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of xi1
1 xi2

2 · · ·xin
n in the unsimplified expansion of E. Then the coefficient of xi1

1 xi2
2 · · ·xin

n

in E is simply pos(E, xi1
1 xi2

2 · · ·xin
n )− neg(E, xi1

1 xi2
2 · · ·xin

n ).

To show that k-COEFFICIENT is in P#P, we will show that the functions neg and pos

are in #P.

Consider the function neg. We will define a polynomial-time nondeterministic Turing

machine M that on input 〈E, xi1
1 xi2

2 · · ·xin
n 〉 has exactly neg(E, xi1

1 xi2
2 · · ·xin

n ) accepting

computation paths.

On input 〈E, xi1
1 xi2

2 · · ·xin
n 〉, M works as follows. For each + and − in E, M nondeter-

ministically selects one of {left, right}; if it selects left then it deletes the operator and

its left operand, and if it selects right it deletes the operator and its right operand. What

remains is an expression on integers, variables, and multiplication. M carries the out the

multiplication; this can be done in polynomial time. The result is a single term. If this

is a term of the form c · xi1
1 xi2

2 · · ·xin
n with c < 0, then M branches into |c| computation

paths and accepts on each such path. Otherwise, M rejects. Then, the total number of

accepting computation paths is exactly neg(E, xi1
1 xi2

2 · · ·xin
n ), and hence neg ∈ #P.

It is easy to see that we can similarly define a polynomial-time nondeterministic

Turing machine that on input 〈E, xi1
1 xi2

2 · · ·xin
n 〉 has exactly pos(E, xi1

1 xi2
2 · · ·xin

n ) accepting

computation paths. Therefore, pos ∈ #P. �

Lemma 2.6.4 Let k ≥ 2. The problem k-COEFFICIENT is #P-hard under polynomial-

time many-one reductions.

Proof. Let G = ((L, R), E) be a directed bipartite graph. We say that G has a perfect

matching M ⊆ E if the following hold:

1. for every ` ∈ L, there exists exactly one v ∈ R such that (`, v) ∈ M ; and

2. for every r ∈ R, there exists exactly one v ∈ L such that (v, r) ∈ M .

Then, given such a graph G, the problem #PERFECT MATCHING is to count the number

of perfect matchings that G has. #PERFECT MATCHING is #P-complete [Val79].
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We will reduce the problem #PERFECT MATCHING to 2-COEFFICIENT (and hence

to k-COEFFICIENT for k ≥ 2).

Let G = ((L, R), E) be a directed bipartite graph, and say the vertices of G are

x1, . . . , xn. Define arithmetic expression

F (x1, . . . , xn) =
∏

(xi,xj)∈E

(1 + xixj).

Note that each term in the unsimplified expansion of F is formed by choosing, for each

edge (xi, xj), either 1 or xixj and then taking the product of everything that has been

chosen. In other words, each term in the unsimplified expansion of F is formed by first

choosing a subset of E. Now, if the subset of E that is chosen is a perfect matching, then

the term x1x2 · · ·xn will be formed. This means that the number of perfect matchings

in G will be the number of times that x1x2 · · ·xn appears in the unsimplified expansion

of F . But then the number of perfect matchings in G will simply be the coefficient of

x1x2 · · ·xn in F .

We are not done yet, since F is not necessarily of degree at most two in each variable.

Note that the degree of each variable xi in F will be equal to the number of times this

variable appears in F .

We now show how to construct a degree-2 polynomial expression F ′ such that the co-

efficient of the term of degree one in each variable will be the number of perfect matchings

in G.

For each variable xi, say that xi appears mi times in F , create mi new variables

xi,1, . . . , xi,mi
, and replace the j-th occurrence of xi in F with xi,j. This corresponds to

replacing each vertex xi in G with mi copies, each of degree one. Then, define

Ci =

(
mi∑
j=1

∏
` 6=j

xi,`

)
.

Finally, let

F ′ = C1 · C2 · · ·Cn · F.
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Note that F is a degree-2 polynomial expression. We claim that the number of perfect

matchings in (the original) G is equal to the coefficient of the term

t =
n∏

i=1

mi∏
j=1

xi,j

in F ′. To see this, note that the purpose of the Ci is to force us to choose which

copy of xi we will use when selecting a subset of E. For example, if mi = 3, then

Ci = (xi,1xi,2 + xi,1xi,3 + xi,2xi,3). Then, choosing say xi,1xi,2 from Ci means that we will

need to use the third copy of xi (that is, xi,3) when selecting a subset of E in order for the

constructed term to be t. In other words, when constructing a term in the unsimplified

expansion of F ′, we first choose which copy of each variable we will use, and then we

select a subset of E. If the subset we select is a perfect matching in the original graph

G and uses only the chosen copy of each variable, then the term constructed will be t.

Therefore, the number of perfect matchings in G will be exactly the number of times

that the term t appears in the unsimplified expansion of F ′. �

Theorem 2.6.1 follows immediately from Lemmas 2.6.2, 2.6.3, and 2.6.4.



Chapter 3

Are there instance checkers for

approximate counting?

In Chapter 2, we considered the problem of exact counting. In this chapter, we consider

the problem of approximate counting. We discuss the difficulties that are encountered

when trying to construct an instance checker for a problem that is complete for approx-

imate counting.

3.1 Approximate counting

In an approximate counting problem, the goal is to compute a function f ∈ #P to within

a specified relative error. Under the plausible assumption that the polynomial-time

hierarchy doesn’t collapse, approximate counting is easier than exact counting.

Definition 3.1.1 (r-Approximation). Let b, c ∈ R and let r ≥ 1. We say that b

r-approximates c if c ≥ 0 and c/r ≤ b ≤ r · c or if c < 0 and r · c ≤ b ≤ c/r.

Note that for any r ≥ 1, the r-approximation of a negative number must be negative,

the r-approximation of 0 must be 0, and the r-approximation of a positive number must

be positive.

30
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Definition 3.1.2 (r-Approximate counting). Let f ∈ #P and let r : N → R be

such that r(n) ≥ 1 for all n. The r-approximate counting problem associated with f is to

compute f with relative error at most r. We say that a Turing machine M r-approximates

f if on each input x, M(x) r(|x|)-approximates f(x).

Approximating #3-SAT and approximating the number of accepting inputs of a

Boolean circuit are complete problems for approximate counting.

It is easy to see that for any r ≥ 1, r-approximate counting is NP-hard. If a Turing

machine M r-approximates #SAT, then for all inputs x we have that M(x) > 0 iff

x ∈ SAT.

On the other hand, the results of Stockmeyer [Sto83] and Toda [Tod91] suggest that

approximate counting is easier than exact counting. Before giving these results, we need

to define the polynomial-time hierarchy.

Definition 3.1.3 (Polynomial-time hierarchy [Sto76]). Define ∆P
0 = P and ΣP

0 =

P. Then, for i ≥ 1, define ∆P
i = PΣP

i−1 and ΣP
i = NPΣP

i−1 . The polynomial-time hierarchy,

denoted PH, is the union
⋃

i≥0 ΣP
i . It can be shown that for each i, we have ΣP

i ⊆ ∆P
i+1 ⊆

ΣP
i+1, though it is not know if each such containment is proper. If ΣP

i = ΣP
i+1 for some i,

then PH = ΣP
i and we say that the polynomial-time hierarchy collapses to level i.

Stockmeyer [Sto83] shows that (1+ 1
nO(1) )-approximate counting can be done in polynomial

time given access to an oracle for ΣP
2 . That is, (1 + 1

nO(1) )-approximate counting is in

∆P
3 . Toda [Tod91] shows that PH ⊆ P#P. Then, if the polynomial-time hierarchy doesn’t

collapse, we have P ( NP and ∆P
3 ( P#P and hence (1 + 1

nO(1) )-approximate counting is

easier than exact counting but harder than P.
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3.2 Instance checkers

Determining if the output of a program is correct is an important problem. Approaches

to solving this problem include formally proving the correctness of the program (but this

can be difficult in practice) or testing the program on some finite set T of inputs (but

this does not guarantee the program’s correctness on inputs not in T ). A new approach,

instance checking, was introduced by Blum and Kannan [BK95]. With instance checking,

a program’s correctness is verified in real-time rather than beforehand. The interaction

between an instance checker and a program can be viewed as a restricted form of the

interaction between a verifier and a prover in an interactive proof. Recently, the existence

of instance checkers has been used to obtain results about probabilistic computation

[Bar02, TV02, GSTS03, FS04]. We will see an example of this in Chapter 4. While

instance checkers exist for all P#P-complete languages and all languages in P, it is not

known if instance checkers exist for languages complete for any NP-hard natural class

strictly contained P#P; in fact, it is not even known if such a class exists.1 However, as

discussed in section 3.1, if the polynomial-time hierarchy doesn’t collapse then the class

of (1 + 1
nO(1) )-approximate counting problems is an NP-hard class strictly contained in

P#P.

An instance checker I for a language L can be used to efficiently verify the output of

any Turing machine M that purportedly decides L. On an input x, the instance checker

I makes at most polynomially many queries to M before either announcing whether or

not x ∈ L or announcing that M does not decide L. More formally, given an input x

and given oracle access to M , I outputs L(x) if M correctly decides L, and otherwise I

almost always outputs either “?” or L(x).

Definition 3.2.1 (Instance checker). Let L be a language. We say that a probabilis-

1The NP language GRAPH-ISOMORPHISM and its complement GRAPH-NONISOMORPHISM do have
instance checkers. However, neither language is known to be NP-hard.
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tic polynomial-time oracle Turing machine I is an instance checker for L if the following

properties hold:

1. I always outputs either 0, 1, or “?”.

2. For all inputs x, IL(x) outputs L(x) with probability 1.

3. For all oracles M and for all inputs x, say |x| = n, the probability that IM(x)

outputs (1− L(x)) is at most 1/nc for all c and sufficiently large n.

Every language L ∈ P has a trivial instance checker. On input x, the instance checker

I does not make any oracle queries; it simply simulates the polynomial-time machine for

L on x, and outputs 1 if the simulation accepts and 0 otherwise.

Every P#P-complete language, every PSPACE-complete language, and every EXP-

complete language has an instance checker. This follows from the fact that the interactive

proofs for P#P [LFKN92, BF91] and PSPACE [Sha92] and the two-prover interactive proof

for EXP [BFL91] can all be converted to function-restricted interactive proofs. Defined

by Blum and Kannan [BK95], a function-restricted interactive proof for a language L

is an interactive proof in which the prover is restricted to be an oracle and the honest

prover is simply an oracle for L. The restriction on the prover means that its answers

to all potential queries are fixed ahead of time, and hence the answer to any query is

completely independent of any queries that have been made previously.

Definition 3.2.2 (Function-restricted interactive proof). Let L be a language.

We say that L has a function-restricted interactive proof if there exists a probabilistic

polynomial-time oracle Turing machine V such that the following two properties hold:

1. (Completeness) For all x ∈ L, V L accepts x with probability 1.

2. (Soundness) For all oracles P and for all x /∈ L, say |x| = n, the probability that

V P accepts x is at most 1/nc for all c and sufficiently large n.
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Theorem 3.2.1 (Blum, Kannan [BK95]). Let L be a language. L has an instance

checker if and only if both L and L̄ have function-restricted interactive proofs.

Proof.

=⇒:

Suppose L has an instance checker I. We construct a function-restricted interactive

proof for L as follows. On input x and given access to oracle P , verifier V simulates IP on

input x, and accepts if the simulation outputs 1 and rejects otherwise. By the definition

of I, V satisfies the completeness and soundness properties. Similarly, we construct a

function-restricted interactive proof for L̄ as follows. On input x and given access to

oracle P , verifier V ′ simulates I P̄ on input x, and accepts if the simulation outputs 0

and rejects otherwise. Again, by the definition of I, V ′ satisfies the completeness and

soundness properties.

⇐=:

Suppose both L and L̄ have function-restricted interactive proofs. Say VL is the

verifier for L and VL̄ is the verifier for L̄. We construct an instance checker for L as

follows. On input x and given oracle access to M , instance checker I first queries M on

x. If M accepts x, then I simulates VL
M on input x, and outputs 1 if the simulation

accepts and outputs “?” otherwise. If M rejects x, then I simulates VL̄
M̄ on input x,

and outputs 0 if the simulation accepts and outputs “?” otherwise. By the definitions of

VL and VL̄, I satisfies the properties of an instance checker for L. �

Consider L#3−SAT, the decision version of #3-SAT that is complete for P#P under

polynomial-time Turing reductions. L#3−SAT is simply the set of strings 〈F, i〉 such that

F is a propositional formula in 3-CNF that has at least i satisfying truth assignments.

Note that the interactive proof for #3-SAT given in section 2.2.2 can be converted into

interactive proofs for L#3−SAT and L#3−SAT. On input 〈F, i〉, the prover P tells the verifier

V how many satisfying assignments F has. If this is at least i in the case of L#3−SAT or
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less than i in the case of L#3−SAT, then P and V proceed as in the interactive proof for

#3-SAT. Otherwise, V rejects immediately. Now, note that each message that P sends

to V can also be sent as a sequence of responses to P#P queries (and hence as responses

to L#3−SAT queries). In particular, to receive the coefficients of degree-2 polynomial pj

in round j of the interactive proof for #3-SAT, V can make a sequence of P#P queries to

determine the value of pj at three points and V can then use interpolation to compute

the coefficients. In this manner, the interactive proofs for L#3−SAT and L#3−SAT can be

converted into function-restricted interactive proofs and then, using Theorem 3.2.1, can

be converted into an instance checker for L#3−SAT.

In the remainder of this chapter, we will discuss the problems that arise when we try

to convert the instance checker for L#3−SAT into an instance checker for the approximation

version of #3-SAT. Before proceeding, we need to define what we mean by an instance

checker for an approximate counting problem.

Definition 3.2.3 (Instance checker for an approximate counting problem). Let

f ∈ #P and let r : N → R be such that r(n) ≥ 1 for all n. We say that a probabilistic

polynomial-time oracle Turing machine I is an instance checker for the r-approximate

counting problem associated with f if the following properties hold:

1. I always outputs either a number or “?”.

2. For all oracles M that r-approximate f , IM r-approximates f .

3. For all oracles M and for all inputs x, say |x| = n, the probability that IM(x)

outputs neither “?” nor an r-approximation of f(x) is at most 1/nc for all c and

sufficiently large n.
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3.3 Approximate polynomial evaluation

Fix a function k(n) = (1 + 1
nO(1) ), and consider trying to convert the instance checker for

L#3−SAT into an instance checker for the k-approximation version of #3-SAT, which we

will refer to as k-approx-#3-SAT. Recall from section 2.2.2 that we can either perform

arithmetic over a finite field or over the integers. Since it is not clear what it means to “k-

approximate” finite field elements, it makes sense to perform arithmetic over the integers.

Recall that the instance checker for L#3−SAT works in several rounds, where in each round

i it uses its oracle to evaluate polynomial pi at three points, and then, using interpolation,

it evaluates pi at a randomly chosen point ri. We will show that it is unlikely that there

is an instance checker for k-approx-#3-SAT that works in a similar way. In particular, we

show in section 3.3.1 that, given access to an oracle for k-approximate counting (that is,

an oracle for k-approx-#3-SAT), it is unlikely that we can efficiently k-approximate pi at a

set of integers. Furthermore, we show in section 3.3.2 that even if we can k-approximate

pi at a set T of points using an oracle for k-approximate counting, it is unlikely that

we can use this information (and not the oracle) to efficiently k-approximate pi at a

randomly chosen point ri not in T .

3.3.1 Approximating a value using an oracle for approximate

counting

Recall from section 2.2.2 that for each i, polynomial pi is defined as

pi(yi) =
∑

(yi+1,...,ym)∈{0,1}m−i

p(r1, . . . , ri−1, yi, . . . , ym),

where p is a polynomial of degree at most two in each variable and p takes on values in

{0, 1} on {0, 1}-valued assignments to its variables.

Since p takes on non-negative values on {0, 1}-valued assignments to its variables,
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computing

S(p) =
∑

(y1,...,ym)∈{0,1}m

p(y1, . . . , ym)

is a #P problem and hence S(p) can be k-approximated using an oracle for k-approximate

counting.

However, recall that each rj is randomly chosen so that 0 ≤ rj ≤ 2n. There is no

apparent reason to believe that for any particular yi, p(r1, . . . , ri−1, yi, . . . , ym) takes on

non-negative values on all {0, 1}-valued assignments to yi+1, . . . , ym. Therefore, comput-

ing pi(yi) for a particular yi is not necessarily a #P problem, though it is a P#P problem.

In fact, as we shall see, if p(r1, . . . , ri−1, yi, . . . , ym) takes on some positive and some neg-

ative values on {0, 1}-valued assignments to yi+1, . . . , ym, then k-approximating pi(yi) is

as hard as exactly computing pi(yi).

Theorem 3.3.1 Let k ≥ 1. It is #P-hard to k-approximate S(p) for polynomials p of

degree at most two in each variable. The problem remains #P-hard when p is restricted

so that it takes on values in {−1, 0, 1} on {0, 1}-valued assignments to its variables.

Proof. Let q(x1, . . . , xn) be a polynomial of degree at most two in each variable such

that q takes on values in {0, 1} on {0, 1}-valued assignments to its variables. As discussed

in Chapter 2, computing S(q) is a #P-complete problem.

We will show that using an oracle O for k-approximating S(p) for polynomials p of

degree at most two in each variable, we can compute S(q) in polynomial time.

Let α be an integer, and let qα(x1, . . . , xn) = q(x1, . . . , xn) − α · x1 · · ·xn. Note that

qα is of degree at most two in each variable, and S(qα) = S(q)−α. So S(qα) is positive if

S(q) > α, negative if S(q) < α, and 0 if S(q) = α. Using oracle O, we can k-approximate

S(qα). But this means that we can use oracle O to determine if S(qα) is positive, negative,

or 0. That is, we can determine if S(q) > α, S(q) < α, or S(q) = α using O. Then, since

we know that 0 ≤ S(q) ≤ 2n, we can use binary search to find S(q) in polynomial-time

using O.
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In fact, for 0 ≤ α ≤ 2n, we can construct qα more carefully so that it takes on values

in {−1, 0, 1} on {0, 1}-valued assignments to its variables. It is easy to see by induction

that for any such α, there exist ` ≤ n + 1 integers 0 ≤ e1 < e2 < · · · < e` ≤ n such that

α =
∑̀
j=1

(−1)`−j2ej .

Consider polynomial tα(x1, . . . , xn) defined as

tα(x1, . . . , xn) =
∑̀
j=1

(−1)`−jx1x2 · · ·xn−ej
.

Note that tα is of degree at most one in each variable, and tα takes on values in {0, 1}

on {0, 1}-valued assignments to its variables. Now, for any z ≤ n, we have

∑
(x1,...,xn)∈{0,1}n

x1x2 · · ·xn−z = 2z.

This means that S(tα) = α. Then, if we let qα(x1, . . . , xn) = q(x1, . . . , xn)−tα(x1, . . . , xn),

we have that qα is of degree at most two in each variable, qα takes on values in {−1, 0, 1}

on {0, 1}-valued assignments to its variables, and S(qα) = S(q)− α. �

Theorem 3.3.1 tells us that unless the polynomial-time hierarchy collapses, we can’t, in

general, k-approximate pi(yi) in polynomial-time using an oracle for k-approximate count-

ing. However, even if the polynomial-time hierarchy doesn’t collapse, it may be the case

that there is some efficient way of choosing yi that ensures that p(r1, . . . , ri−1, yi, . . . , yn)

takes on non-negative values on all {0, 1}-valued assignments to yi+1, . . . , yn. Alterna-

tively, we may work over the rationals, and require that each rj ∈ [0, 1]; for example,

we can randomly choose each rj from the set { 0
2n , 1

2n , . . . , 2n

2n}. By the construction of p

in section 2.2.1, this does ensure that for any yi ∈ [0, 1], p(r1, . . . , ri−1, yi, . . . , yn) takes

on non-negative values on all {0, 1}-valued assignments to yi+1, . . . , yn. However, even if

we use one of these approaches to efficiently k-approximate pi at a set T of points using

an oracle for k-approximate counting, we are still left with the problem of using these

approximations to k-approximate pi at a randomly chosen point ri.
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3.3.2 Approximating a new value given a set of approximations

Suppose we are given k-approximations to a polynomial p at a set T of points. In this

section, we will consider whether we can use these approximations to k-approximate

p at a point r that is not in T . We will show that, in general, we will be unable to

k-approximate p(r).

Theorem 3.3.2 Let k > 1, let n ≥ 1, and let d ≥ 0. Let x1, . . . , xn ∈ R be such that

x1 < x2 < · · · < xn. Let p(x) be a polynomial of degree at most d, and suppose that for

each i, we are given a k-approximation y′i to p at point xi. Further, suppose that each y′i

is non-negative. No matter how large n is, the following hold:

(a) If d = 0, we can k-approximate p at any point r.

(b) If d = 1, we can k-approximate p at any point r such that x1 ≤ r ≤ xn.

(c) If d ≥ 1, there exist y′1, . . . , y
′
n such that we will not have enough information to

k-approximate p at any point r such that r < x1 or r > xn.

(d) If d ≥ 2, there exist y′1, . . . , y
′
n such that we will not have enough information to

k-approximate p at any point r that is different from the xi.

Proof.

(a) If d = 0, p is constant and hence any of the y′i will k-approximate p(r).

(b) We use the line p′ passing through (x1, y
′
1) and (xn, y

′
n) as our k-approximation. To

see this works, let y1 = p(x1) and let yn = p(xn). Since p is of degree-1, p is simply

the line passing through (x1, y1) and (xn, yn), and hence

p(x) =
y1(xn − x) + yn(x− x1)

xn − x1

.

Similarly,

p′(x) =
y′1(xn − x) + y′n(x− x1)

xn − x1

.
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Now, we have y1/k < y′1 < k · y1 and yn/k < y′n < k · yn, and for x1 ≤ r ≤ xn we

have (xn − r) ≥ 0 and (r − x1) ≥ 0. Then, for x1 ≤ r ≤ xn,

p(r)/k =
y1

k
(xn − r) + yn

k
(r − x1)

xn − x1

≤ y′1(xn − r) + y′n(r − x1)

xn − x1

= p′(r)

and

p′(r) =
y′1(xn − r) + y′n(r − x1)

xn − x1

≤ k · y1(xn − r) + k · yn(r − x1)

xn − x1

= k · p(r).

That is, p(r)/k ≤ p′(r) ≤ k · p(r), and hence p′(r) k-approximates p(r) for x1 ≤

r ≤ xn.

(c) Let y′1 = y′2 = · · · = y′n = α for some α > 0. Consider the line p1 that passes

through the points (x1, k ·α) and (xn, α/k). This line is consistent with the y′i; that

is, for each i we have p1(xi)/k ≤ α ≤ k · p1(xi). Similarly, the line p2 that passes

through the points (x1, α/k) and (xn, k · α) is consistent with the y′i. With the

information we have, we can’t determine if p is p1, p2, or some other polynomial.

Therefore, our k-approximation for p(r) must k-approximate both p1(r) and p2(r).

Now, note that

p1(x) =
k · α(xn − x) + α

k
(x− x1)

xn − x1

and

p2(x) =
α
k
(xn − x) + k · α(x− x1)

xn − x1

.

Say r = x1− ε for some ε > 0. Note that p1(r) > 0 for any such ε, but p2(r) ≤ 0 for

sufficiently large ε. It is clear that if p1(r) > 0 but p2(r) ≤ 0, we do not have enough

information to k-approximate p(r). So suppose ε is small enough that p2(r) > 0.

We have

p1(r) = p1(x1 − ε) =
k · α(xn − x1 + ε)− α

k
ε

xn − x1

and

p2(r) = p2(x1 − ε) =
α
k
(xn − x1 + ε)− k · α · ε

xn − x1

.
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Now, a k-approximation of p1(r) must be ≥ p1(r)/k, while a k-approximation of

p2(r) must be ≤ k · p2(r). But we have

p1(r)/k =
α(xn − x1 + ε)− 1

k2 · α · ε
xn − x1

and

k · p2(r) =
α(xn − x1 + ε)− k2 · α · ε

xn − x1

.

So p1(r)/k > k ·p2(r), and hence there is no number that k-approximates both p1(r)

and p2(r). This means that we do not have enough information to k-approximate

p(r) for r < x1. By a similar argument, we do not have enough information to

k-approximate p(r) for r > xn.

(d) Let y′1 = y′2 = · · · = y′n = α for some α > 0. Let r be a point that is different

from the xi. If n ≤ 2, it is obvious that we do not have enough information to

k-approximate p(r), so suppose n ≥ 3. If r < x1 or r > xn, the argument given in

part (c) shows that we do not have enough information to k-approximate p at r.

So suppose x1 < r < xn. Let j be such that xj < r < xj+1, and assume without

loss of generality that xn−xj+1 ≥ xj −x1. This means that j +1 < n, since n ≥ 3.

Consider the quadratic p1 that passes through the points (xj, k · α), (xj+1, k · α),

and (xn, α/k). We have

p1(x) = k · α− α(k2 − 1)(x− xj)(x− xj+1)

k(xn − xj)(xn − xj+1)
.

Note that this quadratic opens downward, and hence it is symmetric about its

maximum. This means that p1(x) is increasing on (−∞,
xj+xj+1

2
) and decreasing on

(
xj+xj+1

2
,∞). Since xn− xj+1 ≥ xj − x1, we have p1(x1) ≥ p1(xn) = α/k. Then, for

each i, we have p1(xi)/k ≤ α ≤ k ·p1(xi). That is, p1 is consistent with the y′i. Now,

consider the quadratic p2 that passes through the points (xj, α/k), (xj+1, α/k), and

(xn, k · α). We have

p2(x) =
α

k
+

α(k2 − 1)(x− xj)(x− xj+1)

k(xn − xj)(xn − xj+1)
.
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Note that this quadratic opens upward, and hence it is symmetric about its min-

imum. This means that p2(x) is decreasing on (−∞,
xj+xj+1

2
) and increasing on

(
xj+xj+1

2
,∞). Since xn−xj+1 ≥ xj −x1, we have p2(x1) ≤ p2(xn) = k ·α. Then, for

each i, we have p2(xi)/k ≤ α ≤ k · p2(xi) That is, p2 is consistent with the y′i. With

the information we have, we can’t determine if p is p1, p2, or some other polynomial.

Therefore, our k-approximation for p(r) must k-approximate both p1(r) and p2(r).

Now, for xj < r < xj+1, we have p1(r) > k ·α > 0 and p2(r) < α
k
. If p2(r) ≤ 0, it is

clear that we do not have enough information to k-approximate p(r). So suppose

p2(r) > 0. A k-approximation of p1(r) must be ≥ p1(r)/k, while a k-approximation

of p2(r) must be ≤ k · p2(r). But we have p1(r)/k > α > k · p2(r). This means that

there is no number that k-approximates both p1(r) and p2(r), and hence we do not

have enough information to k-approximate p(r). �



Chapter 4

How constructive are proofs of

hierarchy theorems?

In this chapter, we discuss the techniques used to prove hierarchy theorems, and the

extent to which such proofs are constructive. The techniques we discuss include diago-

nalization, used by Hartmanis and Stearns [HS65] to prove the Time Hierarchy theorem,

padding arguments, used to to prove tighter time hierarchy results, and the idea of op-

timal algorithms, used by Fortnow and Santhanam [FS04] to prove a hierarchy theorem

for bounded-error probabilistic polynomial time with one bit of advice.

4.1 Hierarchy theorems

A fundamental question in computational complexity is whether the power of a compu-

tational model increases when allowed to use more of a particular resource, such as time,

space, randomness, nondeterminism, or nonuniformity. A theorem that asserts such an

increase is known as a hierarchy theorem, as it implies that by increasing the resource in

question, we get a hierarchy of progressively larger complexity classes C1 ( C2 ( C3, etc.

Beyond simply knowing that such a hierarchy exists, it seems natural to want to know,

for each i, a language Li such that Li ∈ Ci+1 − Ci. Furthermore, given a Turing machine

43
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Mi that satisfies the resource bounds of class Ci, we might want to know how hard it is

to find an input x on which Mi differs from Li. Since Li /∈ Ci, it is obvious that Mi will

differ from Li on some input. However, if it is hard to find such inputs, we may find that

for a particular application it is sufficient to use a Ci machine such as Mi to “decide” Li.

As we shall see, there are both constructive and non-constructive techniques to prove

hierarchy theorems. We consider a proof of a hierarchy C1 ( C2 ( C3 ( . . . to be

constructive if for each i, it shows how to construct a language Li such that Li ∈ Ci+1−Ci,

and shows how hard it is, given a machine Mi that satisfies the resource bounds of class

Ci, to find an input x on which Mi differs from Li.

4.2 The Time Hierarchy theorem

The first hierarchy theorem in computational complexity was the Time Hierarchy theo-

rem, proven by Hartmanis and Stearns [HS65] and made tighter by Hennie and Stearns

[HS66]. They show that for all time-constructible1 functions f, g : N → N such that

lim
n→∞

f(n) log f(n)

g(n)
= 0,

we have DTIME(f(n)) ( DTIME(g(n)). For any function h(n), DTIME(h(n)) denotes the

set of languages that are decided by a deterministic Turing machine that runs in time

h(n).

The Time Hierarchy theorem is proven using diagonalization. This means that the

proof shows how, given f and g, we can construct a machine M running in time g

such that for every machine M ′ that runs in time f , there is some input x (where x

is constructed from the encoding of M ′) on which M simulates M ′ on x and “does the

opposite”. Since the input x on which M “does the opposite” of M ′ is constructed from

the encoding of M ′, it is easy to find this input given M ′, and hence the proof of the Time

1A function f : N → N is time-constructible if there exists a Turing machine M that halts in exactly
f(|x|) steps on every input x.
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Hierarchy theorem is constructive. In general, proofs by diagonalization are constructive.

To elaborate on the ideas we have discussed, we examine the proof of the Time

Hierarchy theorem for the case f(n) = n2 and g(n) = n2 log2 n.

Note that there exists a Turing machine U , known as the universal Turing machine,

such that L(U) = {〈x, y〉 | Mx accepts y}. Furthermore, as shown by Hennie and Stearns

[HS66], for each machine Mx there is a constant cx such that for every string y, if Mx

runs in time t on input y then U runs in time cxt log t on input 〈x, y〉. The constant cx,

which we will refer to as the simulation constant, depends on the number of states and

the number of tapes that Mx has.

Consider the language L1 defined as follows:

L1 = {1t0x | U does not accept 〈x, 1t0x〉 within |1t0x|2 log2 |1t0x| steps}.

It is clear that L1 can be decided in time n2 log2 n. Now, suppose we are given a machine

Mz that runs in time n2. Let cz be the simulation constant for Mz. Let t be large enough

so that cz|1t0z|2 log |1t0z|2 < |1t0z|2 log2 |1t0z|. Since Mz runs in time |1t0z|2 on input

|1t0z|, U runs in time cz|1t0z|2 log |1t0z|2 on input 〈z, 1t0z〉. Then, by the definitions of

L1 and U , we have that Mz differs from L1 on input 1t0z. So, for every machine M that

runs in time n2, there is an input on which this machine differs from L1, and hence L1

cannot be decided in time n2.

4.3 Tighter time hierarchy results

Existing hierarchy theorems can be made tighter using padding arguments. Suppose we

have classes C1 ⊆ C2 ⊆ C3, we have proven C1 ( C3, and we want to show that C1 ( C2.

In a padding argument proof of this, we derive a contradiction from the assumption

that C1 = C2. Essentially, the padding argument allows us to take the “small collapse”

C1 = C2 and derive a “larger collapse” C1 = C3. The main idea is that if we have a

language L ∈ C3, then a sufficiently padded version of L will be in C2 and hence in C1.
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But using a C1 machine for the padded language, we can get a C2 machine for L, and

hence L ∈ C1. This argument is non-constructive.

More concretely, consider functions f(n) = n2 and g(n) = n2 log n. Note that

limn→∞
f(n) log f(n)

g(n)
> 0. It is not known how to use diagonalization to prove DTIME(n2) (

DTIME(n2 log n). However, recall that we proved DTIME(n2) ( DTIME(n2 log2 n) us-

ing diagonalization in section 4.2. Then, using a padding argument, we can show

DTIME(n2) ( DTIME(n2 log n).

Let L1 be as defined in section 4.2. That is,

L1 = {1t0x | U does not accept 〈x, 1t0x〉 within |1t0x|2 log2 |1t0x| steps}.

Recall that L1 ∈ DTIME(n2 log2 n)− DTIME(n2).

Suppose for the sake of contradiction that DTIME(n2) = DTIME(n2 log n). We will

show that L1 ∈ DTIME(n2).

Let L2 be the language defined as follows:

L2 = {1u0y | y ∈ L1 and |1u0y| ≥ |y|
√

log |y|}.

Note that L2 ∈ DTIME(n2 log n), since we can construct a machine that on input

1u0y checks if |1u0y| ≥ |y|
√

log |y| and, if so, runs the DTIME(n2 log2 n) machine for

L1 on y. But then, by assumption, we have L2 ∈ DTIME(n2). This means that

L1 ∈ DTIME(n2 log n), since we can construct a machine that on input y computes u

large enough so that |1u0y| ≥ |y|
√

log |y| and then runs the DTIME(n2) machine for L2

on 1u0y. Then, by assumption, we have L1 ∈ DTIME(n2), and this is a contradiction.

Note that this proof is non-constructive. While the proof tells us there is some lan-

guage L such that L ∈ DTIME(n2 log n)−DTIME(n2), it does not tell us unconditionally

what this language is. Instead, we are left with two cases.

If L1 /∈ DTIME(n2 log n), then we must have L2 /∈ DTIME(n2), and hence L2 ∈

DTIME(n2 log n)− DTIME(n2). However, it is not clear how hard it is, given a machine

M that runs in time n2, to find an input x on which M differs from L2.
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If L1 ∈ DTIME(n2 log n), then we have L1 ∈ DTIME(n2 log n) − DTIME(n2). From

section 4.2, we know how, given a machine M that runs in time n2, we can find an input

x on which M differs from L1.

4.4 A hierarchy theorem for probabilistic polyno-

mial time with small advice

As we saw in section 4.2, a hierarchy theorem for deterministic polynomial time was

proven four decades ago. However, no such theorem is known for bounded-error proba-

bilistic polynomial time (BPP). This means that it may be the case that a bounded-error

probabilistic Turing machine cannot solve more problems in polynomial time than it can

solve in linear time. The main difficulty in proving a hierarchy theorem for BPP is that

there is no known way of enumerating bounder-error probabilistic Turing machines, yet

such an enumeration is necessary for diagonalization.

Hierarchy theorems have been proven for bounded-error probabilistic polynomial time

with small advice. Barak [Bar02] shows that for every d, BPTIME(nd)/ log log n (

BPTIME(nd+1)/ log log n. Fortnow and Santhanam [FS04] improve this by reducing the

advice from log log n bits to one bit. These proofs rely on the idea of an optimal algo-

rithm. An algorithm for a language L is optimal if it is at most polynomially slower than

any other algorithm for L. Languages that have instance checkers also have optimal

bounded-error probabilistic algorithms. If such an algorithm runs in superpolynomial

time, we immediately get a hierarchy for bounded-error superpolynomial time. Then, we

can use a padding argument to get a hierarchy for BPP. However, the amount of padding

needed is not known to be computable in uniform BPP, and hence some nonuniformity

must be introduced.

We will present Fortnow and Santhanam’s proof, and then discuss if this proof can

be made more constructive.
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We begin by formally defining uniform and nonuniform BPTIME.

Definition 4.4.1 (BPTIME). Let L be a language and let t : N → N be a function.

We say that L ∈ BPTIME(t) if there exists a probabilistic Turing machine M such that

on all inputs x, the probability that M halts within t(|x|) steps and outputs L(x) is at

least 2/3.

Note that in this definition of BPTIME(t), machine M is not required to always halt

within time t. However, if t is time-constructible, we can add a “clock” to M and force

it to halt within time t.

Definition 4.4.2 (Nonuniform BPTIME). Let L be a language and let s : N → N

and t : N → N be functions. We say that L ∈ BPTIME(t)/s if there exists a probabilistic

Turing machine M and an infinite sequence of strings {y}n, |yn| ≤ s(n), such that on all

inputs 〈x, y|x|〉, the probability that M halts within t(|x|) steps and outputs L(x) is at

least 2/3.

Note that in this definition of nonuniform BPTIME, machine M is not required to be

a bounded-error machine when given advice strings other than the yi.

Theorem 4.4.1 (Fortnow, Santhanam [FS04]). Let d ≥ 1. Then BPTIME(nd)/1 (

BPP/1.

Corollary 4.4.2 Let d ≥ 1. Then BPTIME(nd)/1 ( BPTIME(nd+1)/1.

We will give the proof of Theorem 4.4.1. The corollary can be proven using a padding

argument.

4.4.1 Proof of Theorem 4.4.1

We will consider two cases, BPP = PSPACE and BPP ( PSPACE. In the first case, we

will be able to use diagonalization. In the second case, we will use the idea of an optimal

algorithm for a PSPACE-complete language.
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Case 1: BPP= PSPACE

Lemma 4.4.3 If BPP = PSPACE, then BPP * BPTIME(nd)/ log n.

Proof. Consider the following language LD:

LD = {x | Pr[Mx accepts x within |x|d steps] < 1/2}.

Note that LD ∈ PSPACE, and hence LD ∈ BPP. We need to show that LD /∈

BPTIME(nd)/ log n.

Suppose we are given a probabilistic machine My and an infinite sequence of strings

{s}n, |sn| ≤ log n, such that on all inputs 〈x, s|x|〉, we either have that My accepts within

|x|d steps with probability at least 2/3 or we have that My rejects within |x|d steps with

probability at least 2/3.

We need to find an input z on which My(〈z, s|z|〉) differs from LD. Now, for suffi-

ciently large n, there exists a string z of length n such that Mz is My with the string

sn “hardwired” into it. Then, for all inputs x of length n, Mz(x) behaves exactly like

My(〈x, sn〉). In particular, Mz(z) behaves exactly like My(〈z, sn〉). By the definition of

LD, z ∈ LD if and only if Mz rejects z with probability at least 1/2. This means that

z ∈ LD if and only if My rejects 〈z, sn〉 with probability at least 1/2. That is, My(〈z, s|z|〉)

differs from LD. �

It follows from Lemma 4.4.3 that BPTIME(nd)/1 ( BPP/1. In fact, it also follows

that BPTIME(nd) ( BPP. That is, we get a hierarchy for uniform BPP in this case.

Case 2: BPP ( PSPACE

We will give an optimal bounded-error probabilistic algorithm for a PSPACE-complete

language L. As noted in Chapter 3, every PSPACE-complete language L has an instance

checker I. We will need L to have an instance checker I such that on any input x, I only

makes queries of length |x|. Trevisan and Vadhan [TV02] show that there is a PSPACE-

complete language L ∈ DTIME(22n) that has such an instance checker I. We will further
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require that I’s error probability (property 3 in Definition 3.2.1) is less than 1
2n . We can

always achieve this by running I some polynomial number of times and then taking the

majority answer.

For a Turing machine M and a constant c, we will let M c denote M restricted to c

steps. This means that if M doesn’t halt after c steps, we will consider M to have halted

and rejected.

We will assume that the encoding of a Turing machine can be padded. This means

that if a Turing machine has an encoding of length n, it also has an encoding of length

m for each m > n.

Algorithm OPT

Input: x

1. For m = 1, 2, . . . do:

2. For each probabilistic Turing machine M of size exactly 3 log log m do:

(a) Run I on x with oracle Mm, and if I outputs an answer val 6= “?”,

then output val and exit all loops.

Figure 4.1: The optimal algorithm for L

The optimal probabilistic algorithm for L is given in Figure 4.1.

We will now give some notation for the running time of OPT and then bound this

running time.

For each string x, let t(x) be the smallest number such that on input x, the probability

that OPT halts and outputs L(x) within t(x) steps is at least 2/3. Then, for each n, let

T (n) = maxx∈{0,1}n t(x).

Lemma 4.4.4 For sufficiently large n, T (n) < 25n.



Chapter 4. How constructive are proofs of hierarchy theorems? 51

Proof. Recall that L ∈ DTIME(22n). That is, there exists a deterministic Turing

machine M running in time 22n that decides L. If OPT runs long enough, it will run I

with oracle M22n
, and at this point OPT will always halt and output the correct answer.

Let n be sufficiently large so that the smallest encoding of M is of length at most

3 log log 22n. On an input of length n, consider bounding the number of steps needed by

OPT to get to machine M22n
(assuming it doesn’t halt before this). Note that when m

is the smallest integer ≥ 22n such that log log m is an integer, OPT will run I with oracle

Mm (equivalent to M22n
). By this point, OPT will have tried every machine of size less

than 3 log log 2n and possibly some other machines of size d3 log log 2ne. That is, OPT

will have tried at most 16n3 machines. For each such machine, OPT will run I. I runs

in polynomial time, so say I’s running time is p(n). This means that I will make at most

p(n) oracle queries to each machine. Since each machine tried by OPT is restricted to

at most m steps, it will take at most m steps to answer each such query. Since m is the

smallest integer ≥ 22n such that log log m is an integer, we have m < 24n. Now, putting

all of this together, we have that OPT gets to machine M22n
within 16n3 ·p(n) ·24n steps.

For sufficiently large n, this is less than 25n steps.

Now consider the probability that OPT outputs an incorrect answer before it tries

machine M22n
. Again, OPT tries at most 16n3 machines before it gets to M22n

. Note that

while I’s error probability is defined with respect to oracles, we can view a probabilistic

machine as selecting all the random bits it needs for p(n) runs before I begins to query

it. Then, as long as I doesn’t make the same query twice, the probabilistic machine is

equivalent to some oracle. So, for each such machine, I (and hence OPT) outputs an

incorrect answer with probability less than 1
2n . Then, the probability that OPT outputs

an incorrect answer before it tries machine M22n
is less than 16n3/2n. For sufficiently

large n, this is less than 1/3. �

Note that by the definition of T , we have L ∈ BPTIME(T ). On the other hand, since

L is PSPACE-complete and since we are assuming BPP ( PSPACE, we have L /∈ BPP.
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This means that T is not bounded by any polynomial.

We next show that OPT really is an optimal algorithm.

Lemma 4.4.5 Let b > 0. Then L /∈ BPTIME(nb + T 1/10)/2 log log T .

Proof. Fix b.

Suppose for the sake of contradiction that L ∈ BPTIME(nb + T 1/10)/2 log log T .

We will restrict our attention to those n such that T (n)1/10 > max(nb+2, p(n)3), where

p(n) is the running time of instance checker I. Since T is not bounded by any polynomial,

there are infinitely many such n.

For sufficiently large n, there exists a probabilistic Turing machine M1 whose encoding

has size at most 2.1 log log T (n) such that on all inputs x of length n, the probability

that M1 halts within nb + T (n)1/10 steps and outputs L(x) is at least 2/3.

Furthermore, if n is sufficiently large, there exists a probabilistic Turing machine

M2 whose encoding has size at most 2.2 log log T (n) such that M2 is M1 with success

probability amplified so that it is exponentially close to 1. We can think of M2 as

running M1 in parallel cn times for some constant c until the majority of these runs

output the same thing. So we have that on all inputs x of length n, the probability that

M2 halts within cn(nb + T (n)1/10) steps and outputs L(x) is at least 1− 1/2n.

Note that if n is sufficiently large, we have

cn(nb + T (n)1/10) ≤ nb+2 + n2T (n)1/10

< T (n)1/10 + T (n)2/10 since T (n)1/10 > nb+2

< 2T (n)2/10

< T (n)1/4

So on all inputs x of length n, the probability that M2 halts within T (n)1/4 steps and

outputs L(x) is at least 1− 1/2n.

However, this means that on all inputs x of length n, the probability that OPT halts

and outputs L(x) within (log
√

T (n))3 · p(n) ·
√

T (n) steps is at least 1− 1/n.
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To see this, suppose OPT is run on an input x of length n, and consider what

happens in OPT when m is the smallest integer such that m ≥ T (n)1/4 and log log m

is an integer. OPT will run I with oracle M2
m, since if n is sufficiently large we have

3 log log m ≥ 3 log log T (n)1/4 > 2.2 log log T (n). Now, I makes at most p(n) queries

to M2
m. By the union bound, the probability that M2

m does not err on any of these

queries is at least 1− p(n)/2n. In this case, I will output L(x), and so will OPT. Using

reasoning similar to that used in the proof of Lemma 4.4.4, OPT will need at most

(log
√

T (n))3 · p(n) ·
√

T (n) steps to get to machine M2
m.

Again, using reasoning similar to that used in the proof of Lemma 4.4.4, the prob-

ability that OPT outputs an incorrect answer before it tries machine M2
m is less than

(log
√

T (n))3/2n. But recall from Lemma 4.4.4 that if n is sufficiently large, T (n) < 25n.

So the probability that OPT outputs an incorrect answer before it tries machine M2
m

is less than (5n/2)3/2n.

So, on all inputs x of length n, the probability that OPT halts and outputs L(x)

within (log
√

T (n))3 · p(n) ·
√

T (n) steps is at least 1− (p(n) + (5n/2)3)/2n > 2/3. Since

(log
√

T (n))3 · p(n) ·
√

T (n) < T (n), this contradicts the definition of T (n). �

We now define a language Lpad that is a padded version of L.

Lpad = {x#1y | x ∈ L, y = 22z

for some z, y > |x|, y + |x|+ 1 ≥ T (|x|)
1

30d}

We will show that Lpad ∈ BPP/1 but Lpad /∈ BPTIME(nd)/ log log n.

Lemma 4.4.6 Lpad ∈ BPP/1.

Proof. Consider strings of the form x#1y which have some fixed length n. In order for

y > |x|, it must be the case that n/2 ≤ y ≤ n − 1. But note that for any n, there is at

most one z such that n/2 ≤ 22z ≤ n − 1. This means that for each n, there is at most

one y > |x| such that y = 22z
for some z. If such a y exists, denote it yn.
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Now, consider the following probabilistic algorithm for Lpad that uses 1 bit of advice.

On input x#1y, say the input has length n, the algorithm will receive advice bit 0 if

both yn exists and n ≥ T (n − yn − 1)
1

30d , and advice bit 1 otherwise. If the algorithm

receives advice bit 1, then it immediately halts and rejects. Otherwise, the algorithm

checks if y > |x| and if not it rejects. Then, the algorithm checks if log log y is an integer,

and if not it rejects. If the algorithm hasn’t rejected, we must have y = yn. Then,

by the advice bit, we have n ≥ T (|x|) 1
30d and hence we need to check if x ∈ L. We

can do this by running OPT on x. If OPT accepts x then the algorithm halts and

accepts, and otherwise the algorithm halts and rejects. We know that with probability

at least 2/3, OPT halts within T (|x|) ≤ n30d steps and correctly tells us whether x ∈ L.

Furthermore, the initial checks can be done in time n2. So, the probability that the

algorithm halts within n30d + n2 steps and outputs Lpad(x#1y) is at least 2/3. This

means that Lpad ∈ BPP/1. �

Lemma 4.4.7 Lpad /∈ BPTIME(nd)/ log log n.

Proof. Suppose for the sake of contradiction that Lpad ∈ BPTIME(nd)/ log log n. We

will show that L ∈ BPTIME(nb + T 1/10)/2 log log T for some b, contradicting Lemma

4.4.5.

Consider a probabilistic algorithm for L that works as follows on an input x. Say

|x| = n. Let z be the smallest integer such that 22z
> n and 22z

+ n + 1 ≥ T (n)
1

30d . Such

a z can be specified using log log T bits of advice. Let y = 22z
. Let x′ = x#1y. Note that

|x′| ≤ max(n2 +n+1, T (n)
2

30d ). We would like to run the BPTIME(nd)/ log log n machine

for Lpad on x′. But this will require log log |x′| bits of advice. So our algorithm will also

need to be provided with these bits as advice. We then run the BPTIME(nd)/ log log n

machine for Lpad on x′, and accept or reject as that machine does. Running this machine

takes time |x′|d ≤ (n2 + n + 1 + T (n)
2

30d )d. The total advice our algorithm needs is at

most 2 log log T . Finally, there exists a b such that, with probability at least 2/3, our

algorithm halts and outputs L(x) within nb + T (n)1/10 steps. �
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It follows from Lemma 4.4.6 and Lemma 4.4.7 that BPP/1 * BPTIME(nd)/ log log n,

and hence BPTIME(nd)/1 ( BPP/1.

4.4.2 Making the proof of Theorem 4.4.1 more constructive

The proof of Theorem 4.4.1 is non-constructive. It does not unconditionally give a

language L such that L ∈ BPP/1 − BPTIME(nd)/1. Instead, it gives one such language

for the case BPP = PSPACE, and another such language for the case BPP ( PSPACE.

Now, for the language LD given in the case BPP = PSPACE, the proof does show how,

given a BPTIME(nd)/ log n machine M , we can easily find an input x on which M differs

from LD. On the other hand, a similar result is not shown for the language Lpad given

in the case BPP ( PSPACE.

We now consider whether the proof can be made more constructive. We first discuss

whether the two cases can be replaced with a single case. We then discuss whether Case

2 can be made more constructive.

Replacing the two cases with a single case

In Case 1, diagonalization is used to prove a hierarchy. In general, we cannot use this tech-

nique with bounded-error probabilistic machines. Given an enumeration of probabilistic

machines, we aren’t able to determine if a particular machine has bounded error on any

particular input. So, if the probabilistic machine we construct by diagonalization simply

runs other probabilistic machines and “does the opposite”, the machine we construct will

not have bounded error. However, in Case 1 we are assuming that BPP = PSPACE. In

PSPACE (and, in fact, in P#P), we can (exactly) compute the acceptance probability of

any probabilistic polynomial time machine on any input. Therefore, in Case 1, when

the machine we construct is diagonalizing against a particular probabilistic machine on a

particular input, it can compute the machine’s acceptance probability on that input and

then behave in a way that ensures that its own acceptance probability is bounded away
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from 1/2. However, without assuming that BPP = PSPACE (or, alternatively, making

a similar assumption like BPP = P#P), it is not known how to construct a BPP ma-

chine that diagonalizes against probabilistic machines. Therefore, we must make such an

assumption in order to use diagonalization.

In Case 2, an optimal algorithm is used to prove a hierarchy. All languages that have

instance checkers also have optimal bounded-error probabilistic algorithms. An optimal

bounded-error probabilistic algorithm A for a language L is an algorithm that is at most

polynomially slower than any other bounded-error probabilistic algorithm for L. That

is, there is some constant ε < 1 such that if A runs in time t then any other algorithm

for L runs in time at least tε. This means that L can be decided in time t but not in time

o(tε), and hence we get a hierarchy. However, this hierarchy is trivial if tε is sublinear

(since it is obvious that a non-trivial language L cannot be decided in sublinear time).

To ensure that the hierarchy we get is non-trivial, we must make an assumption about

the probabilistic hardness of L. That is, we must make an assumption like L /∈ BPP.

However, it is not even known if EXP * BPP, and so, unconditionally, it is not known if

there is an instance-checkable language L /∈ BPP. Therefore, we assume BPP ( PSPACE

(or, alternatively, BPP ( P#P) in order to guarantee the existence of such a language L.

Since the techniques used in each case - diagonalization in Case 1 and the use of

an optimal algorithm in Case 2 - appear to require the assumption made in each such

case (or at least a similar assumption), some other technique is likely needed in order to

get a proof that doesn’t use cases. For example, in [FST05], Fortnow, Santhanam, and

Trevisan use a nonuniform optimal algorithm to prove (without cases) a hierarchy for

BPP with log2 n bits of advice.

Making Case 2 more constructive

Consider the language Lpad defined in Case 2. In Lemma 4.4.7, it is shown that Lpad /∈

BPTIME(nd)/ log log n. However, this proof is non-constructive. It simply shows that
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if Lpad ∈ BPTIME(nd)/ log log n, then L ∈ BPTIME(nb + T 1/10)/2 log log T for some b,

contradicting Lemma 4.4.5. The proof of Lemma 4.4.5 is also non-constructive, as it

simply shows that if L ∈ BPTIME(nb + T 1/10)/2 log log T for some b, then the definition

of T is contradicted. Finally, the definition of T is itself non-constructive. Recall that for

each n, T (n) = maxx∈{0,1}n t(x), where t(x) is the smallest number such that on input x,

the probability that OPT halts and outputs L(x) within t(x) steps is at least 2/3. The

definition of T (n) does not give any insight into how to find, for each n, an x such that

T (n) = t(x). In fact, it is precisely because T (n) is not known to be easily computable

that the BPP algorithm for Lpad needs an advice bit; that is, finding an efficient algorithm

for computing T (n) would allow us to prove a hierarchy for uniform BPP.

Note that if we make the proof of Lemma 4.4.5 more constructive, we can also

make the proof of Lemma 4.4.7 more constructive. That is, if we know how, given a

BPTIME(nb + T 1/10)/2 log log T machine M , to find an input x on which M differs from

L, we can use this approach to find an input x′ on which a BPTIME(nd)/ log log n machine

M ′ differs from Lpad. Given such a machine M ′, we construct (using the ideas given in

the proof of Lemma 4.4.7) a BPTIME(nb + T 1/10)/2 log log T machine M , and we find an

input x on which M differs from L. Then, the input x′ on which M ′ differs from Lpad

will be some sufficiently padded version of x. Of course, the exact amount of padding

needed will depend on the apparently difficult-to-compute value of T (|x|).

We now focus on making the proof of Lemma 4.4.5 more constructive. Fix b, and

suppose that we are given the encoding of a BPTIME(nb + T 1/10)/2 log log T machine

M and (oracle access to) an infinite sequence of advice strings yn such that |yn| ≤

2 log log T (n) for each n. Our goal is to find an input x on which M with advice y|x|

differs from L. Consider the following probabilistic procedure to find such an x.

As in the proof of Lemma 4.4.5, we need to restrict our attention to those n such that

T (n)1/10 > max(nb+2, p(n)3). Since T (n) is not bounded by any polynomial, we know

that there are infinitely many such n. We also know by Lemma 4.4.4 that T (n) < 25n
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for sufficiently large n. However, we don’t have an efficient procedure to find these n.

Therefore, we will assume that we have an oracle O that on input m returns an n such

that n ≥ m and 2n/2 > T (n)1/10 > max(nb+2, p(n)3).

Now, we would like to find an n large enough so that there is a machine M ′ of encoding

size 2.2 log log T (n) that is machine M with the advice string yn “hardwired” into it and

that has error probability reduced to 1/22n (on inputs of length n) at the expense of

having its running time increase by a factor of cn for some constant c. M ′ is similar

to the machine M2 in the proof, except that we are requiring its error probability to

be 1/22n rather than 1/2n for reasons that we will see later. In order for M ′ to exist,

we need n to be such that |M | is at most, say, 0.1 log log T (n). But, again, we can’t

compute T (n). So, instead, we will select an n that satisfies the stronger requirement

that |M | < 0.1 log log n. That is, we will select an n > 22|M|
. We will query our oracle O

on input 22|M|
+ 1 to find such an n. Now, as the proof argues for machine M2, machine

M ′ cannot correctly decide L for all inputs of length n, since otherwise OPT will need

time less than T (n) to decide L. So we know that there is an input x of length n on

which M ′ (and also M with advice yn) differs from L. Since we don’t know anything

about which input this is, we are left with having to iterate through every string x of

length n, checking if M ′ differs from L on input x.

On each input x of length n, we will do the following. We will first check if x ∈ L.

We can use the DTIME(22n) machine for L to check this. Alternatively, we can assume

that we have an oracle for PSPACE. The advantage of making such an assumption is that

our analysis can then more easily be adapted to a proof that uses, say, a P#P-complete

instance-checkable language L instead of a PSPACE-complete language. After checking

if x ∈ L, we run M ′ on x. If M ′ outputs a value different from L(x), we know that with

high probability, x is an input on which M ′ differs from L.

Since we are running M ′ on each of the 2n strings of length n, the probability that

M ′ errs at least once is, by the union bound, at most 2n/22n = 1/2n. Therefore, with
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probability at least 1− 1/2n, our procedure will correctly identify the input (or inputs)

of length n on which M ′ differs from L.

Now, consider the running time of our procedure. We make a single call to our oracle

O. We make 2n calls to our PSPACE oracle (to check if each string of length n is in

L). We run M ′ 2n times on inputs of length n. On each such run, M ′ halts within

cn(nb +T 1/10) steps with probability at least 1−1/22n. This means that with probability

at least 1 − 1/2n, M ′ halts within cn(nb + T 1/10) steps on every such run. So, with

probability at least 1− 1/2n, the time needed to run M ′ on every input of length n is at

most 2n · cn(nb + T 1/10). This is at most 22n, since 2n/2 > T (n)1/10 > max(nb+2, p(n)3).

But recall that n is double exponential in |M |. So, our probabilistic procedure takes time

triple exponential in the size of M to find an input x on which M with advice y|x| differs

from L.



Chapter 5

Open questions

In this chapter, we summarize the open questions that are discussed in this thesis.

What are suitable approaches for showing that #P has polynomial-size cir-

cuits?

As we discussed, the interactive proofs for #P are the simplest known non-trivial inter-

active proofs for NP-hard languages. This makes the class #P an ideal starting point

for investigating whether interaction can be converted into nonuniformity. Since EXP

has two-prover interactive proofs, a successful approach, based on interactive proofs, for

showing that #P has polynomial-size circuits could lead to an approach for showing that

EXP has polynomial-size circuits, and hence that P 6= NP.

In Chapter 2, we considered two approaches for showing that #P has polynomial-size

circuits. As in the interactive proof for #3-SAT, these approaches were based on the

idea of arithmetizing propositional formulas. The 2n-variable polynomial approach dealt

with arbitrary polynomials of degree at most two in each variable. This approach turned

out to be too general, as not every polynomial of degree at most two in each variable

corresponds to the arithmetization of some propositional formula. On the hand, the

small low-degree descriptor approach turned out to be too restrictive, since there exist

60
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propositional formulas whose arithmetizations do not have small low-degree descriptors.

Approaches that are more restrictive than the 2n-variable approach yet more general

than the small low-degree descriptor approach need to be identified and investigated.

Are there instance checkers for languages complete for any NP-hard natural

class that is not known to contain P#P?

Since instance checkers and interactive proofs are closely related, any progress made

toward answering this question may lead to new approaches for investigating whether

interaction can be converted into nonuniformity. Furthermore, as we saw in Chapter 4,

the existence of particular instance checkers has been recently used to prove results about

probabilistic computation.

In Chapter 3, we noted that the class of (1+ 1
nO(1) )-approximate counting problems is

an NP-hard class that is not known to contain P#P. We identified obstacles that need to

be overcome in order to construct instance checkers for (1 + 1
nO(1) )-approximate counting

problems. These obstacles need to be further examined. Other NP-hard natural classes

not known to contain #P, such as NP and ΣP
2 , should also be considered.

How constructive can proofs of hierarchy theorems be made?

It seems natural to prefer constructive proofs to those that are non-constructive. As we

saw in Chapter 4, proofs of hierarchy theorems that use padding arguments are non-

constructive. Can these proofs be made more constructive? The proof of the hierarchy

theorem for BPP/1 is also non-constructive. We discussed the problems that are encoun-

tered when trying to make the existing proof more constructive. What other techniques

can be used to prove this theorem? Do such techniques result in more constructive

proofs?
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