
Leakage resilience and black-box impossibility results in cryptography

by

Ali Juma

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2011 by Ali Juma

Abstract

Leakage resilience and black-box impossibility results in cryptography

Ali Juma

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2011

In this thesis, we present constructions of leakage-resilient cryptographic primitives, and

we give black-box impossibility results for certain classes of constructions of pseudo-random

number generators.

The traditional approach for preventing side-channel attacks has been primarily hardware-

based. Recently, there has been significant progress in developing algorithmic approaches for

preventing such attacks. These algorithmic approaches involve modeling side-channel attacks as

leakage on the internal state of a device; constructions secure against such leakage are leakage-

resilient.

We first consider the problem of storing a key and computing on it repeatedly in a leakage-

resilient manner. For this purpose, we define a new primitive called a key proxy. Using a

fully-homomorphic public-key encryption scheme, we construct a leakage-resilient key proxy.

We work in the “only computation leaks” leakage model, tolerating a logarithmic number of

bits of polynomial-time computable leakage per computation and an unbounded total amount

of leakage.

We next consider the problem of verifying that a message sent over a public channel has

not been modified, in a setting where the sender and the receiver have previously shared a

key, and where the adversary controls the public channel and is simultaneously mounting side-

channel attacks on both parties. Using only the assumption that pseudo-random generators

exist, we construct a leakage-resilient shared-private-key authenticated session protocol. This

construction tolerates a logarithmic number of bits of polynomial-time computable leakage per

computation, and an unbounded total amount of leakage. This leakage occurs on the entire

state, input, and randomness of the party performing the computation.

ii

Finally, we consider the problem of constructing a large-stretch pseudo-random generator

given a one-way permutation or given a smaller-stretch pseudo-random generator. The standard

approach for doing this involves repeatedly composing the given object with itself. We provide

evidence that this approach is necessary. Specifically, we consider three classes of constructions

of pseudo-random generators from pseudo-random generators of smaller stretch or from one-way

permutations, and for each class, we give a black-box impossibility result that demonstrates

a contrast between the stretch that can be achieved by adaptive and non-adaptive black-box

constructions.

iii

Acknowledgements

First, I would like to thank my supervisor, Charlie Rackoff, with whom I spent countless hours

discussing the results in this thesis and all the work leading up to them. Working with Charlie

over the past eight years has been a truly outstanding experience. I have greatly benefited from

Charlie’s vast knowledge, his exceptional intuition, and his constant insistence on clarity in all

forms of reasoning.

I would like to thank the members of my committee – Allan Borodin, Steve Cook, and Toni

Pitassi – for all their advice and encouragement.

I would like to thank my co-authors (and fellow cryptography grad students) Josh Bronson,

Periklis Papakonstantinou, and Yevgeniy Vahlis for their invaluable contributions to the results

that appear in this thesis. I would particularly like to thank Yevgeniy for the many months we

spent discussing and working on leakage-resilient cryptography.

I would like to thank my parents and my sister for their constant encouragement and

support.

Finally, I would like to thank the Department of Computer Science and the Natural Sciences

and Engineering Research Council of Canada for providing financial support.

iv

Contents

1 Introduction 1

1.1 Leakage resilience . 1

1.1.1 Leakage-resilient key proxies . 3

1.1.2 Leakage-resilient authentication . 7

1.2 Black-box impossibility results for pseudo-random number generator constructions 9

2 Leakage-resilient key proxies 14

2.1 Preliminaries . 22

2.1.1 Fully Homomorphic Encryption . 22

2.2 Models and Definitions . 24

2.3 Leakage-Resilient Key Proxies From Homomorphic Encryption 27

2.3.1 Proof overview for Lemma 2.3.2 . 30

2.3.2 Proof of Lemma 2.3.2 . 30

2.4 Extensions and Applications . 41

2.4.1 Concurrent Composition . 43

2.4.2 Semantic Security Under Leakage . 44

2.4.3 Leakage-Resilient Private-Key Encryption Using Key Proxies 45

2.5 Open problems . 49

3 Leakage-resilient authentication 51

3.1 Preliminaries . 54

3.1.1 Entropy . 54

3.2 Authenticated session protocols . 54

3.2.1 Security definition . 55

3.2.2 Our construction . 58

3.3 Running multiple instances of a stream cipher . 58

3.4 Stream cipher construction . 60

3.4.1 The construction . 60

v

3.4.2 The adversary’s interaction . 60

3.4.3 Security . 60

3.5 Proof of Theorem 3.4.1 . 62

3.5.1 Proof overview . 63

3.5.2 Entropy-related lemmas . 64

3.5.3 Pseudo-random generators with bounded leakage on the seed 67

3.5.4 Pseudo-random function generators with high-entropy seeds 68

3.5.5 Pseudo-random function generators with high-entropy seeds and leakage . 70

3.5.6 Main lemmas . 71

3.5.7 Finishing up . 75

3.6 Proof of Theorem 3.2.1 . 76

3.6.1 Proof overview . 76

3.6.2 Proof details . 78

3.7 Open problems . 92

4 Black-box impossibility results 94

4.1 Preliminaries . 99

4.1.1 Pseudo-random generators and one-way functions 100

4.1.2 Non-adaptive constructions . 100

4.1.3 Black-box reductions . 100

4.2 Pseudo-random “on the average” =⇒ pseudo-random with probability 1 101

4.3 Constructions with short seeds . 105

4.3.1 Proof overview for Theorem 4.3.1 . 106

4.3.2 Proof of Theorem 4.3.1: The case k = 1 109

4.3.3 Proof of Theorem 4.3.1: The general case 129

4.4 Constructions with long seeds . 147

4.4.1 Proof overview for Theorem 4.4.1 . 148

4.4.2 Proof of Theorem 4.4.1 . 150

4.5 Moving beyond constantly-many queries . 159

4.6 Goldreich-Levin-like constructions . 160

4.6.1 Proof of Theorem 4.6.1 . 161

4.7 Open problems . 167

Bibliography 170

vi

Chapter 1

Introduction

Cryptography is the study of achieving clearly-defined security properties in a variety of set-

tings. This includes giving constructions that achieve specific security properties under certain

computational hardness assumptions, and proving that certain classes of constructions cannot

achieve specific security properties. In this thesis, we present both kinds of results. We present

constructions that achieve leakage resilience, and we give black-box impossibility results for

certain classes of pseudo-random number generator constructions.

1.1 Leakage resilience

In a side-channel attack, an adversary obtains information about the internal state of a device

by measuring such things as power consumption, computation time, and emitted sound and

radiation, and then uses this information to break the security of a cryptographic primitive

that is being computed by the device. Many such attacks have been developed (e.g. [QS01,

BB03, Kuh03, Ber05, OST06]). The traditional approach for preventing such attacks has been

hardware-focused. For instance, to prevent an attack based on emitted sound, one would place

the device inside a sound-proof enclosure.

More recently, attention has turned to algorithmic approaches for preventing side-channel

attacks. This involves modifying classical security models – where internal state information is

perfectly hidden from the adversary – so that the adversary is allowed to obtain some internal

state information, and then proving that security is achieved with respect to such models. The

internal state information obtained by the adversary is referred to as leakage on the internal

state, and constructions that are secure against adversaries obtaining leakage are known as

leakage-resilient constructions.

When modeling the manner in which that adversary obtains leakage, the goal is to capture

every “reasonable” physical measurement that a side-channel attacker might make. Several

1

Chapter 1. Introduction 2

security models that allow the adversary to gain information through leakage have been devel-

oped. Of course, restrictions must be placed on this leakage, since if the entire internal state is

leaked to the adversary then security is impossible. If the use of the device can be viewed as a

sequence of discrete invocations, a natural restriction on leakage is to bound the number of bits

leaked per invocation. But even this restriction is insufficient for devices whose computation is

deterministic, since an adversary that gets b bits of leakage per invocation can learn mb bits

about the state at invocation m, simply by leaking bits of the state at round m in each of

the previous invocations, and using the fact that the state at invocation m can be computed

from each of the previous states. To overcome this future pre-computation attack, even stronger

restrictions on leakage have been considered. These restrictions include strongly bounding the

total amount of leakage, or insisting that the leakage be computed by a strongly uninvertible

function of the state, or requiring that the leakage be computed by shallow circuits. These

approaches all allow the leakage to be a function of the entire state.

Another approach is motivated by the idea that only computation leaks [MR04]. That is,

parts of the state only leak when they are involved in a computation. Dziembowski and Pietrzak

[DP08] follow this approach by splitting the state into two halves, where computation alternates

between the two halves and never takes place on both halves simultaneously. This thwarts the

future pre-computation attack, and has the advantage of potentially being secure even when

the total leakage is unbounded, as long as the leakage per round is bounded, and the leakage is

computed by efficient (polynomial-size or polynomial-time) functions. We use this idea in our

construction of leakage-resilient key proxies in Chapter 2.

The future pre-computation attack can also be thwarted using randomness. Specifically,

if the state is updated each round in a manner that depends on an unpredictable string, the

adversary will be unable to compute bits of a state when leaking on previous states. We use

this idea in our construction of leakage-resilient authenticated sessions in Chapter 3. This

idea is also used in the independent recent work of Brakerski et al [BKKV10] and Dodis et al

[DHLAW10], and in the subsequent work of Malkin et al [MTVY11].

Leakage-resilient constructions of primitives including stream ciphers [DP08, Pie09], sig-

nature schemes [FKPR10, ADW09, KV09, BKKV10, DHLAW10, MTVY11], and public-key

encryption [AGV09, NS09, DGK+10, BKKV10] have been given. Some of these constructions

[DP08, Pie09, FKPR10] use the “only computation leaks” model, while others bound the to-

tal amount of leakage [ADW09, KV09, AGV09, NS09] or require that the leakage functions

be such that it is hard to find the secret key given all the leakage [DGK+10]. Finally, very

recent constructions [BKKV10, DHLAW10, MTVY11], which, as mentioned above, depend on

randomness, allow unbounded total leakage without requiring the “only computation leaks”

restriction.

Chapter 1. Introduction 3

1.1.1 Leakage-resilient key proxies

Storing a key and repeatedly computing on it is a common task in cryptography. In Chapter 2,

we consider the problem of performing this task securely in a setting where the adversary is able

to obtain leakage on internal state information. We define a new primitive called a leakage-

resilient key proxy, which stores a key and allows arbitrary polynomial-time computation to

be performed on this key while ensuring that the adversary gains no useful information from

internal state leakage. We construct a leakage-resilient key proxy in the “only computation

leaks” model. We allow leakage to be computed by adversarially-chosen polynomial-size circuits

whose output length is restricted but where the total amount of leakage (as the adversary

repeatedly obtains leakage from each computation) is unbounded.

The previous work most closely related to ours is that of Faust et al [FRR+10], who show

how to transform any stateful circuit so that it can be securely computed in a setting where the

entire internal state is subject to leakage computed by adversarially-chosen AC0 circuits whose

output length is restricted (but, as in our setting, the total amount of leakage is unbounded).

Concurrent to our work, Goldwasser and Rothblum [GR10] address essentially the same

problem. That is, their result can be viewed as a construction of a leakage-resilient key proxy

in the “only computation leaks” model. They rely on a weaker assumption than we do (they

use the Decisional Diffie Hellman assumption while we use fully-homomorphic public-key en-

cryption) and tolerate more leakage per round than we do. On the other hand, they rely on the

“only computation leaks” assumption more strongly than we do. Specifically, while our con-

struction splits the state into two parts, with computation alternating between the two parts,

they split the state into a number of parts that is linear in the size of the circuit being com-

puted. Furthermore, while our construction requires only a singe leak-free component (a piece

of hardware that is assumed not to leak at all), they require a number of leak-free components

that is linear in the size of the circuit being computed.

Our definition

We begin by defining a key proxy, an object that stores a key and allows computation to be

performed on this key.

Definition 1 (Key proxy) A key proxy is a pair of PPT algorithms (KPInit,KPEval). For

fixed c ∈ N and for all n ∈ N, K ∈ {0, 1}nc , KPInit(1n,K) outputs an initial state S. For every

circuit F : {0, 1}|K| → {0, 1}n, KPEval(1n, F, S) updates state S and outputs F (K).

We now discuss informally what it means for a key proxy to be leakage-resilient. Intuitively,

we would like it to be the case that an adversary “learns nothing useful” from leakage, even

Chapter 1. Introduction 4

when the adversary chooses key K himself and adaptively chooses polynomially-many functions

F to be evaluated on K and leakage queries to be evaluated on KPEval’s state and randomness.

Of course, in most applications, the adversary will not choose K himself, but by giving him

this power in the definition, we enforce the requirement that the adversary “learns nothing

useful” from leakage no matter how much a-priori information he has about K. We formalize

this intuition by requiring the existence of a simulator producing “simulated leakage” such that

no adversary can distinguish actual leakage and simulated leakage. For each query to KPEval,

the simulator is given the query F , the response F (K), and the adversary’s leakage queries.

Recall that we are using the “only computation leaks” leakage model. This means that the

adversary’s leakage queries are applied only to the portion of the state of KPEval that is actually

in use. Following Dziembowski and Pietrzak [DP08], we model the state using two pieces of

memory (called “memory A” and “memory B”) that communicate via a public channel, where

computation never simultaneously involves both pieces of memory.

Looking ahead to our construction, each call to KPEval will involve computation on memory

A, then on memory B, and finally on memory A again. We allow the adversary to adaptively

choose leakage queries for each of these three computations (that is, for each query F to KPEval,

the adversary chooses a leakage query `1 for the initial computation on memory A, sees the

result of this query along with any message sent over the public channel by memory A, chooses

a leakage query `2 for the computation on memory B, and so on). Each leakage query must

have output length log n. We require the simulator to produce not only “simulated leakage” but

also “simulated public channel communication”. The simulator receives queries and produces

simulated leakage and communication in the same order as an actual construction (that is, the

simulator receives query F , response F (K), and the first leakage query `1, outputs a simulated

response to `1 along with simulated communication from memory A to memory B, then receives

leakage query `2, and so on).

Applications Applications of leakage-resilient key proxies include leakage-resilient versions of

signature schemes, public-key encryption schemes, and private-key encryption schemes. Note

that definitions of security for public-key encryption and private-key encryption involve the

computation of a challenge that is given to the adversary. When giving leakage-resilient versions

of these definitions, we must disallow leakage on the computation generating the challenge in

order to prevent the adversary from trivially succeeding; however, we do allow leakage on all

other computation, both before and after the computation of the challenge.

Chapter 1. Introduction 5

Our construction

Our construction uses a fully-homomorphic public-key encryption scheme. Such schemes allow

arbitrary computation to be performed on encrypted data, producing an encryption of the

result.

Definition 2 (Fully-homomorphic public-key encryption scheme) A fully-homomorphic

public-key encryption scheme is a tuple of PPT algorithms (KeyGen,Enc,Dec,EncEval) that sat-

isfy the following conditions:

1. The triple (KeyGen,Enc,Dec) is a semantically-secure public-key encryption scheme.

2. The algorithm EncEval(pub,C, F), where pub is a public key, C = (C1, . . . , Cn) is a

vector of ciphertexts, and F is a circuit on n inputs, outputs a string C ′ which is a valid

encryption under pub of

F (Decpri(C1), . . . ,Decpri(Cn)).

Fully-homomorphic public-key encryption schemes have recently been constructed by Gen-

try [Gen09] and by van Dijk et al [vDGHV10].

We now informally describe our construction of a leakage-resilient key proxy. We use a

fully-homomorphic public-key encryption scheme (KeyGen,Enc,Dec,EncEval). On input K, our

initialization procedure KPInit uses KeyGen to produce key pair (pri, pub), and uses Enc to

produce an encryption C of K under pub. It outputs pri to memory A and outputs C to

memory B. Given a circuit F as input, our evaluation procedure KPEval follows the approach

shown in Figure 1.1.

Observe that our construction refreshes the contents of both pieces of memory on every

call to KPEval. The purpose of such refreshing is to prevent the adversary from eventually

leaking the entire contents of memory. However, it is not clear that this is sufficient to obtain

leakage resilience. For example, it is possible that a ciphertext C output by EncEval will retain

information about the corresponding inputs to EncEval (beyond whatever is implied by the

plaintext corresponding to C), and reveal this information when it is decrypted. In particular,

the decryption of Cres in memoryAmay reveal information aboutK (beyond whatever is implied

by F (K)). To address this problem, the fully-homomorphic encryption schemes of Gentry and of

van Dijk et al have randomization procedures that have the effect of removing extra information

from ciphertexts. Roughly speaking, these procedures involve adding a random encryption of

0̄ to the given ciphertext. We were unable to prove that these randomization procedures have

the desired effect when there is leakage on the randomness used to produce the encryption of 0̄.

Consequently, we use a leak-free component to sample the two random encryptions of 0̄ needed

by memory B to randomize Cres and Ckey. We note that Faust et al [FRR+10] and Goldwasser

Chapter 1. Introduction 6

Memory A Memory B

Contents of memory: pri
Contents of memory: C = Encpub(K),

Input: circuit F

Compute (pri′, pub′)← KeyGen(1n)

Compute Cpri ← Encpub′(pri)

Set memory to pri′

pub′,Cpri−−−−−→
Homomorphically compute using C, Cpri:

Cres ← Encpub′(F (K))

Ckey ← Encpub′(K)

Set memory to Ckey

Cres←−−−−−−
Compute Y ← Decpri′(Cres)

Return Y

Figure 1.1: Informal description of our key proxy, showing one call to KPEval

et al [GR10] also use leak-free components in their construction. While the components used by

Faust et al sample from a simpler distribution than ours, they use linearly-many components

(we use just one) and obtain security only with respect to leakage computed by AC0 circuits

(but they allow leakage on the entire state, not just on the portion involved in computation).

The components used by Goldwasser et al sample from a distribution of complexity similar to

ours (they also sample encryptions under a public key); as noted previously, Goldwasser et al

use linearly-many components.

Proving our construction is secure We briefly describe the approach we use in our proof

of security. We define a simulator that instantiates our construction using key 0̄, and uses

this instantiation to respond to the adversary’s leakage queries. We use a non-trivial hybrid

argument to show that an adversary that distinguishes real leakage from simulated leakage (after

polynomially-many calls to KPEval) yields an adversary that, roughly speaking, distinguishes

real leakage from simulated leakage after only two calls to KPEval. Then we show how pairs of

the new adversary’s leakage queries can be combined into a single query (of twice the output

length) using a guess-and-check approach: when the adversary would normally make the first

leakage query it instead guesses an output, and then verifies this guess when it makes the

Chapter 1. Introduction 7

second leakage query (and uses a coin flip as output when it turns out that its guess was

wrong). Repeatedly combining pairs of leakage queries in this fashion yields an adversary that

just makes a single leakage query and (essentially) distinguishes an encryption of 0̄ (used by

the simulator) from an encryption of some key K (used by the real construction). To finish the

proof, we use an observation of Akavia et al [AGV09] that every semantically-secure public-key

encryption scheme remains secure when the adversary gets O(log n) bits of leakage on KeyGen.

Chapter 2 is joint work with Yevgeniy Vahlis [JV10].

1.1.2 Leakage-resilient authentication

In Chapter 3, we consider the problem of leakage-resilient shared-private-key authenticated ses-

sions. Two parties, A and B, have shared an n-bit key, and A now wishes to send message

pieces to B over public channel in a manner that allows B to verify that the message pieces

he is receiving are indeed those sent by A, in the correct order. The adversary controls the

public channel and adaptively obtains leakage from both parties. Assuming only the existence

of pseudo-random generators, we construct a shared-private-key authenticated session protocol

that is secure even when the adversary obtains O(log n) bits of leakage per computation. The

leakage obtained by the adversary for each computation is computed based on the entire state,

inputs, and randomness of the party performing the computation; that is, we do not use the

“only computation leaks” assumption, nor do we use any leakage-free hardware. Our protocol

also has the feature that all randomness used by each party is made public, and, in fact, this

randomness can be chosen according to a high min-entropy distribution (that is, a distribution

with at least log2 n bits of min-entropy).

Our construction

Our construction uses a modified version of Pietrzak’s leakage-resilient stream cipher [Pie09].

A stream cipher produces pseudo-random sequence of strings. Leakage-resilient stream ciphers

have been constructed in the “only computation leaks” model by Dziembowski and Pietrzak

[DP08] and Pietrzak [Pie09]. The definition of security for leakage-resilient stream ciphers

involves only a single party computing the stream cipher. An important challenge that needs

to be overcome when using leakage-resilient stream ciphers for leakage-resilient authentication

is handling the issue of two parties each running a stream cipher using the same seed, where

both parties are subject to leakage.

We modify the stream cipher of Pietrzak [Pie09] so that it uses public source of high min-

entropy strings but allows the entire state to leak. Like Pietrzak’s stream cipher, our stream

cipher can be built from a pseudo-random function generator F : {0, 1}n × {0, 1}n → {0, 1}2n.

Chapter 1. Introduction 8

Sender A Receiver B

Contents of memory: Ki−1

Input: message piece mi

Contents of memory: Ki−1

Choose high min-entropy ri
ri←−−−−−

Compute Ki||Xi ← FKi−1(ri)

Set memory to Ki

Compute αi ← F ′Xi(mi)
mi, αi−−−−−−−→

Compute Ki||Xi ← FKi−1(ri)

Set memory to Ki

If αi = F ′Xi(mi):

Output mi

Else:

Output Fail

Figure 1.2: Informal overview of our authenticated session protocol, showing a single round i

In our construction, the two parties each run our stream cipher, using their shared key as

the stream cipher’s seed. The receiver chooses the required high-min entropy strings and sends

them to the sender over a public channel. Each string that is output by the stream cipher is

used by the sender to sign a message piece (specifically, the string output by the stream cipher

is used as the seed of a pseudo-random function generator F ′ : {0, 1}n×{0, 1}n → {0, 1}n which

is evaluated on the message piece to produce a signature), and used by the receiver to verify

this signature. An informal overview of our construction is given in Figure 1.2.

Definition of security The adversary controls the public channel, and also chooses the

message pieces mi that are provided as input to the sender A. Note that since the adversary

controls the public channel, he effectively has the ability to schedule the computation performed

by A and B. For example, he can choose to run A for several rounds before B has run at all.

Whenever a party performs computation, the adversary obtains O(log n) bits of leakage.

The receiver B is allowed to output Fail and halt (the idea is that he does so when he detects

tampering by the adversary); when this happens, the security experiment ends immediately.

The adversary’s goal is to induce the receiver B to output, for some i, a message piece m′i 6= mi.

The construction is secure if every polynomial-size adversary succeeds with at most negligible

Chapter 1. Introduction 9

probability.

Proving our construction is secure Intuitively, the string ri sent by B to A forces the

adversary to “properly” interleave the computation of A and B. That is, we show that an

adversary that breaks our construction yields an adversary that, roughly speaking, breaks our

construction in manner that involves behaving passively (simply providing the output of B to

A and vice-versa) until the round j in which B is induced to output an m′j 6= mj . We then

argue that the leakage on A and B in each round can be combined into a single leakage query

(whose output length is equal to the sum of output lengths of the all the leakage queries on A

and B in a single round) for each round. The main idea is that since the adversary is behaving

passively, the states of A and B are identical each round; hence it suffices for the adversary to

leak on just one of these parties, since the leakage function can simulate the adversary receiving

leakage from one of the parties, choosing the next leakage function, and obtaining leakage from

the other party, and the leakage function can concatenate the responses to these queries in

order to form its own output. This yields an adversary that is essentially interacting with just

a single instance of the stream cipher underlying our construction. We show that this adversary

can be used to break the stream cipher.

Separately, we show that our modified version of Pietrzak’s leakage-resilient stream cipher

is secure. We use ideas that are similar to those of Pietrzak, but there are significant differences

in the details.

Chapter 3 is joint work with Yevgeniy Vahlis [JV11].

1.2 Black-box impossibility results for pseudo-random number

generator constructions

Positive results in cryptography – results that assert that a particular definition of security

can be satisfied – are typically conditional: “If an object O1 with security property A exists,

then an object O2 with security property B exists.” Most results of this form involve giving

a black-box construction of an object with security property B from an object with security

property A. Informally, this means using an oracle O1 with security property A in order to

construct an object with security property B, where the construction’s proof of security shows

how to use an oracle breaking the B-ness of the construction in order to break the A-ness of the

construction’s oracle O1. Showing that an object satisfying property B cannot be obtained in

a black-box way from an object satisfying property A can be taken as evidence that obtaining

property B from property A is difficult and requires non-standard techniques. Impagliazzo and

Chapter 1. Introduction 10

Rudich [IR89] gave the first such black-box impossibility results.

The black-box setting has also been used to investigate how efficiently a particular property

B can be obtained from a particular property A. For example, Gennaro et al [GGKT05] consider

black-box constructions of pseudo-random number generators from one-way permutations, and

give a bound on the number of bits of stretch per oracle query that such constructions can

achieve.

Non-adaptive constructions of pseudo-random number generators The standard ap-

proach for constructing a large-stretch pseudo-random generator given a one-way permutation

or given a smaller-stretch pseudo-random generator involves repeatedly composing the given

primitive with itself. In Chapter 4, we consider whether this approach is necessary, that is,

whether there are constructions that do not involve composition. More formally, we consider

black-box constructions of pseudo-random generators from pseudo-random generators of smaller

stretch or from one-way permutations, where the constructions make only non-adaptive queries

to the given object. Viola [Vio05] and Lu [Lu06] consider a similar problem – constructing a

pseudo-random generator making only non-adaptive queries to a given one-way function – and

give black-box impossibility results for certain classes of such constructions. Miles and Viola

[MV11] consider constructions of linear-stretch pseudo-random generators making only non-

adaptive queries to a pseudo-random generator of 1-bit stretch, and give a black impossibility

result for such constructions whose output must consist only of query response bits (that is,

constructions where no computation can be performed on query responses). The classes of con-

structions considered by Viola, Lu, and Miles et al are, in general, incomparable to the classes

of constructions we consider; their constructions are more general in terms of the number of

oracle queries allowed and the manner in which oracle queries are chosen, but more restrictive

in the computational power allowed after responses to the oracle queries are received.

Our results We consider three classes of constructions of pseudo-random number generators,

and for each class, we give a black-box impossibility result that demonstrates a contrast between

the stretch that can be achieved by adaptive and non-adaptive black-box constructions. Our

classes are defined by specifying restrictions on the manner in which oracle queries are chosen or

used; beyond these restrictions, we do not place any computational bounds on the constructions

we consider.

• Class 1: Constructions with short seeds

We begin by considering constructions whose seed length is not too much longer than the

length of each oracle query. Suppose we have a pseudo-random generator f : {0, 1}n →
{0, 1}n+s(n) and we wish to obtain a pseudo-random generator with larger stretch, say

Chapter 1. Introduction 11

stretch 2 · s(n). We can easily define such a generator Gf : {0, 1}n → {0, 1}n+2·s(n) as

follows: on input x ∈ {0, 1}n, Gf computes y0||y1 = f(x) (where |y0| = s(n) and |y1| = n),

and outputs y0||f(y1). Observe that this construction makes two adaptive oracle queries.

This idea can easily be extended to obtain, for every k ∈ N, a black-box construction

making k adaptive oracle queries and achieving stretch k · s(n).

We show that black-box constructions making constantly-many non-adaptive queries, each

of the same length as their seed length n, cannot even achieve stretch s(n) + 1, that is,

such constructions cannot even achieve a one-bit increase in stretch. We show that this

also holds for constructions whose seed length is at most O(log n) bits longer than the

length n of each oracle query.

• Class 2: Constructions with long seeds

We next consider constructions with arbitrarily long seeds, but where oracle queries are

collectively chosen in a manner that depends only on a portion of the seed whose length

is at most O(log n) bits longer than the length n of each query. While this setting may

seem unnatural at first, it is possible in this setting to obtain a construction that makes

constantly-many non-adaptive oracle queries to a pseudo-random generator and achieves

more stretch than its oracle; indeed, even a single query suffices. For example, if f :

{0, 1}n → {0, 1}n+s(n) is pseudo-random, then by the Goldreich-Levin theorem [GL89] we

have that for all functions m(n) ∈ O(log n), the number generator Gf : {0, 1}n·m(n)+n →
{0, 1}n·m(n)+n+s(n)+m(n) defined for all r1, r2, . . . , rm(n), x ∈ {0, 1}n as

Gf
(
r1||r2|| . . . ||rm(n)||x

)
= r1||r2|| . . . ||rm(n)||f(x)||〈r1, x〉||〈r2, x〉|| . . . ||〈rm(n), x〉

is pseudo-random; the stretch of Gf is m(n) bits greater than the stretch of f . Also

observe that the query made by G(·) depends only on a portion of the seed of G(·) whose

length is the same as the length of the query. Using this Goldreich-Levin-based approach,

it is easy to see that adaptive black-box constructions whose input length is much longer

than the length n of each oracle query can obtain stretch k · s(n) + O(log n) by making

k queries to an oracle of stretch s(n), even when the portion of the seed that is used to

choose oracle queries has length n.

We show that black-box constructions G(·) making constantly-many non-adaptive queries

of length n to a pseudo-random generator f : {0, 1}n → {0, 1}n+s(n), such that only

the rightmost n + O(log n) bits of the seed of G(·) are used to choose oracle queries,

cannot achieve stretch s(n) + ω(log n). That is, such constructions making constantly-

many non-adaptive queries cannot achieve greater stretch than the stretch provided by

Chapter 1. Introduction 12

Goldreich-Levin with just a single query. This holds no matter how long a seed is used

by the construction G(·).

• Class 3: Goldreich-Levin-like constructions

Finally, we consider a class of constructions motivated by the streaming computation of

pseudo-random generators. Specifically, we consider a class of constructions where the

seed has a public portion that is always included in the output, the choice of each oracle

query does not depend on the public portion of the seed, and the computation of each

individual output bit depends only on the seed and on the response to a single oracle query.

We refer to such constructions making non-adaptive oracle queries as bitwise-nonadaptive

constructions. It is not hard to see that such constructions making polynomially-many

adaptive queries to a one-way permutation π : {0, 1}n → {0, 1}n can achieve arbitrary

polynomial stretch; the idea is to repeatedly compose π with itself, outputting a hardcore

bit of π on each composition. For example, using the Goldreich-Levin hardcore bit [GL89],

a standard way of constructing a pseudo-random generator Gπ of polynomial stretch p(n)

is the following: On input r, x ∈ {0, 1}n,

Gπ(r||x) = r||〈r, x〉||〈r, π(x)〉||〈r, π2(x)〉|| . . . ||〈r, πp(n)+n(x)〉

where πi := π ◦ π ◦ . . . ◦ π︸ ︷︷ ︸
i times

. Observe that the leftmost n bits of the seed of G are public in

the sense that they are included in the output. Also observe that each of the remaining

output bits of G is computed using only a single output of π along with the input bits

of G. Finally, observe that the queries made to π do not depend on the public input

bits of G, and the number of non-public input bits is no greater than the length n of

each oracle query. Is the adaptive use of π in a construction of this form necessary? This

question is particularly interesting if we wish to compute G in a streaming setting where

we have small workspace and produce the output of G bit-by-bit. In such a setting, it

seems difficult to use π in an adaptive manner, since we lack sufficient space to store query

responses.

We show that black-box bitwise-nonadaptive constructions G(·) making queries of length

n to a one-way permutation, such that the non-public portion of the seed of G(·) is of

length at most n + O(log n), cannot achieve linear stretch. This holds no matter the

length of the public portion of the seed of G(·).

Chapter 4 is joint work with Josh Bronson and Periklis Papakonstantinou [BJP11]. More

specifically, the impossibility result for Class 1 builds on the Master’s thesis of Bronson [Bro08],

who gives a partial result for the case of constructions that make only a single oracle query,

Chapter 1. Introduction 13

where this query must be the same as the seed. The impossibility results for Class 2 and Class

3 are joint work with Papakonstantinou.

Chapter 2

Leakage-resilient key proxies

Leakage-resilient cryptographic constructions – constructions that remain secure even when

internal state information leaks to the adversary – have received much recent interest. Tradi-

tionally, security models have treated such internal state information as perfectly hidden from

the adversary. However, the development of various side-channel attacks has made it clear that

this traditional view is inconsistent with physical reality. In a side-channel attack, an adversary

obtains information about the internal state of a device by measuring such things as power

consumption, computation time, and emitted radiation.

Cryptographic primitives with long term keys, such as encryption and signature schemes, are

often targeted by such attacks. An adversary observing information leakage from computation

on the key can potentially accumulate enough data over time to compromise the security of the

scheme. Consequently, storing keys and computing on them in adversarial environments has

been an important goal both in theory and practice. Indeed, many operating systems provide

cryptographic facilities that allow programs to access keys only through designated functions,

such as signing and encrypting. Smart cards provide a similar interface in hardware. In both

cases, the goal is to limit any adversary to interacting with the scheme through a specified

interface. Nevertheless, information leakage through physical side-channels is often sufficient to

overcome such barriers and break the scheme.

In this chapter, we propose an approach for protecting cryptographic keys and computing

on them repeatedly in a manner that preserves the secrecy of the key even when information

about the state of the device continuously leaks to the adversary. Towards this goal, we define

a new primitive called a key proxy, which encapsulates a key K and provides a structured way

of evaluating arbitrary functions on K. This allows, for example, the conversion of any pseu-

dorandom function, signature scheme, or public-key encryption scheme into a leakage-resilient

variant of itself. Our construction withstands a bounded amount of leakage per invocation

(where an invocation occurs each time a function is evaluated on K), but the total amount of

14

Chapter 2. Leakage-resilient key proxies 15

leakage is unbounded. Previously, only stream ciphers, signature schemes, and identification

scheme have been made resilient to an unbounded total amount of leakage.

For our construction, we make use of fully homomorphic encryption [Gen09, vDGHV10], and

an additional “leak-free” component. This component samples from a globally fixed distribution

that does not depend on K.

Leakage-resilient cryptography. The problem of executing code in an adversarial environ-

ment has always been on the minds of cryptographers. Still, most cryptographic schemes are

designed assuming that the hardware on which they will be implemented is a black-box device,

and information is accessible to the adversary only through specified communication channels.

Goldreich and Ostrovsky [GO96] consider the problem of protecting software from malicious

users, and define the concept of an oblivious RAM – a CPU that is capable of evaluating en-

crypted programs using a constant amount of leak-free memory and an unbounded amount of

memory that is fully visible to the adversary. The oblivious RAM is initialized with a secret

key, which is used to decrypt encrypted instructions, execute them, and re-encrypt the output.

The encrypted state of the program is stored in the clear. Oblivious RAMs provide the strong

security guarantee that even if an adversary can keep track of the memory locations accessed

by the computation, he is still unable to gain any additional information about the program

over what would normally be revealed through black box access.

Since the work of Goldreich and Ostrovsky, the focus in leakage-resilient cryptography has

been steadily shifting towards allowing the adversary ever-growing freedom in observing the

computation of cryptographic primitives. Ishai, Sahai, and Wagner [ISW03] introduce “private

circuits” – a generic compiler that transforms any circuit into one that is resilient to probing

attacks. In a probing attack, the adversary selects a subset (of some fixed size) of the wires of

the circuit and obtains the values of these wires. Goldwasser, Kalai, and Rothblum [GKR08]

define one-time programs – programs that come with small secure hardware tokens, and can

be executed a bounded number of times without revealing anything but the output, even if the

adversary observes the entire computation. The secure tokens are the hardware equivalent of

oblivious transfer – each token stores two keys and reveals one of them upon request, while the

second key is erased.

Micali and Reyzin [MR04] outline a framework for defining and analyzing cryptographic

security against adversaries that perform side channel attacks. They introduce an axiom: only

computation leaks information. That is, at any point during the execution of an algorithm,

only the part of memory that is actively computed on may leak information. This allows

for convenient modeling of leakage: an algorithm is described as a sequence of procedures

and the set of variables that is accessed by the procedure. The adversary may then obtain

Chapter 2. Leakage-resilient key proxies 16

leakage from the contents of each set of variables as they are accessed during the execution of

the algorithm. The only-computation-leaks model (OCL) has since been used to obtain stream

ciphers [DP08, Pie09] and signature schemes [FKPR10] that remain secure even if the adversary

obtains leakage from the active state each time the primitive is used, and the total amount of

leakage is unbounded. We refer to such leakage as “continuous leakage” for the rest of the

chapter.

Faust et al [FRR+10] propose an alternative restriction on side-channel adversaries: re-

stricting the computational power of the leakage function but allowing leakage on the entire

state. Faust et al describe a circuit transformation that protects any circuit against leakage

functions that can be described as AC0 circuits1. The transformed circuit can leak information

from the entire set of wires at each invocation, and makes use of a polynomial number of leak-

free components that generate samples from a fixed distribution that does not depend on the

computation of the circuit. We make use of a similar leak-free component, although the dis-

tribution generated by our component is significantly more complex than the one in [FRR+10]

due to the fact that we must defend against leakage functions that are not restricted to circuits

of small depth.

Very recently (subsequently to our work), specific leakage-resilient cryptographic primitives

have been constructed under even more general continuous leakage models. Dodis, Haralam-

biev, Lopez-Alt, and Wichs [DHLAW10] have constructed several primitives, including sig-

nature schemes and authenticated key agreement protocols, that remain secure even if the

entire state (and not just the active part) leaks information continuously. The public key of

the scheme remains fixed throughout the lifetime of the system. Brakerski, Kalai, Katz, and

Vaikuntanathan [BKKV10] construct a public-key encryption scheme that allows continuous

leakage on the entire state, and does not require a leak-free key update procedure. Brakerski

et al also construct signature schemes and identity based encryption under slightly different

leakage models. Malkin, Teranishi, Vahlis, and Yung [MTVY11] construct a signature scheme

in the standard model that tolerates continuous leakage on the entire state as well as on all

computation (that is, signing and key updates). As in our work, the constructions of Dodis et

al , Brakerski et al , and Malkin et al provide protection against leakage that can be described

by arbitrary polynomial-time computable functions with sufficiently short output.

In addition to the recent work on cryptographic constructions that are resilient to contin-

uous leakage, there has been significant progress [AGV09, ADW09, NS09, KV09] on obtaining

resilience to “memory attacks” – side channel attacks where the adversary obtains a bounded

amount of information about the memory contents of the device throughout its lifetime. Per-

1AC0 circuits have constant depth and unbounded fan-in.

Chapter 2. Leakage-resilient key proxies 17

haps due to the bounded nature of this type of leakage, constructions secure against memory

attacks tend to be quite efficient and do not require the algorithm to maintain a state.

Concurrent work of Goldwasser and Rothblum. Concurrent to our work, Goldwasser

and Rothblum [GR10] address the same problem that we do in this chapter. Their result can

be viewed as a construction of a leakage-resilient key proxy in the “only computation leaks”

model. Their construction relies on a linear number of leak-free components, while ours relies

on a single component. Also, they use the “only computation leaks” assumption more strongly

than we do, splitting the state of their construction into a number of separately-leaking pieces

that is linear in the size of the circuit being evaluated (while we use only two such pieces). On

the other hand, they rely on the standard Decisional Diffie Hellman assumption, whereas we

rely on fully homomorphic encryption. They also tolerate more total leakage per round than

we do.

On testable leak-free components. When constructing leakage-resilient cryptographic

primitives, one has to take care in the nature and amount of components that are assumed

not to leak any information. It is preferable, but may not always be possible, to avoid such

components altogether. For example, one can protect any functionality against leakage given an

arbitrary number of leak-free gates that can decrypt a ciphertext, perform a logical operation

on the plaintext, and re-encrypt the result. Such a component can be used to evaluate the

circuit F on K gate by gate, keeping all intermediate values encrypted, and thereby rendering

leakage useless. However, building such leak-free components may be as difficult as constructing

a leak-free computer and forgetting all about side-channels. Consequently, the focus of research

in this area has always been to reduce the power and amount of computation that is assumed

to be a-priori insulated from side-channel attacks.

Our construction uses a leak-free component that produces random encryptions of some

fixed message (in our case – 0̄) under a given public key in the fully homomorphic encryption

scheme. More specifically, the leak-free component we use is a randomized component that,

given pub, produces two random encryptions of 0̄. Consequently, the computation performed by

this component does not depend on any user or adversarially supplied inputs, and in particular

does not depend on the key K or the function F that is evaluated on K. We call such a

component testable because it can be accurately simulated in a controlled environment – all

one has to do is feed the component random bits and randomly generated public keys and

observe its behavior. More generally, we say that a component is testable if its inputs come

from a globally fixed distribution that is independent from other inputs to the system.

We propose testability as a rule of thumb for secure hardware components in leakage resilient

Chapter 2. Leakage-resilient key proxies 18

cryptography. All hardware components leak at least some information such as timing (every

computation takes time) and power consumption. Therefore, the best we can hope for is that

the information leaked by the components that we assume to be leak-free is useless to the

adversary. Testability gives us the ability to observe the leakage from the secure component –

as it will happen during actual usage – and estimate whether the component is safe to use. We

note that the components used by [FRR+10] and [GR10] are testable.

In contrast to [FRR+10] and [GR10], where the number of leak-free components needed is

linear in the size of the circuit that is evaluated on K, we use only one leak-free component.

Our contributions. We study the problem of computing on a cryptographic key in an en-

vironment that leaks information each time a computation is performed. We show that in the

OCL model with a single leak-free randomized component, a cryptographic key can be protected

in a manner that allows repeated computation on it while making sure that the adversary gains

no information from side-channel information leakage.

More precisely, we propose a tool which we call a key proxy – a stateful cryptographic

primitive that is initialized once with a key K, and then given any circuit F computes F (K).

Any leakage obtained by an adversary from the computation of the key proxy can be computed

given just F and F (K). Using any fully homomorphic encryption (FHE) scheme we construct

a key proxy with the following properties:

Resilience to adaptive polynomial-time leakage. During each invocation of the key proxy, we

allow the adversary to adaptively select leakage functions that are modeled as arbitrary circuits

with a sufficiently short output. The exact amount of round leakage that our construction can

withstand depends on the level of security of the underlying FHE scheme. Assuming the most

basic security for the FHE scheme (i.e. against polynomial-time adversaries) permits security

against O(log n) bits of leakage each time a function is evaluated on K. More generally, given

a 2l(n)-secure FHE scheme, our construction can withstand roughly l(n) bits of leakage per

invocation.

Independent complexity. The starting point of leakage-resilient cryptography is that com-

putation leaks information. It does not require a large leap of faith to suspect that more

computation leaks more information. In fact, to the best of our knowledge, this is indeed the

case for many side-channel attacks in practice. The amount of computation performed by our

key proxy construction does not depend on the amount of leakage that the adversary obtains

per invocation. Instead, to get resilience to larger amounts of leakage, a stronger assumption

about the security of the underlying fully homomorphic encryption is used. This allows us to

avoid a circular dependency where, in order to obtain resilience to larger amounts of leakage

one must build a more complex device, which in turn leaks more information.

Chapter 2. Leakage-resilient key proxies 19

One-time programs with efficient refresh. The one-time programs of [GKR08] can be im-

plemented without leak-free one-time memory tokens by storing the contents of the tokens in

memory, and then accessing only the needed values during computation. The one-time programs

can then be refreshed occasionally in a secure environment to allow continuous use. Currently,

the refresh procedure performs as much computation as the evaluation of the program that it

protects. If one is willing to trade resilience against complete exposure of the active memory

(achieved by [GKR08]) for resilience against length-bounded leakage then by pre-computing

the outputs of the leak-free tokens in our construction and storing them in memory, we obtain

one-time programs with an update procedure of fixed complexity that does not depend on the

protected program.

Our approach. The underlying building block for our construction is fully homomorphic

encryption. An FHE scheme is a public-key encryption scheme that allows computation on

encrypted data. That is, given a ciphertext with corresponding plaintext M , the public key,

and a circuit F , there is an efficient algorithm that computes an encryption of F (M).

For our construction, we partition the state of the key proxy into two parts, A and B (or,

equivalently, two devices). Given a key K, the key proxy is initialized as follows. An FHE key

pair (pri, pub) is generated and is stored in memory A. Then, a random encryption C of K

under pub is computed and is stored in memory B. To evaluate a function F (described as

a circuit) on K, the following actions are performed. First, a new pair of keys (pri′, pub′) is

generated and stored in memory A, and an encryption Cpri = Encpub′(pri) of the old private

key is written to a public channel. Then, computing on memory B and the public channel,

the following two ciphertexts are generated homomorphically from C and Cpri: an encryption

Cres of F (K) and a fresh encryption Ckey of K. Note that both Cres and Ckey are encryptions

under the new public key pub′. The ciphertext Cres is then sent back to memory A where

it is decrypted, and F (K) is returned as the output of the program. This basic approach is

described in Figure 2.1.

It is clear that without leakage, the above construction is secure. Of course, the main

difficulty is showing that leakage does not provide the adversary with any useful information.

Below we provide an informal description of two main technical issues that arise.

Leakage on private keys and ciphertexts. It is easy to see that without refreshing the

encryption C of K, a leakage adversary will eventually learn all of K by gradually leaking

all of C and pri and then simply decrypting. Therefore, it is clear that an update procedure

is necessary. The algorithm described in Figure 2.1 performs such an update: After each

invocation, memory A contains a freshly generated private key and memory B contains an

Chapter 2. Leakage-resilient key proxies 20

Memory A Memory B

Contents of memory: prii
Contents of memory: C = Encpubi(K),

Input: circuit F

(prii+1, pubi+1) = KeyGen(1n)

Encrypt Cpri = Encpubi+1
(prii)

Set memory to prii+1
pubi+1,Cpri−−−−−−−→

Homomorphically compute using C, Cpri:

Cres = Encpubi+1
(F (K))

and Ckey = Encpubi+1
(K)

Set memory to Ckey

Cres←−−−−−−
Compute Y = Decprii+1

(Cres)

Return Y

Figure 2.1: Informal description of the construction

encryption of K under the corresponding public key. However, we cannot directly claim that

this refreshing procedure provides the necessary level of security. The main difficulty stems

from the fact that the adversary obtains leakage on the private key in memory A both before

and after he obtains leakage on the encryption C of K under the corresponding public key. In

particular, if the adversary could obtain the entire ciphertext C, he would be able to hardcode

it into the second leakage function that is applied to the private key. The leakage function

would then decrypt C and leak bits of information about K.

This requires us to make use of the fact that the adversary obtains only a bounded amount

of leakage on the ciphertext C, and never sees it completely. We argue that any leakage function

that provides enough information about the ciphertext in order to later learn something about

the plaintext given the private key, essentially acts as a distinguisher and can be used to break

the semantic security of the FHE.

Randomizable FHE. Ciphertexts produced by fully homomorphic encryption schemes may

carry information about the homomorphic computation that was performed to obtain them.

For instance, it is possible that the ciphertext Cres is actually first decrypted to a string of

the form (F (K),K) and then the decryption algorithm ignores the second element in the

Chapter 2. Leakage-resilient key proxies 21

pair. In this case, the adversarial leakage function is clearly not forced to follow the honest

decryption algorithm and can make use of the intermediate values of the decryption process

to leak information about K. Similarly, the ciphertext Ckey may contain information about

the function F that was evaluated on K. For some applications, such as encryption where F

encodes in plain text the message to be encrypted, this is undesirable since the adversary may

use future leakage functions to gain information about the message.

Fortunately, the homomorphic encryption schemes of Gentry [Gen09] and of van Dijk et al

[vDGHV10] have the following additional property: given any encryption C of a message M and

a random encryption C ′ of M ′, the ciphertext C+C ′, where the addition is performed over the

appropriate group of ciphertexts, is a random encryption of M +M ′. Consequently, to address

the issue described above, we randomize both Cres and Ckey by adding random encryptions of

zero to both ciphertexts. In order to make use of the property described above, the encryptions

of zero need to be generated without leakage; otherwise, the leaked information maintains a

correlation between the randomized ciphertext and the history of the computation that was

used to produce the original ciphertext.

We note that in the FHE schemes of [Gen09] and [vDGHV10], C ′ has to be generated in a

special way in order to have enough noise to annihilate any dependence between C+C ′ and the

computation history of C. For simplicity of exposition we ignore this distinction, and instead

remark that the randomization procedures of both FHE schemes satisfy the properties needed

for our construction.

Function privacy in key proxies. In the above description of key proxies, we require that

the leakage obtained by the adversary can be simulated given just F and F (K). However, in

some applications, such as private-key encryption, the function F itself also needs to be hidden.

In the case of encryption, F contains the message M , so an adversary can break semantic

security simply by leaking information about F , ignoring K completely. This raises a subtle

modeling issue: the message M must exist somewhere as plaintext, and if the adversary obtains

leakage on that computation, he will trivially break semantic security. Therefore, irrespective

of the definition of leakage-resilient key proxies, semantic security cannot be achieved when

every invocation of every algorithm leaks information.

There are several ways in which this issue can be addressed. One solution is to weaken

the definition of semantic security by requiring that the plaintexts have high pseudo-entropy2

given the leakage obtained by the adversary. We avoid this approach both because it leads to

complex definitions, and because it does not seem to have a clear advantage over the following

2A distribution has pseudo-entropy ≥ k if it is computationally indistinguishable from some distribution with
min-entropy ≥ k.

Chapter 2. Leakage-resilient key proxies 22

much cleaner solution. Instead, we allow the adversary to obtain leakage both before and after

the challenge ciphertext is generated, but not on the computation of the challenge ciphertext

itself. This essentially means that while leakage can compromise individual encryptions, the

long-term key remains safe. Under this restriction, our definition of key proxies provides the

needed level of security. This approach is consistent with previous definitions of leakage-resilient

semantic security (see e.g. [DP08, NS09, DKL09, DGK+10]), and allows us to avoid additional

complexity in our definition. This is desirable especially given the fact that for some applications

of key proxies, such as signature schemes, function privacy is not necessary.

We mention briefly that another option is to define a leakage model for private-key encryp-

tion which allows the encryption algorithm to perform some leak-free pre-processing that is

independent of the key. Then, the encryptor can generate an encrypted version of the circuit

F , which can be safely given to the adversary without compromising security.

Organization. In Section 2.2, we describe the computational and leakage models that we use,

and define a leakage-resilient key proxy. In Section 2.3, we provide our main construction, and

analyze its security. In Section 2.4, we describe several variants of our model and construction,

and provide some applications of leakage-resilient key proxies.

2.1 Preliminaries

Notation. We write PPT to denote Probabilistic Polynomial Time. When we wish to fix the

random bits of a PPT algorithm M to a particular value, we write M(x; r) to denote running

M on input x and randomness r. We write timen(M) to denote the running time of algorithm

M on security parameter n. We use x ∈R S to denote the fact that x is sampled according to

a distribution S. Similarly, when describing an algorithm we may write x←R S to denote the

action of sampling an element from S and storing it in a variable x.

It is common in cryptography to describe probabilistic experiments that test the ability of

an adversary to break a primitive. Given such an experiment Exp, and an adversary A, we

write A� Exp to denote the random variable representing outcome of Exp when run with the

adversary A.

2.1.1 Fully Homomorphic Encryption

The main tool in our construction is a fully homomorphic public-key encryption (FHE) scheme.

Intuitively, such a scheme has the usual semantic security properties of a public-key encryption

(PKE) scheme, but in addition, can perform arbitrary computation on encrypted data. The

outcome of this computation is, of course, also encrypted. The first construction of FHE was

Chapter 2. Leakage-resilient key proxies 23

given by Gentry in [Gen09], and is based on ideal lattices. Recently another construction was

proposed by van Dijk et al [vDGHV10].

We do not go into the details of the FHE constructions, but rather present the result with

respect to an arbitrary FHE with an additional randomization property, which is satisfied by

both constructions.

Definition 3 Let FHE = (KeyGen,Enc,Dec,EncEval,Add,Subtract) be a tuple of PPT algo-

rithms, and let l : N → N. We say that FHE is an l(n)-secure fully homomorphic public key

encryption scheme if the following conditions hold:

1. The triple (KeyGen,Enc,Dec) is a public-key encryption scheme. We assume without loss

of generality that the private key is always the random bits of KeyGen.

2. The algorithm EncEval(pub,C, F), where pub is a public key, C = (C1, . . . , Cn) is a vector

of ciphertexts with plaintexts (m1, . . . ,mn), and F is a circuit on n inputs, outputs a string

C ′ which is a valid encryption of F (m1, . . . ,mn).

3. The algorithms Add and Subtract have the following properties:

(a) For all pri, for pub = KeyGen(pri), for all messages M1 and M2, for a random

encryption C1 of M1 under pub and for every encryption C2 of M2 under pub,

Add(pub, C1, C2) is distributed identically to Encpub(M1+M2), and Subtract(pub, C1, C2)

is distributed identically to Encpub(M1 −M2).

(b) For all ciphertexts C1 and C2, Add(pub, Subtract(pub, C2, C1), C1) = C2. That is,

subtracting a ciphertext is the inverse of adding it.

4. For every probabilistic adversary A running in time at most l(n), the advantage of A in

breaking the semantic security of FHE is at most 1/l(n).

Remark 2.1.1 The algorithms Add and Subtract may be implemented as addition and subtrac-

tion over the space of ciphertexts, though we do not require this. In some fully homomorphic

encryption schemes, Add and Subtract may not achieve the exact requirement of step 3 above.

Specifically, Add and Subtract may produce an encryption that cannot be computed on homo-

morphically using EncEval. We note that this is not a problem for our construction since we

only use EncEval on encryptions of pri, which are ephemeral and never the output of Add or

Subtract. We avoid formalizing this issue to improve exposition.

Chapter 2. Leakage-resilient key proxies 24

2.2 Models and Definitions

In this section, we present the definition of a leakage-resilient key proxy (LRKP). We start

with a syntactic description of the primitive, and then describe the security experiment and the

leakage model.

Stateful Algorithms. Due to the continuous nature of side-channel attacks, it is necessary

for an LRKP to maintain a state in order to achieve security. We model stateful algorithms

by considering algorithms with a special input and output structure. A stateful randomized

algorithm takes as input a triple (x;R,S) where x is the query to the algorithm, R is a random

string, and S is a state (when R is clear from context we omit it, and denote the input by

(x;S)). It then outputs (y, Snew) where y is the reply to the query, and Snew is the new state.

Definition 4 A key proxy is a pair KP = (KPInit,KPEval), where KPInit is an algorithm, and

KPEval is a stateful algorithm. For fixed c ∈ N and for all n ∈ N, K ∈ {0, 1}nc , KPInit(1n,K)

outputs an initial state S. For every circuit F : {0, 1}|K| → {0, 1}n, and random coins R, the

stateful algorithm KPEval(1n, F ;R,S) outputs F (K).

We now describe the security experiment of LRKPs. This experiment is parameterized by

the leakage structure on a single invocation of the KPEval algorithm. However, for clarity we

start with the description of the general experiment, and then provide details on the leakage

that occurs at each invocation. We model the the leakage resilience of a key proxy by requiring

the leaked information to be simulatable. That is, we require the existence of a simulator Sim

that, given F and F (K), can simulate the leakage and messages obtained by the adversary

during the computation of KPEval(1n, F ;R,S). No efficient adversary should be able to tell

whether he is getting actual leakage and messages, or interacting with a simulator. We now

describe the real and ideal security experiments:

Let KP = (KPInit,KPEval) be a key proxy. Let A and Sim be PPT algorithms, n ∈ N, and

consider the following two experiments:

ExpReal (Real Interaction). The interaction of the adversary with the key proxy proceeds as

follows:

1. A key K is chosen by the adversary, and KPInit(1n,K) is used to generate an initial

state S.

2. The adversary repeats the following steps an arbitrary number of times:

(a) The adversary submits a circuit F , which is evaluated on K by KPEval. During

the computation, the adversary acts as a single invocation leakage adversary

(described below in Definition 7) for KPEval.

Chapter 2. Leakage-resilient key proxies 25

(b) At the end of the computation of KPEval, the adversary is given F (K).

3. After the adversary is done making queries, it outputs a bit b.

ExpIdeal (Ideal Interaction). The interaction of the adversary with simulated leakage pro-

ceeds as follows:

1. The adversary submits a key K, which is not revealed to the simulator.

2. The adversary then repeats the following steps an arbitrary number of times:

(a) The adversary submits a circuit F , and Sim is given F and F (K). The adversary

then acts as a single invocation leakage adversary according to Definition 7,

except that the leakage functions are submitted to the simulator, which returns

simulated leakage values and messages.

(b) Eventually the adversary stops submitting leakage functions, and is given F (K).

3. After the adversary is done making queries, it outputs a bit b.

Definition 5 We say that KP is a Leakage-Resilient Key Proxy if for every PPT A there exists

a PPT S and a negligible function neg(·) such that

|Pr[(A� ExpReal) = 1]− Pr[(A� ExpIdeal) = 1]| ≤ neg(n)

The above definition describes the security of an LRKP relative to some unspecified proce-

dure which allows the adversary to obtain leakage during each invocation of KPEval. The exact

procedure for a single-invocation leakage depends on the leakage model and on the structure of

the implementation of KPEval. Below we formalize the structure of our solution, and describe

the leakage obtained by the adversary during a single invocation of KPEval.

Our construction of KPEval is described as a protocol between two parties EvalA and EvalB

that leak information separately, and where the messages between EvalA and EvalB are public.

In this format, our construction requires two flows between the parties: one from EvalA to EvalB

and one from EvalB to EvalA. The following definition formalizes this structure.

Definition 6 A 2-round split state key proxy KP = (KPInit,KPEval) is a key proxy such that

the state S is represented as a pair S = (MemA,MemB) ∈ ({0, 1}nd)2 for some fixed d ∈ N,

and the algorithm KPEval is described as four algorithms (LeakFree,EvalA1,EvalB,EvalA2), each

running in time polynomial in n, where

1. EvalA1 takes as input MemA, OutLFA, and randomness RandA, and outputs an updated

state MemA′ ∈ {0, 1}nd and a message MAB to EvalB.

2. LeakFree takes as input message MAB and randomness RandLF, and outputs string OutLF.

Chapter 2. Leakage-resilient key proxies 26

3. EvalB takes as input MemB, randomness RandB, OutLF, the message MAB, and a circuit

F : {0, 1}|K| → {0, 1}n of arbitrary size. It then outputs an updated state MemB′ ∈
{0, 1}nd and a message MBA to EvalA.

4. EvalA2 takes as input MemA′, the message MBA and outputs an updated state MemA′′

and the result F (K).

The output of KPEval is F (K), and the updated state is (MemA′′,MemB′).

Recall that our construction requires a leak-free component. This leak-free component is mod-

eled by algorithm LeakFree above. A crucial point here is that LeakFree receives only random-

ness and a public message as input, and, in particular, receives neither F nor the saved state

(MemA,MemB) as inputs; therefore, regardless of the actual construction, the above defini-

tion prevents LeakFree from carrying out the evaluation of F on K, which would make the

construction trivial.

We are now ready to describe the leakage structure on a single invocation of a 2-round

split state key proxy. The leakage model we use, commonly known as “only computation leaks

information” (OCL), lets the adversary obtain leakage only on the active part of memory during

each computation.

Definition 7 Let l : N → N and let KP be a 2-round split state key proxy. A single invo-

cation leakage adversary in the only-computation-leaks model chooses a circuit f1, then sees

f1(MemA,RandA) and MAB, chooses circuit f2, then sees f2(MemB,OutLF,RandB) and MBA,

chooses a circuit f3, and finally sees f3(MemA′). The adversary is l-bounded if for all n the

range of f1, f2, f3 is {0, 1}l(n).

Note that in the above definition, the leakage functions can compute any internal values

that appear during the computations of EvalA1, EvalB, and EvalA2. This means, for example,

that it is unnecessary to explicitly provide MAB to f1 or MBA to f2.

History freeness. In Definition 5 we allow information about the functions Fi that are

evaluated on K to leak to the adversary. In particular, it is possible that during some invocation

j the adversary can obtain, through leakage, information about some previously queried function

Fi. In the introduction we mentioned that leakage-resilient variants of some applications, such

as private-key encryption, are defined to allow leakage both before and after the generation of

the challenge ciphertext, but not on the challenge itself. However, if the state of LRKP keeps a

history of some of the functions that were applied to K, then by leaking on it after the challenge

was computed, the adversary may be able to break the semantic security of the encryption. We

note that the above definition is sufficient to obtain security in the presence of what we call

Chapter 2. Leakage-resilient key proxies 27

“lunch-time leakage” attacks – where the adversary obtains leakage only before the challenge

ciphertext is generated, but not after.

To address the above issue, and allow full leakage in applications such as encryption, we

introduce an additional information-theoretic property that requires that the state of the LRKP

is distributed identically after all sequences of functions that are evaluated on K. This property

is satisfied by our construction, and prevents the above mentioned “history attack”.

Definition 8 An LRKP (KPInit,KPEval) is called history free if for all n ∈ N and all K ∈
{0, 1}poly(n), there exists a distribution D over the states of the LRKP such that for all j ∈ N,

all sequences of functions F1, . . . , Fj : {0, 1}|K| → {0, 1}n, and all sequences of random tapes

R0, . . . , Rj−1, the random variable {Sj+1|S1, . . . , Sj} over Rj is distributed according to D,

where S1 = KPInit(1n,K;R0) and Si is the updated state after KPEval(1n, Fi−1;Ri, Si−1).

2.3 Leakage-Resilient Key Proxies From Homomorphic Encryp-

tion

Given a fully homomorphic public-key encryption scheme FHE = (KeyGen, Enc, Dec, EncEval,

Add, Subtract) we construct a leakage-resilient 2-round split state key proxy LRKP = (KPInit,KPEval).

KPInit(1n,K): The algorithm KPInit(1n,K) first runs KeyGen(1n) to obtain a public-private

key pair (pub1, pri1) for the FHE. It then generates a ciphertext Ckey = Encpub1(K) and

assigns MemA ← pri1 and MemB ← Ckey. The output is an initial state that consists of

two parts (MemA,MemB).

KPEval(1n, F ; (MemA,MemB)): The algorithm KPEval consists of four subroutines – LeakFree,

EvalA1, EvalB, and EvalA2 – that are used as follows: on input circuit F first generate

(OutLFA,OutLFB)←R LeakFree(1n). Then, follow the protocol described in Figure 2.2 by

computing

(MAB,MemA′)←R EvalA1(MemA,OutLFA);

(MBA,MemB′)←R EvalB(MemB,OutLFB,MAB);

Y ← EvalA2(MemA′,MBA)

The final state after one evaluation of KPEval is (MemA′,MemB′), and the output is Y .

We now describe the subroutines 〈LeakFree,EvalA1,EvalB,EvalA2〉 of KPEval:

Chapter 2. Leakage-resilient key proxies 28

LeakFree(pub): Parse randomness as (rLF1, rLF2), and compute

CR0 = Encpub(0̄; rLF1)

CR1 = Encpub(0̄; rLF2)

OutLF = (CR0, CR1)

and output OutLF.

The subroutines EvalA1, EvalB, and EvalA2 are described in Figure 2.2 as a two round two party

protocol where EvalA1 and EvalA2 specify the actions of party A and EvalB specifies the actions

of party B. In the definition of EvalB we use subroutines Evaluate and Refresh that are defined

as follows:

Evaluate(F,C, pri): Compute and output F (Decpri(C))

Refresh(C, pri): Compute and output Decpri(C)

The correctness of this construction follows in a straightforward manner from the correct-

ness of the underlying FHE. We also note that our construction is history free according to

Definition 8. This is due to the fact that the values assigned to MemA and MemB at the end of

KPEval are independent from the function F . In particular, MemA is simply a random private

key, and MemB contains an encryption of K which was obtained by a homomorphic evaluation

of Refresh on the previous contents of MemB and an encryption of the previous private key,

neither of which depends on F .

The bulk of the analysis is in showing that our construction is in fact leakage-resilient ac-

cording to Definition 5, where during each invocation the leakage structure on the computation

of KPEval is given in Definition 7. We now state our main theorem.

Theorem 2.3.1 Let LRKP be the 2-round split state key proxy described in the above construc-

tion, and let l : N → N. If FHE is a 2O(l(n))-secure fully homomorphic encryption then LRKP

is leakage-resilient against all O(l(n))-bounded adversaries in the OCL model.

The theorem follows as a corollary from the following lemma:

Lemma 2.3.2 Consider the experiment ExpReal instantiated using scheme LRKP . Then, for

every d > 0, every l : N → N, and every l-bounded PPT adversary Adv that makes nd queries

and gets leakage according to the only-computation-leaks model, there exists a PPT simulator

S such that for every function ε(n) > 0, if

|Pr[(Adv � ExpReal) = 1]− Pr[(Adv � S) = 1]| ≥ ε(n)

Chapter 2. Leakage-resilient key proxies 29

Party A Party B

Contents of MemA: prii

Randomness: prii+1, r
i
pri

Contents of MemB: C ′key,i = Encpubi(K)

Randomness: riB1, r
i
B2

Input: Fi

EvalA1:

pubi+1 = KeyGen(prii+1)

Cipri = Encpubi+1
(prii; r

i
pri)

MemA← prii+1

pubi+1,C
i
pri−−−−−−−−−−→

(CR0,i, CR1,i) = LeakFree(pubi+1)

EvalB:

Cres,i = EncEval(pubi+1, C
i
pri,

Evaluate(Fi, C
′
key,i, ·); riB1)

Ckey,i+1 = EncEval(pubi+1, C
i
pri,

Refresh(C ′key,i, ·); riB2)

C ′res,i = Add(pubi+1, CR0,i, Cres,i)

C ′key,i+1 = Add(pubi+1, CR1,i,

Ckey,i+1)

MemB← C ′key,i+1
C′res,i←−−−−−−−

EvalA2:

Yi = Decprii+1
(C ′res,i)

Output Yi

Figure 2.2: The algorithm KPEval in its ith invocation.

Chapter 2. Leakage-resilient key proxies 30

for infinitely many n, then for every function ε′(n) > 0 there exists an adversary Adv′ that

runs in time
23l(n)+7

ε′(n)2

(
3l(n) + 4 + log

1

ε′(n)

)
· timen (LRKP ↔ Adv)

and breaks the semantic security of (KeyGen,Enc,Dec) with advantage

ε(n)

3 · 22l(n)(nd + 1)
− 2ε′(n)

for infinitely many n. Specifically, S runs in time timen(LRKP ↔ Adv).

We give an overview of the proof of Lemma 2.3.2 in Section 2.3.1 and we give the proof

details in Section 2.3.2

2.3.1 Proof overview for Lemma 2.3.2

Let Adv be a PPT adversary according to Definition 5 that gets leakage according to the only-

computation-leaks model described in Definition 7. We define a sequence of experiments where

the initial experiment is the real security experiment ExpReal, and the final experiment is such

that the leakage obtained by the adversary for each KPEval query F can be simulated given

only (F, F (K)). Specifically, the final experiment involves instantiating our construction with

key 0̄ instead of K. We show that if Adv can distinguish the initial experiment and the final

experiment, we can construct an adversary Adv′ that, roughly speaking, distinguishes variants

of these experiments that consist of only two rounds. We then show how pairs of the leakage

queries of Adv′ can be combined into a single query (of larger output length) using a guess-

and-check approach: when the adversary would normally make the first of the pair of leakage

queries, it instead guesses an output and verifies this guess when it makes the second leakage

query; when the guess is wrong, the adversary outputs a randomly chosen bit. Repeatedly

combining queries in this manner yields an adversary that just makes a single leakage query

and (essentially) distinguishes encryptions of K and 0̄. To finish the proof, we use an observation

of Akavia et al [AGV09] that every 2O(`(n))-semantically-secure public-key encryption scheme

remains secure when the adversary gets O(`(n)) bits of leakage on KeyGen.

2.3.2 Proof of Lemma 2.3.2

We first introduce some notation. We denote by MemAi and MemBi the saved state of party A

and party B before round i. We denote by Fi the ith function that the adversary submits to be

evaluated on K, we denote by f ji the jth leakage query during the computation of KPEval on Fi,

and we denote by λji the response to the leakage query f ji . For our construction, j ∈ {1, 2, 3}.
Specifically, λ1i is the initial leakage on EvalA1 from (prii, prii+1, r

i
pri) in round i, λ2i is the leakage

Chapter 2. Leakage-resilient key proxies 31

on EvalB from (C ′key,i, CR0,i, CR1,i, r
i
B1, r

i
B2), and λ3i is the final leakage on EvalA2 from (prii+1).

In addition to seeing leakage, the adversary also gets all communication between party A and

party B. Specifically, after seeing λ1i but before submitting f2i , the adversary is given pubi+1

and Cipri, and after seeing λ2i but before submitting f3i , the adversary is given C ′res,i.

Hybrid Experiment Structure

We now describe the sequence of hybrid experiments:

Experiment Hyb0. Hyb0 is the real security experiment ExpReal.

Experiment Hyb1. Experiment Hyb1 is the same as Hyb0, except that a dummy round is

added at the beginning and at the end of the experiment. More precisely, before the first

evaluation query of the adversary, the initialization algorithm KPInit is run, and then a

single round of KPEval is performed with a dummy function (e.g. one that always outputs

0̄). Similarly, after the adversary makes the last evaluation query, another dummy round

of KPEval is performed.

Note that (MemA1,MemB1) are distributed identically in Hyb0 and Hyb1, and the addi-

tional dummy round nd + 1 has no effect on the view of the adversary. Thus, the above

changes are purely conceptual.

We now describe a second hybrid experiment, where the changes are more substantial.

Experiment Hyb2. In experiment Hyb2 we remove the key K from all variables that are

exposed to the adversary. In particular, MemB will now contain an encryption of 0̄ instead of

K. This change, by itself, would corrupt the output of KPEval, which depends on the contents

of MemB. We correct this error by changing the way we compute the ciphertext CR0,i so that

when this ciphertext is added to Cres,i, the resulting ciphertext C ′res,i contains the intended

output Fi(K). More formally: experiment Hyb2 proceeds in the same way as Hyb1 with the

following changes.

1. During the initialization process, CR1,0 is set to Encpub1(−K).

2. In each round 0 < i ≤ nd, CR0,i is computed as Encpubi+1
(Fi(K)− Fi(0̄)).

Observe that aside from in the initialization round, the only information about K that is

needed to carry out Hyb2 are the values Fi(K) for each query Fi produced by the adversary. It is

easy to see that, in fact, the initialization round can be modified so thatK is not needed, without

changing the distribution of the leakage values and communication seen by the adversary during

the experiment. This modification is described by the following hybrid experiment:

Chapter 2. Leakage-resilient key proxies 32

Experiment Hyb3. Experiment Hyb3 proceeds in the same way as Hyb2, except that dummy

round nd + 1 is omitted and the initialization process is done differently: dummy round 0 is

omitted, and C ′key,1 is set directly to Encpub1(0̄). The entire modified initialization is as follows:

1. Run KeyGen to obtain (pub1, pri1).

2. Compute C ′key,1 = Encpub1(0̄).

3. Set MemA1 = pri1 and MemB1 = C ′key,1.

Note that (MemA1,MemB1) are distributed identically in Hyb2 and Hyb3. Furthermore, omit-

ting dummy round n+ 1 has no effect on the view of the adversary. Thus, the above change is

purely conceptual.

Our simulator S interacts with the adversary as in Hyb3. Note that S runs in time at most

timen(LRKP ↔ Adv). To show that the adversary is unable to distinguish between leakage

produced according to Hyb3, and therefore between simulated leakage and real leakage, we show

that each pair of consecutive hybrid experiments is indistinguishable.

To facilitate the analysis, we denote by Xi the random variable corresponding to the output

of the adversary in experiment Hybi. We have already mentioned the following two facts:

Fact 2.3.3 Pr[X0 = 1] = Pr[X1 = 1]

Fact 2.3.4 Pr[X2 = 1] = Pr[X3 = 1]

The crux of the proof is comparing experiments Hyb1 and Hyb2. For this purpose, we first

define a sequence of intermediate hybrids that are between Hyb1 and Hyb2. For 0 ≤ i ≤ nd + 1,

Hybi12 behaves the same as Hyb1 up to round i− 1, behaves the same as Hyb2 from round i+ 1

onward, and behaves specially in round i. For 0 ≤ i ≤ nd, Experiment Hybi12 is defined as

follows.

Experiment Hybi12.

1. For 0 ≤ j ≤ i− 1, round j proceeds the same as in Hyb1.

2. Round i proceeds the same as Hyb1, except that CR1,i is set to Encpubi+1
(−K).

3. For i+ 1 ≤ j ≤ nd + 1, round j proceeds the same as in Hyb2.

Note that the dummy round 0 that takes place during the initialization process proceeds iden-

tically to Hyb2 if i = 0, and to Hyb1 otherwise. Also, note that dummy round nd + 1 always

proceeds identically in both Hyb1 and Hyb2. Consequently, Hyb1 is identical to Hybn
d+1

12 , and

Hyb2 is identical to Hyb0
12.

Chapter 2. Leakage-resilient key proxies 33

We now show that if there exists an adversary A that distinguishes Hyb0
12 and Hybn

d+1
12 ,

then there exists an adversary A′ that succeeds in the following experiment Exp1.

Experiment Exp1. Say that on inputs of length n, the output of Enc has length n′.

1. The adversary submits two messages m0,m1 such that m0 6= m1.

2. A pair of public and private keys are generated (pub, pri) = KeyGen(1n), and pub is given

to the adversary.

3. The adversary submits a leakage function leak1 : {0, 1}n → {0, 1}l(n), and sees leak1(pri).

4. A random bit b is chosen, and an encryption C = Encpub(mb) is computed.

5. The adversary submits a leakage function leak2 : {0, 1}n′ → {0, 1}l(n), and sees leak2(C).

6. The adversary submits a leakage function leak3 : {0, 1}n → {0, 1}l(n), and sees leak3(pri).

7. A new pair of public and private keys are generated (pub′, pri′) = KeyGen(1n), and a

random string rpri′ is chosen. The public key pub′ is given to the adversary.

8. The adversary submits a leakage function leak4 : {0, 1}3n → {0, 1}l(n), and then sees

leak4(pri, pri′, rpri′).

9. The adversary sees C ′ = Encpub′(pri; rpri′).

10. The adversary submits a leakage function leak5 : {0, 1}n′ → {0, 1}l(n), and sees leak5(C).

11. The adversary sees pri, pri′, and outputs a bit b̂.

We say that an adversary A′ succeeds with advantage ε(n) in Exp1 if |Pr[(A′ � Exp1) =

1|b = 1]− Pr[(A′ � Exp1) = 1|b = 0]| ≥ ε(n).

Claim 2.3.5 Let A be an adversary and define, for all n, ε(n) = |Pr[(A � Hyb0
12) = 1] −

Pr[(A � Hybn
d+1

12) = 1]|. Then there exists an adversary A′ that, for all n, runs in time

4 · timen(Enc) + timen(LRKP ↔ A) and succeeds with advantage ε(n)/(nd + 1) in Exp1.

Proof We first summarize the construction of A′. A′ randomly selects an i, 0 ≤ i ≤ nd, and

then simulates A according to Hyb1 up to round i − 1. Then, A′ submits the two messages

m0 = K and m1 = 0̄, and uses the leakage queries permitted by Exp1 to answer the queries of

A during the ith and i+ 1st rounds. During the simulation, pub plays the role of pubi+1, pub′

the role of pubi+2, C the role of C ′key,i+1 and C ′ the role of Ci+1
pri = Encpubi+2

(prii+1). A
′ uses

C and the properties of Add to “work backwards” and obtain correctly distributed values for

CR1,i, CR0,i+1, and CR1,i+1. Then, from round i+ 2 onward, A′ simulates A according to Hyb2,

Chapter 2. Leakage-resilient key proxies 34

and outputs whatever A outputs. By construction, we have that if C is an encryption of 0̄ then

A′ simulates A perfectly in Hybi12, and if C is an encryption of K, A is simulated perfectly in

Hybi+1
12 . The details follow.

A′ begins by randomly selecting i such that 0 ≤ i ≤ nd. We first handle the case 1 ≤ i ≤
nd − 1. Our adversary A′ simulates A according to Hyb1 up to round i − 1 (note that Hybi12

and Hybi+1
12 proceed identically up to that round). Then, A′ submits the two messages m0 = K

and m1 = 0̄, and obtains a public key pub. A′ starts simulating A in round i by obtaining the

first leakage function f1i . A′ then generates uniformly ripri, and creates the following leakage

function:

• leak1(pri): Compute and return f1i (prii, pri, ripri).

A′ submits the above leakage function in step 3, and obtains a string λ1i . A′ also computes

Cipri = Encpub(prii; r
i
pri), and gives the tuple (λ1i , pub, Cipri) to A. A then outputs leakage

functions f2i . A′ generates an encryption C ′res,i = Encpub(Fi(K)), and randomly selects riB1 and

riB2. Then A′ constructs the following leakage function:

• leak2(C):

– Compute Cres,i = EncEval(pub, Cipri,Evaluate(Fi,MemBi, ·); riB1).

– Compute Ckey,i+1 = EncEval(pub, Cipri,Refresh(MemBi, ·); riB2).

– Compute CR0,i = Subtract(pub, C ′res,i, Cres,i).

– Compute CR1,i = Subtract(pub, C, Ckey,i+1).

– Compute and return f2i (MemBi, CR0,i, CR1,i, r
i
B1, r

i
B2).

A′ submits the leakage function in step 5, and obtains λ2i . A′ gives (λ2i , C
′
res,i) to A. A then

outputs f3i . A′ sets:

• leak3(pri): Compute and return f3i (pri).

A′ is now given λ3i and pub′. Using λ3i , A
′ obtains the first leakage function f1i+1 for round i+1,

and sets:

• leak4(pri, pri′, ri+1
pri): Compute and return f1i+1(pri, pri′, ri+1

pri).

A′ is now given λ1i+1 and a ciphertext C ′. Using the tuple (λ1i+1, pub′, C ′) A′ obtains from A

a leakage function f2i+1. A′ also computes encryptions C ′key,i+2 = Encpub′(0̄) and C ′res,i+1 =

Encpub′(Fi+1(K)), and randomly selects ri+1
B1 and ri+1

B2 . A′ sets

• leak5(C):

Chapter 2. Leakage-resilient key proxies 35

– Compute Cres,i+1 = EncEval(pub′, C ′,Evaluate(Fi+1, C, ·); ri+1
B1).

– Compute Ckey,i+2 = EncEval(pub′, C ′,Refresh(C, ·); ri+1
B2).

– Compute CR0,i+1 = Subtract(pub′, C ′res,i+1, Cres,i+1).

– Compute CR1,i+1 = Subtract(pub′, C ′key,i+2, Ckey,i+2).

– Compute and return f2i+1(C,CR0,i+1, CR1,i+1, r
i+1
B1 , r

i+1
B2).

and obtains a value λ2i+1. A
′ uses (λi+1, C

′
res,i+1) to obtain f3i+1 from A. A′ is then given pri′.

From this point onward, A′ simulates A according to Hyb2. Note that the only value which

is not generated by A′ that is needed to perform this simulation is pri′. At the end of the

simulation A outputs a bit b̂, which A′ also outputs. By construction, we have that if C is an

encryption of 0̄ then A′ simulates A perfectly in Hybi12, and if C is an encryption of K, A is

simulated perfectly in Hybi+1
12 .

Notice that since A′ simulates A along with the experiment with which A is interacting,

and does some additional work in rounds i and i+ 1, A′ runs in time at most 4 · timen(Enc) +

timen(LRKP ↔ A).

It remains to handle the cases i = 0 and i = nd. These are handled similarly to the first

case, except we have to take into account the fact that A sees no leakage or communication

during “rounds” 0 and nd + 1. More specifically, for the case i = 0, A′ proceeds as in the first

case except that it does not submit leak1, leak2, or leak3 in round i (or, alternatively, it submits

constant functions and ignores their output), nor does it produce C ′res,0 or give anything to A

during round i; for round i + 1, A′ proceeds as in the first case, starting by obtaining leakage

function f1i+1 from A. For the case i = nd, A′ proceeds as in the first case except that it does not

submit leak4 or leak5 (or, alternatively, it submits constant functions and ignores their output),

nor does it produce C ′
res,nd+1

or give anything to A during round i+ 1.

Once again, for both these cases, we have by construction that if C is an encryption of 0̄

then A′ simulates A perfectly in Hybi12, and if C is an encryption of K, A is simulated perfectly

in Hybi+1
12 . It then follows by standard arguments that A′ succeeds with advantage ε(n)/(nd+1)

in Exp1.

�

We shall now prove an upper bound on the advantage of adversaries in Exp1. Let A1 be an

adversary in Exp1 and let ε be its advantage. Then, we show that there exists an adversary A2

that succeeds with advantage ε(n)/2l(n) in the following experiment Exp2.

Experiment Exp2. Exp2 proceeds identically to Exp1, except steps 8-11 are modified as

follows

Chapter 2. Leakage-resilient key proxies 36

8. The adversary submits a leakage function leak4 : {0, 1}3n → {0, 1}l(n)+1, and then sees

leak4(pri, pri′, rpri′).

9. The adversary sees C ′ = Encpub′(pri; rpri′) and C.

10. The adversary outputs a bit b̂.

Claim 2.3.6 Let A1 be an adversary and define, for all n, ε(n) to be the advantage of A1 in

Exp1. Then there exists an adversary A2 that, for all n, runs in time at most 3 · timen(A1) +

timen(Enc) and succeeds in Exp2 with advantage ε(n)/2l(n).

Proof A2 randomly selects a string rsim to use as the randomness of A1. Then, using rsim,

A2 simulates A1 up to and including step 7 without any modifications. In step 8, A2 obtains a

leakage function leak4 from A1, and randomly selects guessed leakage value λ̂5 ∈ {0, 1}l(n). A2

then constructs a new leakage function:

• leak′4(pri, pri′, rpri′): First, compute λ4 = leak4(pri, pri′, rpri′). Then, compute C ′ =

Encpub′(pri; rpri′), and use (λ4, C
′, λ̂5) to complete the simulation of A1 (using randomness

rsim). Let b̂ be the bit output by A1. The output of leak′4 is then (λ4, b̂).

A2 submits leak′4 in step 8, and is given (λ′4, C
′, C) where λ′4 = (λ4, b̂). Using (λ4, C

′), A2

obtains from A1 the leakage function leak5. Now, A2 checks whether leak5(C) = λ̂5, and if so

it outputs b̂. Otherwise, A2 flips an unbiased coin and outputs the outcome. Observe that A2

runs in time at most 3 · timen(A1) + timen(Enc).

Notice that if A2 guesses the leakage λ̂5 correctly then it simulates A1 perfectly, and that

the leakage is guessed correctly with probability 1/2l(n). We therefore conclude:

|Pr [(A2 � Exp2) = 1|b = 0]− Pr [(A2 � Exp2) = 1|b = 1]| ≥
1

2l(n)
|Pr [(A1 � Exp1) = 1|b = 0]− Pr [(A1 � Exp1) = 1|b = 1]|

�

We now simplify the experiment further. For clarity, we describe the modified experiment

completely:

Experiment Exp3. The new experiment proceeds as follows:

1. The adversary submits two messages m0,m1 such that m0 6= m1.

2. Private keys pri, pri′ are randomly chosen, and public keys pub = KeyGen(pri), pub′ =

KeyGen(pri′) are computed, and given to the adversary.

Chapter 2. Leakage-resilient key proxies 37

3. The adversary submits a leakage function leak1 : {0, 1}3n → {0, 1}3l(n)+1, and sees

leak1(pri, pri′, rpri′).

4. A random bit b is chosen, and an encryption C = Encpub(mb) is computed.

5. The adversary sees C ′ = Encpub′(pri; rpri′) and C.

6. The adversary outputs a bit b̂.

Claim 2.3.7 Let A2 be an adversary and define, for all n, ε(n) to be the advantage of A2 in

Exp2. Then there exists an adversary A3 that, for all n, runs in time at most 4 · timen(A2)

that succeeds in Exp3 with advantage ε(n)/2l(n).

Proof The basic idea is the same as in the proof of Claim 2.3.6. A3 guesses a response

λ̂2 ∈ {0, 1}l(n) to A2’s leak2 query, uses this guess to simulate A2 within the leakage function

that A3 submits, and then verifies its guess. The details follow.

A3 randomly selects a string rsim to use as the randomness of A2. Then, using rsim, A3

starts simulating A2, obtaining a leakage function leak1. A3 randomly selects a guessed leakage

value λ̂2 ∈ {0, 1}l(n), and then constructs a new leakage function:

• leak′1(pri, pri
′, rpri′): First, compute λ1 = leak1(pri). Simulate A2, using randomness rsim

and using (λ1, λ̂2) as the responses to the first two leakage queries. A2 then produces a

leakage function leak3. Compute λ3 = leak3(pri), and continue simulating A2 using λ3.

A2 produces a leakage function leak4. Compute λ4 = leak4(pri, pri
′, rpri′). The output of

leak′1 is then (λ1, λ3, λ4).

A3 submits leak′1, and is given (λ′1, C
′, C), where λ′1 = (λ1, λ3, λ4). A3 continues its simulation

of A2, using λ1 as the response to the first leakage query. A2 then produces a leakage function

leak2. Now, A3 checks whether leak2(C) = λ̂2; if not, A3 outputs a randomly selected bit.

Otherwise, A3 continues simulating A2, using λ3 and λ4 as the responses to the next two

leakage queries. Then, A3 gives C ′ and C to A2, and outputs the bit output by A2. Observe

that A3 runs in time at most 4 · timen(A2).

Notice that if A3 guesses the leakage λ̂2 correctly then it simulates A2 perfectly, and that

the leakage is guessed correctly with probability 1/2l(n). We therefore conclude:

|Pr [(A3 � Exp3) = 1|b = 0]− Pr [(A3 � Exp3) = 1|b = 1]| ≥
1

2l(n)
|Pr [(A2 � Exp2) = 1|b = 0]− Pr [(A2 � Exp2) = 1|b = 1]|

�

Chapter 2. Leakage-resilient key proxies 38

We again simplify the experiment, this time moving to a leakage-free setting.

Experiment Exp4. Exp4 proceeds identically to Exp3, except step 3 is omitted.

Claim 2.3.8 For all functions ε′(n) > 0 and ε(n) > 0, and for every adversary A3 that succeeds

in Exp3 with advantage ε′(n) for infinitely many n, there exists an adversary A4 that runs in

time at most 23l(n)+1

ε(n)2
(3l(n) + 4 + log 1

ε(n))(timen(A3) + timen(Enc)) and succeeds in Exp4 with

advantage ε′(n)− 6ε(n) for infinitely many n.

Proof The key observation is that the response to A3’s leakage query is independent of bit

b and the randomness used when producing encryption C = Encpub(mb). This allows us to

use the observation of Akavia et al [AGV09] that for every public-key encryption system, ev-

ery adversary that breaks semantic security given leakage on KeyGen can be simulated by an

adversary that is not given leakage but instead guesses the leakage and then tests whether the

guessed leakage is good. Specifically, given pub, pub′, and C ′ = Encpub′(pri), we can find a good

response λ̂1 ∈ {0, 1}3l(n)+1 to A3’s leakage query that (almost) maximizes the distinguishing

advantage of A3 conditioned on pri, pri′, and C ′. To do so, we define an adversary A4 that

tests all strings λ̂1 ∈ {0, 1}l(n) until it finds a leakage value that maximizes the gap between

A3’s probability of outputting 1 on an encryption of m0, and on an encryption of m1. This is

done by sampling, for each value λ̂1, many encryptions of m0 and of m1, and recording A3’s

output. The details follow.

Without loss of generality, suppose

Pr [(A3 � Exp3) = 1|b = 1]− Pr [(A3 � Exp3) = 1|b = 0] ≥ ε′(n)

for infinitely many n. A4 behaves as follows. A4 randomly selects a string rsim to use as

the randomness of A3. Then, using rsim, A4 starts simulating A3. A3 submits messages m0

and m1, which are in turn submitted by A4. Then, A4 is given (pub, pub′, C ′, C), where C ′ =

Encpub′(pri, rpri′) and C = Encpub(mb). A4 continues simulating A3, giving it pub and pub′, and

obtaining a leakage function leak1. Recall from Exp3 that leak1 takes input (pri, pri′, rpri′). This

means that the correct response to this leakage query is independent of bit b and the randomness

used when producing C. Since A4 cannot make any leakage queries, it runs experiments in

order to determine the response that (almost) maximizes the distinguishing advantage of A3

(conditioned on rsim, pri, pri′, and rpri′).

Specifically, for each λ̂1 ∈ {0, 1}3l(n)+1 and for each b̂ ∈ {0, 1}, A4 does the following

m = 1
2ε(n)2

(3l(n) + 3 + log 1
ε(n)) times: A4 produces a random encryption C ′′ = Encpub(mb),

runs A3 with randomness rsim on (pub, pub′, λ̂1, C
′, C ′′), and notes the output of A3. This allows

A4 to obtain an estimate pλ̂1,b̂ of the probability that A3 outputs 1 conditioned on rsim, pri,

Chapter 2. Leakage-resilient key proxies 39

pri′, rpri′ , λ̂1, and b̂. Then, for each λ̂1 ∈ {0, 1}3l(n)+1, A4 computes ελ̂1 = pλ̂1,1 − pλ̂1,0 to

obtain an estimate of the distinguishing advantage of A3 (conditioned on rsim, pri, pri′, and

rpri′) when λ̂1 is used as the response to the leakage query.

A4 then continues its original simulation of A3, letting the response to the leakage query be

the λ̂1 which maximizes ελ̂1 . A4 then gives C ′ and C to A3, and outputs the bit output by A3.

Observe that A4 runs in time timen(A3) + m(timen(A3) + timen(Enc)) ≤ 23l(n)+1

ε(n)2
(3l(n) + 4 +

log 1
ε(n))(timen(A3) + timen(Enc)).

Now, fix an n such that Pr[(A3 � Exp3) = 1|b = 1] − Pr[(A3 � Exp3) = 1|b = 0] ≥ ε′(n)

and consider the advantage A4 in Exp4 for such n. Note that A4 produces 2(23l(n)+1) estimates.

Using Chernoff bounds, each estimate pλ̂1,b̂ is within additive error ε(n) of its true value with

probability at least 1−2e−2mε(n)
2

= 1−2e−3l(n)−3−log
1
ε ≥ 1−2−3l(n)−2−log

1
ε = 1− ε(n)

23l(n)+2 . Then,

by the union bound, all estimates pλ̂1,b̂ are within ε(n) of their true values with probability at

least 1− ε(n). Observe that when this happens, all estimates ελ̂1 are within 2ε(n) of their true

values. In this case, the λ̂1 chosen by A4 results in A3 having true distinguishing advantage

within 4ε(n) of whichever response yields the best true distinguishing advantage conditioned

on rsim, pri, pri′, and rpri′

Putting this all together, conditioned on each rsim, pri, pri′, and rpri′ , we have that with

probability at least 1−ε(n), A4 has distinguishing advantage within 4ε(n) of the distinguishing

advantage of A3 (subject to the same conditioning). It follows that overall (without con-

ditioning), with probability at least 1 − ε(n), A4 has distinguishing advantage within 4ε(n)

of the distinguishing advantage of A3. That is, A4 has distinguishing advantage at least

(1− ε(n))(ε′(n)− 4ε(n))− ε(n) ≥ ε′(n)− 6ε(n). �

It is easy to see that an adversary that succeeds in experiment Exp4 can be used to break

the semantic security of (KeyGen,Enc,Dec). The idea is that such an adversary must either dis-

tinguish Encpub′(pri) from Encpub′(0̄), or must succeed at guessing b even when given Encpub′(0̄)

instead of Encpub′(pri).

Claim 2.3.9 For every function ε(n) > 0 and for every adversary A4 that succeeds in Exp4

with advantage ε(n) for infinitely many n, there exists an adversary A5 that runs in time at most

timen(A4)+timen(KeyGen)+timen(Enc) and breaks the semantic security of (KeyGen,Enc,Dec)

with advantage ε(n)/3 for infinitely many n.

Proof Let experiment Exp5 be identical to Exp4 except C ′ is set to Encpub′(0̄) instead of

Encpub′(pri). There are two cases to consider:

Case 1: For infinitely many n, A4 has advantage at least ε(n) in Exp4 and has advantage

at least ε(n)/3 in Exp5.

Chapter 2. Leakage-resilient key proxies 40

Let A5 behave as follows. A5 starts simulating A4. A4 submits messages m0 and m1, which

are in turn submitted by A5. Then, A5 is given (pub, C), where C = Encpub(mb). A5 ran-

domly selects pri′, and lets pub′ = KeyGen(pri′). Then A5 produces C ′ = Encpub′(0̄), gives

(pub, pub′, C ′, C) to A4, and outputs the bit output by A4.

Notice that A5 simulates A4 � Exp5 perfectly, and hence has the same distinguishing

advantage as A4. That is, A5 breaks the semantic security of (KeyGen,Enc,Dec) with advantage

ε(n)/3 for infinitely many n. Observe that A5 runs in time timen(A4) + timen(KeyGen) +

timen(Enc).

Case 2: For infinitely many n, A4 has advantage at least ε(n) is Exp4 and has advantage

less than ε(n)/3 in Exp5. Without loss of generality, suppose

Pr[(A4 � Exp4) = 1|b = 1]− Pr[(A4 � Exp4) = 1|b = 0] ≥ ε(n) (2.1)

and

Pr[(A4 � Exp5) = 1|b = 1]− Pr[(A4 � Exp5) = 1|b = 0] <
ε(n)

3
(2.2)

for infinitely many n. Let A5 behave as follows. A5 randomly selects pri, and lets pub =

KeyGen(pri). A5 submits m′0 = 0̄ and m′1 = pri. Then, A5 is given (pub′, C ′), where

C ′ = Encpub′(m
′
b′) for some b′ ∈ {0, 1}. Now, A5 starts A5 starts simulating A4. A4 sub-

mits messages m0 and m1. A5 randomly selects b ∈ {0, 1}, produces C = Encpub(mb), and gives

(pub, pub′, C ′, C) to A4. Then, A4 outputs a bit. If this bit is b, A5 outputs 1, and otherwise

A5 outputs 0.

Now, fix an n such that (2.1) and (2.2) both hold, and consider the advantage of A5 in

breaking the semantic security of (KeyGen,Enc,Dec). The key observation is that when b′ = 0,

A5 simulates A4 � Exp5 perfectly, and when b′ = 1, A5 simulates A4 � Exp4 perfectly. Then

we have

Pr[A5 outputs 1|b′ = 0] =
1

2
Pr[(A4 � Exp5) = 1|b = 1] +

1

2
Pr[(A4 � Exp5) = 0|b = 0]

=
1

2
(Pr [(A4 � Exp5) = 1|b = 1] + 1− Pr [(A4 � Exp5) = 1|b = 0])

<
1

2

(
1 +

ε(n)

3

)
where the inequality is by (2.2). We also have

Pr[A5 outputs 1|b′ = 1] =
1

2
Pr[(A4 � Exp4) = 1|b = 1] +

1

2
Pr[(A4 � Exp4) = 0|b = 0]

=
1

2
(Pr [(A4 � Exp4) = 1|b = 1] + 1− Pr [(A4 � Exp4) = 1|b = 0])

≥ 1

2
(1 + ε(n))

Chapter 2. Leakage-resilient key proxies 41

where the inequality is by (2.1). But this means that

Pr[A5 outputs 1|b′ = 1]− Pr[A5 outputs 1|b′ = 0] >
1

2
(1 + ε(n))− 1

2

(
1 +

ε(n)

3

)
=
ε(n)

3

That is, A5 breaks the semantic security of (KeyGen,Enc,Dec) with advantage ε(n)/3 for in-

finitely many n. Observe that A5 runs in time timen(A4) + timen(KeyGen) + timen(Enc).

�

Combining all the claims, we see that for all functions ε(n) > 0 if there exists an adversary

A such that |Pr[(A� Hyb0
12) = 1]−Pr[(A� Hybn

d+1
12) = 1]| > ε(n) for infinitely many n, then

for every function ε′(n) > 0 there exists an adversary A′ that runs in time

23l(n)+7

ε′(n)2

(
3l(n) + 4 + log

1

ε′(n)

)
(timen (LRKP ↔ A))

and breaks the semantic security of (KeyGen,Enc,Dec) with advantage ε(n)

3·22l(n)(nd+1)
−2ε′(n) for

infinitely many n.

2.4 Extensions and Applications

Below we describe some variants and applications of our scheme.

Resilience against simultaneous leakage. In Definition 7, the adversary is only allowed to

see leakage from the part of memory where computation is occurring. Our construction is also

secure under an alternative leakage model where the adversary is allowed to see independent

leakage from both parts of memory each time it makes a leakage query. The basic idea is to first

show that our construction is secure under a variant of Definition 7 where the adversary sees an

additional leakage f4 on memory B. Under this variant of Definition 7, the adversary’s leakage

queries strictly alternate between memory A and memory B. We then use an observation of

Pietrzak [Pie09] that simultaneous but independent leakage on two pieces of memory can be

perfectly simulated by strictly alternating leakage (of twice the output length) on these two

pieces of memory.

Resilience against complete compromise. Our scheme can be viewed as a protocol

between two devices that communicate over a public channel. The key remains hidden even if

the memory contents of one of the devices are leaked completely (for example, in a cold boot

attack), provided that the compromise is detected and no further computation is performed

using the counterpart device.

One-time programs. Our construction can be modified to work without any leak-free com-

ponents by pre-computing a large number of tuples of the form (pri, pub, C, C ′) where C and

Chapter 2. Leakage-resilient key proxies 42

C ′ are encryptions of 0 under pub, and storing the tuples in memory. Then, at each invocation,

one such tuple is used (first pri and pub are used by EvalA1, and then C,C ′ are used by EvalB).

Assuming that only computation leaks information, the remaining tuples remain hidden until

they are accessed. Therefore, security is obtained following essentially the same argument as

the proof of Theorem 2.3.1. The number of invocations in this case is bounded by the num-

ber of pre-computed tuples. This approach provides a weaker security guarantee than the one

time programs of [GKR08] (i.e. only security against leakage), but has the advantage that the

pre-computing phase is independent from the functionality that is being protected.

Concurrent composition. We have shown that an adversary interacting with a single

instance of our construction gains no information about the underlying key. However, for some

applications, such as private-key encryption where several parties compute on the same agreed

upon key, this may not suffice. It is quite possible that the adversary is performing side-channel

attacks on several parties simultaneously, and is coordinating his leakage functions adaptively.

In Section 2.4.1, we show that an adversary interacting concurrently with several instances of

our construction still gains no information through leakage.

Leakage-resilient private-key encryption. Extending the traditional notions of semanti-

cally secure encryption to the leakage setting is non-trivial. In particular, suppose that every

invocation of the encryption algorithm leaks information. Then, since the plaintext of the ad-

versary’s challenge message is an input to the encryption algorithm, the adversary can trivially

break semantic security by leaking even a single bit about this message. To deal with this prob-

lem, several works [DP08, NS09, DKL09, DGK+10] adopt the approach that the computation

of the encryption of the challenge is not allowed to leak. In Sections 2.4.2 and 2.4.3, we follow

this approach and show how to obtain semantically-secure private-key encryption in the leakage

setting using LRKPs.

Leakage-resilient public-key encryption. Constructions of leakage-resilient public-key

encryption schemes were recently given by [AGV09, NS09, DGK+10, BKKV10]. However, no

constructions are known of PKE schemes that are leakage-resilient under Chosen Ciphertext

Attack (CCA), where the adversary can obtain leakage during each decryption query even

after receiving the challenge. LRKPs provide a convenient way to achieve such a construction.

Specifically, given a CCA-PKE scheme (KeyGen,Enc,Dec), we construct a new PKE scheme

(KeyGen′,Enc,Dec′) where the encryption algorithm stays the same; the key generation KeyGen′

runs KeyGen to obtain (pub, pri) and then initializes an LRKP with pri. The public key is pub,

and the private key is the initial state state1 of the LRKP. The decryption algorithm is stateful,

and to decrypt a ciphertext C, Dec′ generates a circuit H(x) that computes that function

Decx(C), and then uses KPEval to evaluate it on the private key pri.

Chapter 2. Leakage-resilient key proxies 43

2.4.1 Concurrent Composition

In this section we show that an adversary interacting with several instances of LRKP con-

currently still gains no information through leakage. This allows us to obtain some of the

applications described in Section 2.4. We start with a definition.

Definition 9 Let A and S be PPT algorithms, let n ∈ N, and consider the following two

experiments:

ExpConcurrentReal. The adversary chooses n keys K1, . . . ,Kn and interacts with n instances

of ExpReal where in instance i, Ki is protected by LRKPi. At the end, the adversary

outputs a bit b. During the interaction the adversary controls the schedule of the queries

completely, and in particular leakage queries on LRKPi may depend on leakage obtained

from LRKPj for i 6= j.

ExpConcurrentIdeal. The adversary chooses n keys K1, . . . ,Kn, interacts with a single simulator

S, and eventually outputs a bit b.

Then, we say that LRKP is a Concurrent-Leakage-Resilient Key Proxy (C-LRKP) if for

every PPT A there exists a PPT S and a negligible function neg(·) such that

|Pr[(A� ExpConcurrentReal) = 1]− Pr[(A� ExpConcurrentIdeal) = 1]| ≤ neg(n)

We now show that every LRKP is also concurrent-LRKP. This follows due to the strong

security guarantee of LRKP: even when the adversary himself selects the key K, he still cannot

distinguish between simulated and actual leakage.

Theorem 2.4.1 Let LRKP be a leakage-resilient key proxy. Then, LRKP is also concurrent-

leakage-resilient.

Proof Suppose that LRKP is insecure according to Definition 9. Then, there exists an

adversary A such that for every simulator, A distinguishes between ExpConcurrentReal and

ExpConcurrentIdeal with non-negligible advantage ε(n). Let S be the simulator of LRKP in the

non-concurrent setting, and consider a simulator S′ that runs n copies of S in parallel. Copy i

is used to simulate leakage from LRKPi.

Consider a sequence of hybrid experiments Hybi, 0 ≤ i ≤ n such that in Hybi the adversary

obtains leakage from the actual state of LRKPj for 1 ≤ j ≤ i, and obtains simulated leakage for

i+ 1 ≤ j ≤ n. Note that Hyb0 is ExpConcurrentIdeal and Hybn is ExpConcurrentReal.

We now construct an adversary A′ that simulates A and breaks the non-concurrent security

of LRKP. The simulation proceeds as follows: A′ randomly selects 0 ≤ i < n. Then, A′ starts

Chapter 2. Leakage-resilient key proxies 44

simulating A, which chooses n keys K1, . . . ,Kn. A′ then initializes LRKPj for 1 ≤ j ≤ i − 1

with Kj , submits Ki as its own key in the LRKP security experiment, and chooses the initial

randomness independently for n− i copies of S.

A′ then continues simulating A, answering queries as follows: leakage queries about LRKPj

for 1 ≤ j ≤ i − 1 are answered by applying the leakage function to the actual state of LRKPj .

For i + 1 ≤ j ≤ n the leakage queries are forwarded to the j − ith copy of S. Leakage queries

for LRKPi are forwarded by A′ as his own queries. At the end of the simulation A′ outputs

what A outputs. It is not hard to see that when A′ is interacting with ExpReal and ExpIdeal it

is simulating A perfectly in Hybi and Hybi+1 respectively.

It follows by a standard calculation that A′ distinguishes ExpReal from ExpIdeal with ad-

vantage ε(n)/n. �

2.4.2 Semantic Security Under Leakage

Encryption is one of the most important products of cryptography. In the classical setting,

where side-channel attacks are not taken into account, there are widely accepted definitions of

security for both the private- and the public-key setting. For a rigorous exposition, we direct the

reader to [Gol04, KL07]. Informally, the accepted notion of privacy, which is commonly referred

to as “semantic security”, is to require that no efficient adversary can distinguish between the

encryptions of two messages of his choice.

Extending the traditional notions of semantic security to the leakage setting is non-trivial.

In particular, suppose that we assume that every invocation of the encryption algorithm leaks

information. Then, since the message plaintext is an input to that algorithm, the adversary can

trivially break semantic security by simply leaking a bit that differentiates the two messages in

question. Consequently, in the setting where “everything leaks”, traditional semantic security

cannot be achieved. This leads us to consider several alternatives to the naive definition, which

permit non-trivial results. Below, we outline some of the possible approaches for dealing with

privacy under leakage, and describe the choice that we made.

Leak-free challenge. One approach to dealing with the trivial impossibility described above is

to weaken the requirement that “everything leaks” to allowing everything to leak except

the computation of the actual ciphertext that the adversary is trying to distinguish.

This solution has been adopted by several works on leakage-resilient encryption (see e.g.

[DP08, NS09, DKL09, DGK+10]). These works all deal with what we call “bounded

leakage”, that is, the amount of information that the adversary obtains on the key during

its entire lifetime is bounded. Still, the issue that we mentioned about semantic security

applies, but for a different reason. In most constructions in the bounded leakage model,

Chapter 2. Leakage-resilient key proxies 45

the key remains fixed after it is generated; such constructions are clearly insecure in the

“everything leaks” model since the entire key eventually leaks. In the bounded leakage

model, such constructions turn out to be insecure when there is leakage after the challenge

ciphertext is obtained.

The problem is that if the adversary is allowed to obtain leakage on the key after he

has seen the challenge ciphertext, he can simply use the key to decrypt the ciphertext

within the leakage function, and leak the information that distinguishes the two messages

in question, thereby breaking semantic security. Consequently, as in our setting, some

restrictions on the leakage, or a weakening of the definition of security are necessary.

We adopt the leak-free challenge approach for our applications. We prefer this solution

to the one listed below because it permits fairly clean definitions while allowing other

notions to be achieved through simple transformations and reductions.

Leakage on random messages. Instead of weakening the requirement that everything leaks,

we can relax the definition of semantic security so that it is still meaningful in the leakage

setting. Instead of requiring that the adversary fails to distinguish between the encryption

of two messages, we can require that he does not learn too much about a message, as

long as it is sampled from a distribution with a sufficiently high min-entropy. That is,

we can ask for essentially the best that can be hoped for: that the adversary obtains no

more information through leakage on the encryption process than what he would be able

to obtain through leakage only on the message that is being encrypted. This notion of

security seems to capture accurately what is achievable in terms of privacy in a setting

with leakage. However, we choose not to adopt this notion both because it is more

cumbersome than assuming a leak free challenge, and, more importantly, because it does

not seem to be easily usable in applications which require semantically secure private-key

encryption as an underlying tool.

2.4.3 Leakage-Resilient Private-Key Encryption Using Key Proxies

We extend the standard definition of semantic security to the leakage setting with a leak-free

challenge. One issue that arises in the private-key setting is that in a typical application, several

parties will hold the same key K which is used both for encryption and decryption. In order

to maintain generality, it is therefore important to allow a leakage adversary to obtain leakage

on each of the parties according to his own schedule. With this in mind, we now define a

leakage-resilient private-key encryption scheme.

A stateful private-key encryption scheme consists of three PPT algorithms (KeyGen,Enc,Dec).

The key generation algorithm KeyGen(1n) outputs n initial states S0
1 , . . . , S

0
n that are held by n

Chapter 2. Leakage-resilient key proxies 46

individual parties. These states correspond to the initial encodings of some key K. For j ∈ N,

the encryption algorithm Enc(M,Sji) outputs a ciphertext C, and an updated state Sj+1
i . The

decryption algorithm Dec(C, Sji) outputs a message M , and an updated state Sj+1
i .

Definition 10 A triple of PPT algorithms (KeyGen,Enc,Dec) is a correct stateful private-key

encryption scheme if for all random tapes R, for all 1 ≤ i, i′ ≤ n, all j, j′ ∈ N, and all

M ∈ {0, 1}n, Dec(Enc(M,Sji ;R), Sj
′

i′) = M .

We can now describe the experiment ExpSemSec(b), for b ∈ {0, 1}, of semantic security under

leakage.

1. Initialization. The key generation algorithm KeyGen(1n) is run to obtain S0
1 , . . . , S

0
n.

2. Encryption Queries. The adversary may initiate an arbitrary number of encryption pro-

cesses by submitting a message M , and an index 1 ≤ i ≤ n. An encryption C =

Enc(M,Sji) is then computed, where j is the number of times party i encrypted until

now, and the adversary concurrently obtains single invocation leakage on all the active

encryption processes (the single invocation leakage model for private-key encryption is

described later in this section). The adversary is then given C.

3. Challenge. At some point the adversary submits two messages M0,M1, and an index

1 ≤ i ≤ n for which there is no current active encryption process, and obtains C∗ =

Enc(Mb, S
j
i).

4. Encryption Queries. The adversary continues to initiate encryption processes, and con-

currently obtain leakage on these processes.

5. Guess. The adversary outputs a bit b′.

Definition 11 A stateful private-key encryption scheme (KeyGen,Enc,Dec) is semantically se-

cure under leakage, if for all PPT adversaries A,

|Pr[(A� ExpSemSec(0)) = 1]− Pr[(A� ExpSemSec(1)) = 1]| ≤ neg(n)

Construction

Let F = {Fn}n∈N be a family of pseudo-random functions (when n is clear from context we write

F instead of Fn) such that Fn : {0, 1}n×{0, 1}n → {0, 1}n for all n ∈ N. Let LRKP be a leakage-

resilient key proxy. Our stateful private-key encryption scheme PRI− ENC = (KeyGen,Enc,Dec)

works as follows:

Chapter 2. Leakage-resilient key proxies 47

Key Generation. The key generation algorithm, KeyGen(1n), first chooses a key K ∈R {0, 1}n

at random, and runs KPInit(1n,K) n times with independently chosen randomness to

obtain n initial states S1, . . . , Sn. The states S1, . . . , Sn are the output of KeyGen.

Encryption. For a message M ∈ {0, 1}n, the encryption algorithm Enc(M,S) chooses a

random string R ∈R {0, 1}n, and generates a circuit H(x) that computes the function

Fx(R)⊕M . It then runs KPEval(H,S) to obtain an output Y , and an updated state S′.

The ciphertext is then C = (Y,R), and output of Enc is (C, S′).

Decryption. The decryption algorithm Dec(C, S) parses C as (Y,R), and generates a circuit

G(x) that computes the function Fx(R) ⊕ Y . It then runs KPEval(G,S) to obtain an

output M , and an updated state S′. The output of Dec is then (M,S′).

Single Invocation Leakage Model

The single invocation leakage for our construction is quite simple: during encryption, the adver-

sary is given R (and already knows M since he chose this himself), and then proceeds to interact

in a single invocation leakage experiment with the computation of KPEval. During decryption,

the adversary simply interacts in a single invocation leakage experiment with KPEval. In other

words, for both encryption and decryption, the adversary obtains leakage on the computation

of KPEval, and obtains all the other inputs completely.

We note that although it may seem more reasonable to allow the adversary to learn only

part of the randomness and message of the encryption, it would give us a weaker theorem. The

fact that our construction is secure in the above leakage model implies security in other more

realistic but weaker models.

Security Analysis

We show that any adversary that breaks the semantic security of PRI− ENC can be used to

break either the concurrent leakage resilience of LRKP or the pseudo-randomness of F . We

start by stating the theorem:

Theorem 2.4.2 Let A be a PPT adversary for the semantic security under leakage of PRI− ENC,

let LRKP be a concurrently leakage-resilient key proxy such that all adversaries running in time

at most timen(A) can distinguish real and simulated leakage with advantage at most εc−lrkp(n),

and let F = {Fn}n∈N be a family of PRFs such that all adversaries running in time at most

timen(A)·(timen(KPEval)+timen(Enc))+timen(KeyGen) can distinguish Fn from random with

advantage at most εprf(n). Then, A breaks the semantic security of PRI− ENC with advantage

at most εc−lrkp(n) + εprf(n) + timen(A)
2n .

Chapter 2. Leakage-resilient key proxies 48

To prove security we define several hybrid experiments where the first hybrid Hyb0 is the

original experiment of semantic security with leakage, and in the final hybrid the adversary

obtains no information about the bit b.

Experiment Hyb1. Experiment Hyb1 proceeds as Hyb0 except that the computation of the

challenge is performed differently. Instead of using KPEval to compute it, the challenge ci-

phertext is computed directly by choosing a random string R∗ ∈R {0, 1}n and outputting

(FK(R∗) ⊕Mb, R
∗). The LRKP is evaluated on some constant function (e.g. one that always

outputs 0̄) in order to refresh its state.

Experiment Hyb2. In this experiment, the leakage obtained by the adversary is replaced

by simulated leakage. More precisely, let S be the simulator for concurrent leakage that is

guaranteed by Theorem 2.4.1 to exist for LRKP. In experiment Hyb2, whenever the adversary

initiates an encryption process, the simulator S is given the corresponding circuit H, and

the ciphertext C. Then, the adversary interacts with the simulator to obtain leakage on the

underlying invocation of LRKP.

Experiment Hyb3. In this experiment we replace the pseudo-random function F with a

random one. Namely, for each new encryption process started by the adversary, the simulator

S is given the circuit H, and a ciphertext of the form C = (F̂ (R)⊕M,R) where F̂ : {0, 1}n →
{0, 1}n is a random function. The challenge ciphertext is also computed using the random

function F̂ .

Let A be PPT adversary for the semantic security under leakage of PRI− ENC. We define

Xi to be the random variable that is 1 if A guesses the bit b correctly in experiment Hybi, for

0 ≤ i ≤ 3.

Claim 2.4.3 Pr[X0 = 1] = Pr[X1 = 1]

Proof sketch This follows directly from the fact that LRKP is history free according to

Definition 8. In particular, it makes no difference whether we refresh the state of LRKP during

the challenge by evaluating the actual circuit that is needed to compute the challenge, or a

circuit that always outputs 0̄. �

Claim 2.4.4 |Pr[X1 = 1]− Pr[X2 = 1]| ≤ εc−lrkp(n)

Proof sketch Suppose that the claim is false. Then we can use the adversary A to distin-

guish between simulated and real leakage in the concurrent LRKP experiment: Our adversary

A′ initializes n copies of LRKPs with some random PRF key K, and then simply acts as a

middleman between A and the security experiment of the concurrent LRKP. �

Chapter 2. Leakage-resilient key proxies 49

Claim 2.4.5 |Pr[X2 = 1]− Pr[X3 = 1]| ≤ εprf(n)

Proof sketch Suppose that the claim is false. Then we can use the adversary A to distinguish

between an oracle for FK and an oracle for a random function F̂ . To see this, note that in

both Hyb2 and Hyb3, the leakage is simulated. Therefore, we can construct an adversary A′

that, given an oracle O (that is either a pseudo-randomly chosen function or a randomly chosen

function) simulates A using this oracle. If O is FK for randomly chosen K, then A is simulated

perfectly in Hyb2. If O is a random function, then A is perfectly simulated in Hyb3. �

Claim 2.4.6 Pr[X3 = 1] ≤ 1
2 + timen(A)

2n

Proof sketch This follows from the fact that F̂ is a random function, and that the simulated

leakage is independent from the randomness of the challenge. �

2.5 Open problems

The necessity of the leak-free component Recall that our construction uses the “only

computation leaks” assumption and a leak-free component. However, as noted earlier, specific

leakage-resilient cryptographic primitives have been constructed under leakage models where the

entire state (and not just the active part) leaks continuously [DHLAW10, BKKV10, MTVY11],

without the use of any leak-free component. It is easy to see that no key proxy can be leakage-

resilient under a leakage model where the entire state leaks, even if a (memory-less) leak-free

component is used – with leakage on the entire state, the adversary can learn arbitrary bits

of the protected key K via his leakage queries. On the other hand, it is not clear that a

leak-free component is necessary in order to obtain a key proxy under the “only computation

leaks” leakage model. We have worked on removing this component from our construction,

but have found this to be a difficult problem. Can we provide evidence that it is necessary for

constructions to use such a component? Faust et al [FRR+10] have provided such evidence for

their setting, showing that with respect to the proof technique they use, a proof of security for

a construction without leak-free components yields a proof that AC = P/poly. To provide such

evidence in our setting, we need to restrict our attention to some “reasonable” leakage model

(such as the one we use) and some “reasonable” class of proof techniques, and show that for

every construction of a key proxy that does not use leak-free components, a proof of leakage

resilience has consequences that are believed to be false.

Securing the output of leakage-resilient key proxies Our definition of a leakage-resilient

key proxy places no security requirement on the output of each query to the evaluation pro-

cedure. Suppose we want to protect such outputs from leakage and compute on them in a

Chapter 2. Leakage-resilient key proxies 50

leakage-resilient way. Can we modify our definition and construction so that we can ask for

outputs to be produced in the form of an initialized leakage-resilient key proxy? One issue to

consider is how such a key proxy should be output. If the key proxy consists of two pieces of

memory (as our construction does), outputting these pieces together may trivially break the key

proxy’s leakage resilience. Alternative approaches include producing the output piece-by-piece

(which allows for the first piece of output to be moved elsewhere before the second piece is

produced) or directly producing the pieces of output in separate pieces of memory.

Chapter 3

Leakage-resilient authentication

When two parties wish to send messages to each other securely, the two security properties

that must be achieved are privacy – ensuring that no adversary learns anything at all about

the contents of the messages – and authentication – ensuring that the purported sender of

each message did indeed produce the message. Authentication is arguably the more important

property, since in most settings, an adversary that succeeds in modifying messages can cause

far more damage than one who simply learns about message contents.

In this chapter, we construct a shared-private-key authenticated session protocol that is

resilient to leakage on both parties. Unlike our construction of leakage-resilient key proxies in

the previous chapter, we do not use the “only computation leaks” assumption, nor do we use

any leakage-free hardware. Instead, leakage occurs on the entire state, inputs, and randomness

of the party performing the computation. The only assumption we make is the existence of

pseudo-random generators; consequently, our construction is much more practical than the

construction in the previous chapter, where we assumed the existence of fully-homomorphic

public-key encryption. Finally, our construction has the feature that all randomness used by

each party is made public; furthermore, this randomness can be chosen according a high min-

entropy distribution instead of the uniform distribution.

Stream ciphers and authentication

A stream cipher is an object that takes a randomly-chosen seed as input, and outputs a pseudo-

random sequence of strings (where the length of the sequence is unbounded). Intuitively, a

stream cipher can be viewed as a pseudo-random function generator where the adversary must

examine the bits of the generated function sequentially rather than having random access to

these bits; that is, the adversary chooses only how many bits he wishes to see rather than which

bits he wishes to see.

Dziembowski and Pietrzak [DP08] and Pietrzak [Pie09] construct leakage-resilient stream

51

Chapter 3. Leakage-resilient authentication 52

ciphers in the only-computation-leaks model. Their constructions use two pieces of memory

connected by a public channel, and computation alternates between the two pieces. Specifically,

for all i ≥ 1, the (2i − 1)-st string output by the stream cipher is produced by the first piece

of memory, and the 2i-th string output by the stream cipher is produced by the second piece

of memory. Security for these constructions is defined with respect to an adversary who sees

as many pieces of output as he likes along with leakage on each of the computations producing

these outputs (where the adversary chooses leakage queries adaptively). The adversary is then

given either the next output or a uniformly chosen string, and should not be able to tell which

he is given. Note that the adversary is not given leakage for the computation producing this

output, since this would make it trivial for him to distinguish; an alternative notion of security

(also satisfied by these constructions) allows the adversary to see such leakage, and asserts the

output is indistinguishable from a distribution of high min-entropy.

Consider using a leakage-resilient stream cipher to obtain a leakage-resilient version of

shared-private-key authenticated sessions. We have two parties, A and B, where A is send-

ing message pieces to B, and we wish to ensure that an adversary cannot reorder these pieces

or insert message pieces of his own without this being detected by B. The adversary obtains

leakage from both parties. An immediate problem we encounter is that the definition of secu-

rity for leakage-resilient stream ciphers tells us nothing about what happens when two parties

A and B share a randomly-chosen string K and both use K as the seed of the stream cipher.

Indeed, we observe that for both constructions [DP08, Pie09] of leakage-resilient stream ciphers,

an adversary that can cause parties A and B to “get out of sync” (meaning, for example, that

party A uses the stream cipher to produce several outputs before party B gets started) can

eventually learn the entire state of the stream cipher. This suggests we need a way to (almost)

synchronize the stream cipher computation performed by the two parties.

Our construction

We begin by modifying Pietrzak’s stream cipher construction so that it uses a single piece of

memory along with a source of public min-entropy. By “public min-entropy”, we mean strings

that are chosen according to distribution of high min-entropy but not kept secret (that is, the

adversary is given such strings in their entirety). We have in mind that in applications involving

two parties, one or both parties will produce this high min-entropy string and communicate it

to the other party over a public channel.

Our stream cipher uses a pseudo-random function generator Fs : {0, 1}n → {0, 1}2n. The

initial state is randomly chosen K0 ∈ {0, 1}n. For each i > 0, the i-th output is produced and

the state is updated as follows. A string Ri ∈ {0, 1}n is chosen according to a distribution of

min-entropy at least log2(n). Then, Ki, Xi ∈ {0, 1}n are computed as the left and right halves

Chapter 3. Leakage-resilient authentication 53

of FKi−1(Ri). The new state is Ki and the output is Xi.

We use our stream cipher to construct a shared-private-key authenticated session protocol.

The basic idea is that the sender A and receiver B run their own copies of the stream cipher in

parallel, using their shared key k as the initial state K0. The i-th stream cipher output Xi is

used to sign the i-th message piece mi. As discussed previously, it seems important to ensure

that the parties A and B perform stream cipher computation in a synchronized manner. Our

approach involves the receiver B generating the high min-entropy string Ri used each round.

These bits are sent to A over a public channel. Intuitively, this means that party A must wait to

receive a string from party B before moving on to its next computation, and party B can wait

to receive a (properly signed) message from party A before generating the high min-entropy

string for the next round. Of course, the adversary controls the public channel and may insert

strings of his choice (purporting to be sent by the other party) to induce a party to continue

its computation; we show that such tampering by the adversary will be detected by party B

when he attempts to verify the signatures of the message pieces he receives.

The definition of security we use for our stream cipher is somewhat different than that

of Pietrzak. First, we do not rely on the only-computation-leaks axiom – we allow leakage

functions to be applied to the entire state. Second, we give a formal, precise definition of

security for rounds on which the adversary is allowed to leak; Pietrzak’s formal definition

only asserts that for rounds i on which the adversary is not allowed to leak, the output Xi

is indistinguishable from random. Pietrzak does note that the appropriate requirement for

rounds i on which the adversary is allowed to leak is that the output Xi has high HILL pseudo-

entropy; however, translating this idea into a precise definition is non-trivial since we must

carefully handle subtleties in the definitions of the min-entropy and HILL pseudo-entropy of

conditional distributions. Our proof of security uses similar ideas and similar structure to that

of Pietrzak. However, there are significant differences in the details, due to the differences in

our definitions of security.

Signature schemes and authentication

Given a leakage-resilient public-key signature scheme (that tolerates unbounded total leakage),

a leakage-resilient shared-private-key authenticated session protocol can be constructed in a

straightforward manner. The sender A and the receiver B use their shared key k as the ran-

domness for the signature scheme’s key generation algorithm, producing a key pair (pub, pri);

the receiver B discards pri. Then, along with each message piece mi, the sender A includes a

signature (under pri) of the string 〈mi, ī〉; the receiver B uses pub to verify each signature he

receives.

How does this approach compare to our construction? Recall that our construction as-

Chapter 3. Leakage-resilient authentication 54

sumes only the existence of pseudo-random generators, and does not use the “only compu-

tation leaks” leakage model. Existing signatures schemes tolerating unbounded total leakage

either make stronger assumptions than the existence of pseudo-random generators [BKKV10,

DHLAW10, MTVY11] or rely on the “only computation leaks” leakage model [FKPR10]. In

our construction, for each message piece, the sender must simply perform two evaluations of a

pseudo-random function generator. The computational complexity of producing a signature in

the existing signature schemes is higher. On the other hand, while our construction requires

two flows per message piece, the signature-scheme-based authenticated session protocol requires

only a single flow per message piece. Finally, while our construction tolerates only O(log n) bits

of leakage per computation, the existing signature schemes (and hence the resulting authenti-

cated session protocols) tolerate leakage whose length is a constant fraction of the length of the

state; furthermore, it is easy to see that in the signature-scheme-based authenticated session

protocol described above, the state of the receiver can be made public.

3.1 Preliminaries

3.1.1 Entropy

Definition 12 (Min-entropy) Let X be a distribution. The min-entropy of X, denoted

H∞(X), is

H∞(X) = − log max
x

Pr[X = x].

Definition 13 (HILL pseudo-entropy) Let X be a distribution over {0, 1}n. X has HILL

pseudo-entropy at least k with respect to circuits of size ne and distinguishing advantage 1/nd,

denoted

HHILL
1

nd
,ne

(X) ≥ k

if there exists a distribution Y over {0, 1}n such that H∞(Y) ≥ k and for every circuit D of

size at most ne, we have

|Pr [D(X) = 1]− Pr [D(Y) = 1]| ≤ 1

nd

3.2 Authenticated session protocols

In this section, we give a definition for security for a leakage-resilient shared-private-key au-

thenticated session protocol. We then describe our construction of such a protocol.

Chapter 3. Leakage-resilient authentication 55

3.2.1 Security definition

The intuitive goal of an authenticated session protocol involving two parties A and B, where

A is sending message pieces m1,m2, . . . , to B, is that B can verify that the message pieces he

receives are indeed those sent by A, in the same order. This should hold even when all message

pieces mi sent by A are adversarially chosen. Of course, the adversary has complete control of

the public channel over which A and B are communicating. This means that he controls the

timing and contents of all communication.

To extend this informal definition to a leakage-resilient version, we strengthen the adversary

by allowing him to obtain leakage on both parties. We are interested in the continual leakage

setting, where the adversary obtains some bounded amount of leakage on each computation

by each party but the total amount of leakage obtained by the adversary over the course of

the execution of the protocol is unbounded. The leakage on each computation is computed by

an adversarially-chosen function that is applied to the inputs and randomness involved in the

computation along with the entire state of the party performing the computation. This means

that we do not rely on the only-computation-leaks assumption.

We further strengthen the adversary by giving him all the entropy used by each party.

Equivalently, we require that A and B are deterministic but each have access to a (separate)

source of public min-entropy; whenever a party obtains a string its source of high min-entropy

strings, this string is also given to the adversary. We will formalize the idea of “giving” such

strings to the adversary by simply requiring that these strings are output on the public channel.

We begin by formally defining session protocols. Looking ahead, the protocol we have in

mind involves two flows per message piece mi. We will, for the sake of simplicity, restrict our

attention to such protocols in our definition. This means that for each message piece mi, the

computation of party B will consist of two algorithms EvalB1 and EvalB2, where EvalB1 is used

to produce a flow sent from party B to party A, and EvalB2 receives the flow sent from party A

and outputs a message piece. On the other hand, for each message piece mi, the computation

of party A will consist of only a single algorithm EvalA, that receives the flow from party B,

takes as input the message piece mi, and produces the flow sent from party A to party B.

Definition 14 (Shared-private-key session protocol with public min-entropy) A shared-

private-key session protocol with public min-entropy (which we will henceforth simply refer to

as a session protocol) consists of deterministic polytime algorithms EvalB1, EvalA, and EvalB2,

polynomials sB(n), `B(n), sA(n), and `A(n), and distribution ensembles {ZAn } and {ZBn } that

satisfy the following properties for all n ∈ N:

1. ZAn is a distribution over strings of length sA(n) such that H∞(ZAn) ≥ log2(n). Similarly,

ZBn is a distribution over strings of length sB(n) such that H∞(ZBn) ≥ log2(n).

Chapter 3. Leakage-resilient authentication 56

2. EvalB1 takes as input KB ∈ {0, 1}n and rB ∈ {0, 1}sB(n), and outputs β ∈ {0, 1}`B(n) and

K ′B ∈ {0, 1}n such that β has prefix rB.

Informally, the strings KB and K ′B are the state of party B before and after it executes

EvalB1, rB is the public min-entropy used by EvalB1, and β is a flow from party B to

party A.

3. EvalA takes as input KA ∈ {0, 1}n, m ∈ {0, 1}n, β ∈ {0, 1}`B(n), and rA ∈ {0, 1}sA(n), and

outputs e ∈ {0, 1}`A(n) and K ′A ∈ {0, 1}n such that e has prefix rA.

Informally, the strings KA and K ′A are the state of party A before and after it executes

EvalA, m is a message piece that party A would like to send to party B, β is a flow from

party B to party A, rA is the public min-entropy used by EvalA, and e is a flow from

party A to party B.

4. EvalB2 takes as input KB ∈ {0, 1}n, rB ∈ {0, 1}sB(n), and e ∈ {0, 1}`A(n), and outputs

either m ∈ {0, 1}n and K ′B ∈ {0, 1}n or a special message Fail.

Informally, the strings KB and K ′B are the state of party B before and after it executes

EvalB2, rB is the public min-entropy used by the immediately preceding run of EvalB1, e

is a flow from party A to party B, and m is a message piece received by party B.

5. For all K ∈ {0, 1}n, every polynomial p(n), all rA,1, rA,2, . . . , rA,p(n) ∈ {0, 1}sA(n), all

rB,1, rB,2, . . . , rB,p(n) ∈ {0, 1}sB(n), and all sequences of message piecesm1,m2, . . . ,mp(n) ∈
{0, 1}n, if we define KA,0 = KB,0 = K and, for 1 ≤ i ≤ p(n), we iteratively define

KA,i,K
′
B,i,KB,i, ei, βi,m

′
i in the following manner:

(βi,K
′
B,i) ← EvalB1(KB,i−1, rB,i)

(ei,KA,i) ← EvalA(KA,i−1,mi, βi, rA,i)

(m′i,KB,i) ← EvalB2(K
′
B,i, rB,i, ei)

then m′i = mi for all 1 ≤ i ≤ p(n).

Informally, this means that in the absence of an adversary, the message pieces output by

party B are exactly those sent by party A, in the same order.

We now define the security experiment for leakage-resilient authenticated session protocols.

The adversary will be a family of polynomial-size circuits C = {Cn}. Letting λ : N → N be a

function, we will say that an adversary C is λ(n)-bounded if the leakage functions produced by

Cn over the course of the security experiment each have output length λ(n). Fixing a session

protocol (EvalB1,EvalA,EvalB2, sB(n), `B(n), sA(n), `A(n), {ZAn }, {ZBn }), a function λ : N→ N,

a λ(n)-bounded adversary C = {Cn}, and n ∈ N, the security experiment proceeds as follows.

Chapter 3. Leakage-resilient authentication 57

A string K ∈ {0, 1}n is randomly chosen. We define KA,0 = KB,0 = K. Then, Cn is allowed

to run EvalA, EvalB1, and EvalB2 in the following manner. Cn may run these algorithms as

many times as he wishes and in any order of his choice as long as for every i > 0, the (i+ 1)-st

invocation of EvalB1 does not occur before the i-th invocation of EvalB2, and the i-th invocation

of EvalB2 does not occur before the i-th invocation of EvalB1. (This restriction captures the fact

that even though the adversary controls the public channel, party B will still alternate between

executing EvalB1 and executing EvalB2.) We now describe what happens when the adversary

Cn runs each algorithm.

• For i > 0, the i-th invocation of EvalB1 proceeds as follows. Cn produces the descrip-

tion of a circuit fB1,i : {0, 1}n × {0, 1}sB(n) → {0, 1}λ(n). Then, rB,i ← ZBn is chosen.

Next, (βi,K
′
B,i)← EvalB1(KB,i−1, rB,i) and leakB1,i ← fB1,i(KB,i−1, rB,i) are computed.

Finally, Cn is given βi and leakB1,i.

• For i > 0, the i-th invocation of EvalA proceeds as follows. Cn produces mi ∈ {0, 1}n and

β′i ∈ {0, 1}`B(n), and the description of a circuit fA,i : {0, 1}n × {0, 1}sA(n) → {0, 1}λ(n).
Then, rA,i ← ZAn is randomly chosen. Next, (ei,KA,i) ← EvalA(KA,i−1,mi, β

′
i, rA,i) and

leakA,i ← fA,i(KA,i−1, rA,i) are computed1. Finally, Cn is given ei and leakA,i.

• For i > 0, the i-th invocation of EvalB2 proceeds as follows. Cn produces a string e′i ∈
{0, 1}`A(n) and the description of a circuit fB2,i : {0, 1}n → {0, 1}λ(n). Then, (m′i,KB,i)←
EvalB2(K

′
B,i, rB,i, e

′
i) and leakB2,i ← fB2,i(K

′
B,i) are computed2; if EvalB2 outputs Fail,

the experiment ends immediately. If the i-th invocation of EvalA has previously occurred

and m′i = mi, Cn is given leakB2,i; otherwise, the experiment ends immediately.

Say that the final invocation of EvalB2 is the j-th invocation. Define qC(n) to be the probability

that the j-th invocation of EvalB2 does not output Fail and either EvalA has been invoked fewer

than j times or m′j 6= mj .

Definition 15 (Leakage-resilient authenticated session protocol) Let λ : N → N be a

function. A session protocol is a λ(n)-leakage-resilient authenticated session protocol if for every

λ(n)-bounded adversary C as described above, we have qC(n) ≤ 1/nd for all d and sufficiently

large n.

1It is not necessary to provide mi or β′i as inputs to fA,i since Cn chose these values himself and hence he can
simply hardcode them into fA,i if he wishes.

2It is not necessary to provide rB,i to fB2,i since this was previously provided to Cn as the prefix of βi, and
it is not necessary to provide e′i to fB2,i since Cn chose this value himself.

Chapter 3. Leakage-resilient authentication 58

3.2.2 Our construction

In our construction, only party B requires a source of public min-entropy. Accordingly, to

simplify notation, we use Zn rather that ZBn to denote the high min-entropy distribution used

by B.

Given pseudo-random function generators F : {0, 1}n×{0, 1}n → {0, 1}2n and F ′ : {0, 1}n×
{0, 1}n → {0, 1}n, and given a distribution ensemble {Zn} such that for all n, Zn is a distribution

over {0, 1}n and H∞(Zn) ≥ log2(n), we construct a leakage-resilient authenticated session

protocol SP as follows.

EvalB1: On input (KB, rB), where KB ∈ {0, 1}n and rB ∈ {0, 1}n, EvalB1 lets K ′B = KB and

β = rB, and outputs (β,K ′B).

EvalA: On input (KA,m, β), whereKA,m ∈ {0, 1}n and β ∈ {0, 1}n, EvalA computesK ′A||XA ←
FKA(β) (where |K ′A| = |XA| = n) and α = F ′XA(m), lets e = 〈m,α〉, and outputs (e,K ′A).

EvalB2: On input (KB, rB, e
′), where KB ∈ {0, 1}n, rB ∈ {0, 1}n, and e′ ∈ {0, 1}2n, EvalB2

parses 〈m′, α′〉 ← e′, computes K ′B||XB ← FKB (rB) (where |K ′B| = |XB| = n), and

α = F ′XB (m′). If α′ = α, EvalB2 outputs (m′,K ′B); otherwise, EvalB2 outputs Fail.

It is not hard to see that SP satisfies the definition of a session protocol. The idea is that

parties A and B both run a stream cipher (see Section 3.4) starting from the same key and

using the same inputs, and use the i-th output Xi to compute a signature F ′Xi(mi) of the i-th

message piece mi.

Theorem 3.2.1 For all c > 0, SP is a c log n-leakage-resilient authenticated session protcol.

We prove Theorem 3.2.1 in Section 3.6.

3.3 Running multiple instances of a stream cipher

In this section, we show what goes wrong if two parties run Pietrzak’s stream cipher [Pie09] with

the same initial state, when the adversary controls the scheduling of each party’s computation

and the adversary obtains leakage from both parties. Note that the same general approach

can be used to attack the stream cipher of Dziembowski and Pietrzak [DP08] (and, in fact,

any stream cipher whose construction consists of two pieces of memory connected by a public

channel, where all computation is deterministic) when two parties run this stream cipher with

the same initial state.

Chapter 3. Leakage-resilient authentication 59

Pietrzak’s construction uses two pieces of memory, A and B. Computation alternates be-

tween these two pieces, and leakage for each computation occurs only on the single piece of mem-

ory accessed by the computation. Initially, A stores a randomly chosen string K0 ∈ {0, 1}n,

B stores a randomly chosen string K1 ∈ {0, 1}n, and there is a randomly chosen publicly-

known string X0 ∈ {0, 1}n. Computation then proceeds in a sequence of rounds. Compu-

tation for odd-numbered rounds occurs on memory A, and computation for even-numbered

rounds occurs on memory B. In each round i, Ki+1||Xi ← FKi−1(Xi−1) is computed, where

F : {0, 1}n×{0, 1}n → {0, 1}2n is a pseudo-random function generator. Xi is output, and Ki+1

replaces Ki−1 in memory.

Leakage in each round i is computed by an adversarially-chosen function whose output

length is bounded by some value λ (such as λ = log n). Specifically, before computation takes

places in round i, the adversary outputs the description of a function fi : {0, 1}n → {0, 1}λ.

Then, at the end of the round, the adversary is given Xi and fi(Ki−1).

Now, suppose two parties P1 and P2 compute Pietrzak’s stream cipher, and both parties

start with the same initial state (K0,K1, X0). Suppose further that the adversary controls the

timing of each party’s computation; that is, he controls the manner in which the computation

of P1 and P2 is interleaved.

We now show that the adversary can eventually obtain the entire contents of both pieces

memory, even if his leakage is restricted to 1 bit per round. The adversary begins by scheduling

party P1 for 2n rounds. He does not bother to obtain any leakage during these rounds, but

he stores the outputs X1, X2, . . . X2n. Now the adversary schedules party P2 for 2n rounds.

We claim that by the end of these 2n rounds, the adversary will have learned K2n and K2n+1.

He accomplishes this as follows. For each odd i, the adversary in round i will choose a leak-

age function fi that, on input Ki−1, uses Xi−1, Xi+1, Xi+3, . . . , X2n−2 (which are known by

the adversary) to compute Ki+1,Ki+3,Ki+5, . . . ,K2n, and then outputs bit (i + 1)/2 of K2n.

Similarly, for each even i, the adversary in round i will choose a leakage function fi that, on

input Ki−1, uses Xi−1, Xi+1, Xi+3, . . . , X2n−1 (which are known by the adversary) to compute

Ki+1,Ki+3,Ki+5, . . . ,K2n+1, and then outputs bit i/2 of K2n+1. In this manner, after 2n

rounds, the adversary learns K2n and K2n+1 in their entirety; then, since he also knows X2n,

he knows the entire current state of party P2.

Note that if the parties are not outputting the Xi, but instead use the Xi to perform

some task (like authentication), it is not clear how to extend the attack described above to

such a setting. On the other hand, in such a setting, it is also not clear how prove that the

adversary cannot mount successful attacks where he takes advantage of his ability to schedule

the parties; at the very least, by scheduling in the manner described above, he can accumulate

some information about the Xi through leakage on party P1, and he can obtain additional

Chapter 3. Leakage-resilient authentication 60

information from P1’s computation as a result of the usage of Xi (e.g. if the Xi are used to sign

message pieces, the adversary obtains some information about the Xi by seeing the signatures

output by P1).

3.4 Stream cipher construction

In this section, we present our modified version of Pietrzak’s stream cipher. Our construction

uses only a single piece of memory but requires a public source of min-entropy.

3.4.1 The construction

Let F : {0, 1}n × {0, 1}n → {0, 1}2n be a pseudo-random function generator.

Let {Zn} be such that for all n, Zn is a distribution over strings of length n and H∞(Zn) ≥
log2(n).

The initial state is K0, where K0 ∈ {0, 1}n is randomly chosen.

For each i > 0, the i-th round consists of:

1. Ri ← Zn is chosen.

2. Ki||Xi ← FKi−1(Ri).

3. The new state is Ki.

3.4.2 The adversary’s interaction

Fix c > 0. A (c log n)-bounded adversary interacts as follows.

For each i > 0:

1. Before round i, the adversary outputs the description of a function fi : {0, 1}2n →
{0, 1}c logn.

2. After round i, the adversary sees Ri, Xi, fi(Ki−1, Ri).

3.4.3 Security

We begin by defining some notation.

For an adversary A, we will use reali to denote the adversary’s view after the first i rounds

along with the corresponding Xj . That is,

reali = 〈R1, f1(K0, R1), X1, R2, f2(K1, R2), X2, . . . , Ri, fi(Ki−1, Ri), Xi〉

Chapter 3. Leakage-resilient authentication 61

Note that the fj are not fixed functions, but rather are chosen adaptively by the adversary A

as described in Section 3.4.2.

We next consider the distribution produced by having an adversary A interact with a “simu-

lated” version of the construction. For distribution K ′0X
′
1K
′
1X
′
2K
′
2 . . .K

′
i−1X

′
i−1X

′
i|R1R2 . . . Ri,

define

simi =
〈
R1, f1(K

′
0, R1), X

′
1, R2, f2(K

′
1, R2), X

′
2, . . . , Ri, fi(K

′
i−1, Ri), X

′
i

〉
That is, simi is the distribution produced by having A interact with a modified version of the

construction where in step 2 in each round j, KjXj take on values from the distribution K ′jX
′
j

rather than a value computed using F . Note that each fj is the function that is chosen in round

j by A based on its view (interacting with the “simulated” version of the construction) up to

that point.

We will sometimes need to use a version of simi which omits X ′i. We will denote this using

sim−i .

We will also define versions of reali and simi that include an additional round where there

is no leakage. Specifically, we define

real+i = 〈reali, Ri+1,Ki+1, Xi+1〉

That is, real+i includes the inputs and outputs of an additional leak-free round along with the

entire state at the end of that round. We also define

sim+i =
〈
simi, Ri+1,K

′′
i+1, X

′′
i+1

〉
where X ′′i+1 and K ′′i+1 are independent random variables that are each uniformly distributed

over {0, 1}n.

We need to define hybrid distributions that are in-between real+i and sim+i . For 0 ≤ j ≤
i + 1, define hybrid

j
i to be the distribution produced by having A interact as in simi for the

first j rounds, and then continuing the interaction with the real construction (starting from

state K ′j) for the remaining i+ 1− j rounds. Observe that hybridi+1
i = sim+i , and when K ′0 is

distributed uniformly we have hybrid0i = real+i .

Theorem 3.4.1 Let F : {0, 1}n × {0, 1}n → {0, 1}2n be a pseudo-random function generator.

Let {Zn} be such that for all n, Zn is a distribution over strings of length n and H∞(Zn) ≥
log2(n). For all c > 0, d > 0, e > 0, every function p : N → N, and sufficiently large n, and

for all (c log n)-bounded adversaries A interacting as described in section 3.4.2 and obtaining

leakage for p(n) rounds, there exists a distribution K ′0K
′
1X
′
1K
′
2X
′
2 . . .K

′
p(n)X

′
p(n)|R1R2 . . . Rp(n),

with each K ′i and each X ′i over {0, 1}n, such that the following properties hold.

1. For all 1 ≤ i ≤ p(n), and all α← sim−i , H∞(K ′iX
′
i|sim

−
i = α) ≥ 2n− (c+ 2d+ 1) log n.

Chapter 3. Leakage-resilient authentication 62

2. For all 0 ≤ i ≤ p(n), and all β ← simi, H∞(K ′i|simi = β) ≥ n− (c+ 3d+ 1) log n.

3. For all 1 ≤ i ≤ p(n), and all α← sim−i ,

Pr
k←K′i

[
H∞(X ′i|sim−i = α ∧K ′i = k) ≥ n− (c+ 3d+ 1) log n

]
≥ 1− 1

nd

4. For all adversaries D such that 2 · size(A) + size(D) + p(n)size(F) ≤ ne, and all

1 ≤ i ≤ p(n) + 1,∣∣∣Pr
[
D(real+p(n)) = 1

]
− Pr

[
D(hybridip(n)) = 1

]∣∣∣ ≤ 3i

nd

5. For all adversaries D such that 2 · size(A) + size(D) + p(n)size(F) ≤ ne,∣∣∣Pr
[
D(real+p(n)) = 1

]
− Pr

[
D(realp(n), Rp(n)+1,K

′′
p(n)+1, X

′′
p(n)+1) = 1

]∣∣∣ ≤ 6p(n) + 6

nd

Specifically, for sufficiently large n (depending only on c, d, and e):

• If, for every distribution K ′0K
′
1X
′
1K
′
2X
′
2 . . .K

′
p(n)X

′
p(n)|R1R2 . . . Rp(n) satisfying (1), (2),

and (3) there exists an adversary D breaking (4), then there exists an adversary of size

ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3.

• If there exists an adversary D breaking (5), then there exists an adversary of size ne+8d+2c+8

breaking F with advantage 1/n5d+2c+3.

Since it is not obvious that Theorem 3.4.1 is the “right” theorem to prove, let us consider how

this theorem can be applied. Suppose we would like to use the Xi produced each round to

perform some “cryptographic task”. In general, we would like a robust notion of security where

the use of each Xi remains secure even when the adversary happens to learn all the other Xj

(in addition to getting leakage from every round, including round i). The theorem tells us that

it is sufficient to show that the use of each X ′i is secure in the experiment implied by hybridi
nb

.

Furthermore, the theorem tells us that in the experiment implied by hybridi
nb

, X ′i has high

entropy even given the adversary’s view, all the previous X ′j , and the entire state at the end of

round i. Finally, in certain applications (like authentication) we might follow a proof approach

that allows us to eliminate leakage in a particular round of interest; property 5 in the theorem

tells us that for such a round i, the output Xi is pseudo-random even given the entire state at

the end of round i.

We prove Theorem 3.4.1 in Section 3.5.

3.5 Proof of Theorem 3.4.1

We begin by giving an informal overview of the proof.

Chapter 3. Leakage-resilient authentication 63

3.5.1 Proof overview

The high-level approach is similar to that of Pietrzak [Pie09]. Intuitively, to show that our

stream cipher is leakage-resilient, we need to show that as a result of the refreshing that takes

place each round, the state Ki maintains almost maximal3 pseudo-entropy conditioned on the

view of the adversary, and as a result, the outputs Xi have almost maximal pseudo-entropy

conditioned on the adversary’s view.

In a first attempt at formalizing this intuition, one might try to show inductively that for ev-

ery 1 ≤ i ≤ p(n), we have with very high probability over the adversary’s view real−i that KiXi

has almost maximal HILL pseudo-entropy conditioned on real−i . In the induction step, we

would use the assumption that KiXi has almost maximal pseudo-entropy conditioned on real−i

to argue that Ki has almost maximal pseudo-entropy conditioned on 〈real−i , Xi〉 (that is, condi-

tioned on reali), as a precursor to arguing about the pseudo-entropy of Ki+1Xi+1 = FKi(Ri+1)

conditioned on real−i+1. However, as we will see in Lemma 3.5.3, such an argument will not

go through, due to subtleties in the definition of the HILL pseudo-entropy of conditional dis-

tributions; specifically, even if KiXi has maximal HILL pseudo-entropy conditioned on real−i ,

it may be the case that Ki has nearly zero HILL pseudo-entropy conditioned on 〈real−i , Xi〉.

To overcome this problem, we instead (as detailed in the statement of Theorem 3.4.1) argue

about the actual (not computational) min-entropy of distributions that are indistinguishable

from the “real” distributions that yield the adversary’s view. As we will see in Lemma 3.5.2,

the min-entropy of conditional distributions behaves in exactly the manner we need in order

to follow an inductive approach similar to the failed approach described above. Specifically, if

distribution K ′iX
′
i has almost maximal min-entropy conditioned on a distribution sim−i , then

with high probability over X ′i we have that K ′i has almost maximal min-entropy conditioned

on 〈sim−i , X ′i〉.

Note that we do not show how to sample the high min-entropy distributions in question.

Instead, we non-constructively argue about the existence of such distributions. This means we

cannot use a traditional hybrid argument where all the hybrid experiments are first defined

and then shown to be indistinguishable from each other. Instead, we use an inductive hybrid-

style argument where we simultaneously argue about the existence of distributions with desired

properties and about the indistinguishability of these distributions from the “real” distribution.

Specifically, our initial hybrid is the real experiment, and in each step i of the argument, we

use the approach described above to argue that round i of the adversary’s view can be replaced

with distributions that have the desired entropy properties and such that the resulting i-th

hybrid is indistinguishable from the initial hybrid.

3By “almost maximal”, we mean “within logarithmically-many bits of maximal”.

Chapter 3. Leakage-resilient authentication 64

One of the main ingredients we need for our induction argument is Lemma 3.5.7, where we

show that for every pseudo-random function generator F and every distribution K of almost

maximal min-entropy, we have for almost every x that the distribution FK(x) is indistinguish-

able from random. (Note that if K has maximal min-entropy, that is, if K is randomly chosen,

then we have for every x that FK(x) is indistinguishable from random.) The approach we use for

proving this is similar to the approach used by Pietrzak [Pie09] in his proof that weak-pseudo-

random function generators (that is, function generators that are pseudo-random when their

inputs are chosen randomly rather than adversarially) remain weak-pseudo-random when their

seed is chosen according to a distribution of almost-maximal entropy instead of the uniform

distribution.

The other ingredient we need is the lemma of Dziembowski and Piertrzak [DP08] (which we

state as Lemma 3.5.5) about leakage on the seed of pseudo-random number generators. They

show that the output of a pseudo-random number generator has almost maximal HILL pseudo-

entropy even when there is logarithmic-length leakage on the seed. Combining this lemma with

Lemma 3.5.7 (the lemma discussed above), we conclude in Lemma 3.5.8 that pseudo-random

function generators whose seed is chosen from a distribution of almost maximal min-entropy

and whose input is chosen from a distribution of super-logarithmic min-entropy have output

that has almost maximal HILL pseudo-entropy, even when there is logarithmic-length leakage

on the seed4. This allows us to proceed with our induction argument.

3.5.2 Entropy-related lemmas

In this section, we first give a lemma about the behaviour of min-entropy and conditional

distributions. We will need such a lemma when proving Theorem 3.4.1. Then, we show that

HILL pseudo-entropy does not exhibit the same behaviour, illustrating the need to be careful

when working with the entropy of conditional distributions in the statement and proof of

Theorem 3.4.1.

Min-entropy and conditional distributions

Lemma 3.5.1 Let XY be a distribution, with X and Y each over {0, 1}n. For all c ≥ 0 and

d > 0, if H∞(XY) ≥ 2n− c log n, then

Pr
y←Y

[H∞(X|Y = y) ≥ n− (c+ d) log n] ≥ 1− 1

nd
(3.1)

Proof Fix c, d,X, Y , and assume H∞(XY) ≥ 2n− c log n.

4Pietrzak [Pie09] obtains a similar result for the case where the input is chosen from a distribution of almost
maximal min-entropy rather than super-logarithmic min-entropy.

Chapter 3. Leakage-resilient authentication 65

Suppose that (3.1) is false. Let S ⊆ {0, 1}n be the set of all y such that H∞(X|Y = y) <

n− (c+ d) log n. Then, since (3.1) is false, we have Pr[Y ∈ S] > 1/nd.

Now, consider an arbitrary y ∈ S. Then, by definition of S, there exists an x such that Pr[X =

x|Y = y] > 2−(n−(c+d) logn) = nc+d/2n. On the other hand, since H∞(XY) ≥ 2n − c log n, we

have that Pr[XY = xy] ≤ nc/22n. This means we must have Pr[Y = y] < 1
nd2n

.

So for each y ∈ S, we have Pr[Y = y] < 1
nd2n

. Since Pr[Y ∈ S] > 1/nd, it follows that

|S| >
1
nd

1
nd2n

= 2n

which is a contradiction (since S ⊆ {0, 1}n). �

Corollary 3.5.2 Let XY be a distribution, with X and Y each over {0, 1}n. For all c ≥ 0 and

d > 0 if H∞(XY) ≥ 2n − c log n, then there exists a distribution X ′|Y over {0, 1}n such that

X ′Y is within statistical distance 1/nd of XY , H∞(X ′Y) ≥ 2n− c log n, and

Pr
y←Y

[
H∞(X ′|Y = y) ≥ n− (c+ d) log n

]
= 1 (3.2)

Proof Fix c, d,X, Y , and assume H∞(XY) ≥ 2n− c log n. By Lemma 3.5.1, we have

Pr
y←Y

[H∞(X|Y = y) ≥ n− (c+ d) log n] ≥ 1− 1

nd
(3.3)

We define distribution X ′|Y as follows. For each y ∈ Y such that H∞(X|Y = y) ≥ n − (c +

d) log n, distribution X ′|Y = y is identical to X|Y = y. For all other y ∈ Y , distribution

X ′|Y = y is the uniform distribution. By construction, we have

Pr
y←Y

[
H∞(X ′|Y = y) ≥ n− (c+ d) log n

]
= 1 (3.4)

Also, by construction, we have that with probability at least 1−1/nd over y ← Y , the conditional

distributions X|Y = y and X ′|Y = y are identical. It follows that X ′Y is within statistical

distance 1/nd of XY .

It remains to show that H∞(X ′Y) ≥ 2n − c log n. For all y ∈ Y such that H∞(X|Y = y) ≥
n−(c+d) log n, we have (by construction of X ′ and using the fact that H∞(XY) ≥ 2n−c log n)

that for all x ∈ {0, 1}n, Pr[X ′Y = xy] ≤ 2−2n+c logn. For all other y ∈ {0, 1}n, we have that

for all x ∈ {0, 1}n, Pr[X ′Y = xy] = 2−n Pr[Y = y]. But this is at most 2−2n+c logn, since the

assumption H∞(XY) ≥ 2n− c log n implies that for all y ∈ {0, 1}n, Pr[Y = y] ≤ 2−n+c logn. �

HILL pseudo-entropy and conditional distributions

We now show that a HILL pseudo-entropy analog of Lemma 3.5.1 does not hold.

Chapter 3. Leakage-resilient authentication 66

Lemma 3.5.3 Suppose one-way permutations exist. Then for all d, e, and sufficiently large n,

there exists a distribution XY , with X and Y each over {0, 1}n, such that HHILL
1

nd
,ne

(XY) = 2n

yet with probability 1 over y ∈ Y , we have HHILL
1

nd
,ne

(X|Y = y) ≈ 0.

To prove this lemma, we need the following claim that uses a standard construction of a

pseudo-random number generator from a one-way permutation.

Claim 3.5.4 Suppose one-way permutations exist. Then there exists a pseudo-random number

generator G : {0, 1}n → {0, 1}2n with the property that the function p : {0, 1}n → {0, 1}n that

on input x outputs the right-half of G(x) (that is, p(x) = G(x)|last n bits) is a permutation.

Proof Suppose one-way permutations exist. Then there exists a one-way permutation f :

{0, 1}n → {0, 1}n that has a hard-core predicate b : {0, 1}n → {0, 1}. We define number

generator G : {0, 1}n → {0, 1}2n as follows:

G(x) = b(x) b(f(x)) b(f (2)(x)) . . . b(f (n−1)(x)) f (n)(x) (3.5)

where f (i) denotes the composition of f with itself i times. A standard proof shows that G is

pseudo-random (for example, see section 3.4.1.2 in [Gol01]).

Note that the right-half of G(x) is f (n)(x), and f (n) is a permutation (since f is a permutation).

�

We now prove the lemma.

Proof (Lemma 3.5.3) Suppose one-way permutations exist. Then, by Claim 3.5.4, there

exists a pseudo-random number generator G : {0, 1}n → {0, 1}2n with the property that the

function p : {0, 1}n → {0, 1}n that on input x outputs the right-half of G(x) (that is, p(x) =

G(x)|last n bits) is a permutation.

Fix constants d and e. Then, for sufficiently large n, the distributions X and Y , each over

{0, 1}n, defined as

XY = G(Un) (3.6)

have the property that

HHILL
1

nd
,ne

(XY) = 2n (3.7)

Now, note that X = G(p−1(Y))|first n bits. Then, for all y, given that Y = y, the value of X is

completely determined. That is, for all y, there exists an x such that Pr[X = x|Y = y] = 1. It

follows that with probability 1 over y ∈ Y , we have

HHILL
1

nd
,ne

(X|Y = y) ≈ 0 (3.8)

�

Chapter 3. Leakage-resilient authentication 67

3.5.3 Pseudo-random generators with bounded leakage on the seed

By definition, the output of a pseudo-random generator G : {0, 1}n → {0, 1}`(n) has `(n) bits of

HILL pseudo-entropy with respect to an adversary that is not given the randomly chosen seed of

G. Clearly, when the adversary is allowed to see leakage on the seed, we can no longer expected

the output of G to have `(n) bits of pseudo-entropy. However, Dziembowski and Pietrzak

[DP08] show that the output of a pseudo-random generator has very high HILL pseudo-entropy

even when there is leakage on the seed. In fact, when the leakage has logarithmic length, there

is only a logarithmic loss in pseudo-entropy.

Lemma 3.5.5 ([DP08]) Let G : {0, 1}n → {0, 1}`(n) be a pseudo-random generator and let f :

{0, 1}n → {0, 1}c logn be a function. Then for all d, e and sufficiently large n, when independent

X,Y ∼ Un we have:

Pr
y←f(Y)

[
HHILL

1

nd
,ne

(G(X)|f(X) = y) ≥ `(n)− (c+ 2d) log n− 3

]
≥ 1− 1

2nd
(3.9)

Specifically, for sufficiently large n (depending only on d, e and `(·)), given adversaries breaking

(3.9), there exists an adversary of size (`(n))2ne+4d+1 that breaks G with advantage at least

1/(8n2d+c).

By examining Dziembowski and Pietrzak’s proof of Lemma 3.5.5, it is easy to observe that

their proof does not actually require `(n) > n or X,Y ∼ Un. Instead, it only requires that X

and Y are independent identical distributions over strings of length n. That is, Lemma 3.5.5

generalizes to the case where G : {0, 1}n → {0, 1}`(n) is an arbitrary function (not necessarily

length-increasing) whose output is indistinguishable from random when its input is chosen

according to some distribution Dn.

Corollary 3.5.6 Let G : {0, 1}n → {0, 1}`(n) and f : {0, 1}n → {0, 1}c logn be functions and let

Dn be a distribution on strings of length n. Suppose the distribution G(Dn) is computationally

indistinguishable from the uniform distribution U`(n). Then for all d, e and sufficiently large n,

when independent X,Y ∼ Dn we have:

Pr
y←f(Y)

[
HHILL

1

nd
,ne

(G(X)|f(X) = y) ≥ `(n)− (c+ 2d) log n− 3

]
≥ 1− 1

2nd
(3.10)

Specifically, for sufficiently large n (depending only on d, e and `(·)), given adversaries breaking

(3.10), there exists an adversary of size (`(n))2ne+4d+1 that distinguishes G(Dn) with advantage

at least 1/(8n2d+c).

Chapter 3. Leakage-resilient authentication 68

3.5.4 Pseudo-random function generators with high-entropy seeds

It is easy to see that if F : {0, 1}n × {0, 1}n → {0, 1}m is a pseudo-random function generator,

then for all x ∈ {0, 1}n, the function Gx(y) = Fy(x) is a pseudo-random number generator5.

Now, suppose K is a high-entropy (but not necessarily uniform) distribution on {0, 1}n. Then,

there may exist x such that Gx(K) is easy to distinguish from Um. However, we will show

that for almost all x ∈ {0, 1}n, the distribution Gx(K) is computationally indistinguishable

from Um. Our proof uses ideas similar to those used by Pietrzak [Pie09] in his lemma about

weak-pseudo-random function generators with high-entropy seeds.

Lemma 3.5.7 Let F : {0, 1}n × {0, 1}n → {0, 1}`(n) be a pseudo-random function generator.

Then, for all c, d, e and sufficiently large n: If K is a distribution on {0, 1}n such that H∞(K) ≥
n− c log n, then for all but fewer than n2d+1 strings x ∈ {0, 1}n, for all circuits D of size ne,∣∣Pr [D(FK(x)) = 1]− Pr

[
D(U`(n)) = 1

]∣∣ ≤ 1

nd
(3.11)

Specifically, for sufficiently large n (depending only on c and d), if for at least n2d+1 strings x

there exists a D of size ne breaking (3.11), then there exists an adversary of size ne+2d+2 that

distinguishes F (as a pseudo-random function generator) with advantage at least 1/nc+d+1.

Proof Fix c, d, e. Let n be large enough so that 3/(4nd+c)− 1/ exp(n8) ≥ 1/nc+d+1. Let K be

a distribution on {0, 1}n such that H∞(K) ≥ n− c log n.

Suppose there exists a set S ⊆ {0, 1}n of size n2d+1 and a collection of distinguishers {Dx}x∈S
each of size ne such that for all x ∈ S,

Pr [Dx(FK(x)) = 1]− Pr
[
Dx(U`(n)) = 1

]
>

1

nd
(3.12)

For each x ∈ S, define rx = Pr[Dx(U`(n)) = 1] and define px = Pr[Dx(FK(x)) = 1]. Also, define

α =
∑

x∈S rx and β =
∑

x∈S px. Note that we have

β − α =
∑
x∈S

(px − rx) > |S| 1

nd
=
n2d+1

nd
= nd+1 (3.13)

We now construct an adversary D′ of size at most ne+2d+2 for breaking F . Given an oracle

f , D′ runs each Dx on input f(x), and accepts iff the number of Dx that accept is at least

t = α+ nd+1

4 .

Consider the probability that D′ accepts a randomly chosen function f . For each x ∈ S,

let Rx be a random variable whose value is the output of Dx(f(x)). Note that since f is

5More precisely, we need to require that m > n in order to call Gx a number generator. But even without
this condition, we have that Gx(Un) is computationally indistinguishable from Um.

Chapter 3. Leakage-resilient authentication 69

randomly chosen, {Rx}x∈S is a set of independent random variables. Define random variable

R =
∑

x∈S Rx. That is, R is the number of Dx that accept. Note that E[Rx] = rx for each

x ∈ S, and hence E[R] = α. Then, by Hoeffding’s inequality, we have

Pr [R ≥ t] = Pr

[
R ≥ α+

nd+1

4

]
= Pr

[
R− α ≥ |S| 1

4nd

]
≤ exp

(
− |S|

8n2d

)
=

1

exp(n8)
(3.14)

It follows that the probability D′ accepts a randomly chosen function f is at most 1/ exp(n8).

Now consider the probability that D′ accepts Fk for k chosen according to K. For each x ∈ S,

let Px be a random variable whose output is the value of Dx(Fk(x)). Define random variable

P =
∑

x∈S Px. That is, P is the number of Dx that accept. Note that E[Px] = px for each

x ∈ S, and hence E[P] = β. By reasoning similar to Markov’s inequality, and using the fact

that P does not take on any value larger than |S|, we have

Pr

[
P ≤ β − 3nd+1

4

]
= Pr

[
P ≤ β − |S| 3

4nd

]
≤ 1− 3

4nd
(3.15)

Now, since β − α > nd+1, we have β − 3nd+1

4 > α+ nd+1

4 = t. This means

Pr [P ≥ t] ≥ Pr

[
P ≥ β − 3nd+1

4

]
≥ 3

4nd
(3.16)

It follows that the probability D′ accepts Fk for k chosen according to K is at least 3
4nd

.

Finally, consider the probability that D′ accepts Fk for k chosen according to Un. Define

Good to be the set of strings k ∈ {0, 1}n such that D′ accepts Fk. For each k ∈ Good, define

qk = Pr[K = k]. We know that ∑
k∈Good

qk = Pr[K ∈ Good] ≥ 3

4nd
(3.17)

Now, how does qk compare to Pr[Un = k]? Since H∞(K) ≥ n−c log n, we know that qk ≤ nc/2n

for each k. On the other hand, we know that Pr[Un = k] = 1/2n for each n. This means that

for each k ∈ Good,

Pr[Un = k] ≥ 1

nc
qk (3.18)

Then, we have

Pr[Un ∈ Good] =
∑

k∈Good
Pr[Un = k] ≥

∑
k∈Good

1

nc
qk =

1

nc

∑
k∈Good

qk ≥
3

4nd+c
(3.19)

It follows that the probability D′ accepts Fk for k chosen according to Un is at least 3
4nd+c

.

Recall that the probability D′ accepts a randomly chosen function f is at most 1/ exp(n8). This

means that D′ distinguishes F with advantage at least 3/(4nd+c) − 1/ exp(n8). By our choice

of n, this is at least 1/nc+d+1. �

Chapter 3. Leakage-resilient authentication 70

3.5.5 Pseudo-random function generators with high-entropy seeds and leak-

age

We re-work Pietrzak’s Lemma 6 [Pie09] using our Lemma 3.5.7, focusing on the case where the

leakage length is O(log n) and the input to F has super-logarithmic min-entropy (rather than

almost maximal min-entropy).

Lemma 3.5.8 Let F : {0, 1}n×{0, 1}n → {0, 1}2n be a pseudo-random function generator, and

let f : {0, 1}2n → {0, 1}c logn be a function. For all d, e, `, and sufficiently large n, if K and R

are independent distributions over {0, 1}n such that H∞(K) ≥ n−` log n and H∞(R) ≥ log2(n),

then we have

Pr
α←〈R,f(K,R)〉

[
HHILL

1

nd
,ne

(FK(R)| 〈R, f(K,R)〉 = α) ≥ 2n− (c+ 2d+ 1) log n

]
≥ 1− 1

nd
(3.20)

Specifically, for sufficiently large n (depending only on c, d, e, and `), given adversaries breaking

(3.20), there exists an adversary of size ne+8d+2c+8 breaking F with advantage 1/n`+2d+c+2.

Proof Fix d, e, `, and n. Suppose (3.20) is false.

So we have

Pr
α←〈R,f(K,R)〉

[
HHILL

1

nd
,ne

(FK(R)| 〈R, f(K,R)〉 = α) < 2n− (c+ 2d+ 1) log n

]
>

1

nd
(3.21)

Then we have with probability at least 1/(2nd) over r ← R that

Pr
α←〈r,f(K,r)〉

[
HHILL

1

nd
,ne

(FK(r)| 〈r, f(K, r)〉 = α) < 2n− (c+ 2d+ 1) log n

]
>

1

2nd
(3.22)

For sufficiently large n, we have 1/(2nd) > n2d+2c+3/2log
2(n). Then, since H∞(R) ≥ log2(n),

there exists a set S ⊆ {0, 1}n of size at least n2d+2c+3 such that for each r ∈ S, (3.22) holds.

Now, for sufficiently large n, we also have 2n− (c+ 2d+ 1) log n < 2n− (c+ 2d) log n− 3. But

then by Corollary 3.5.6, we have (for sufficiently large n depending only on d and e) that for

each r ∈ S, there exists an adversary Dr of size 4ne+4d+3 < ne+4d+4 that distinguishes FK(r)

from Um with advantage at least 1/(8n2d+c) > 1/n2d+c+1.

Applying Lemma 3.5.7 (with constants c′ = `, d′ = 2d + c + 1, e′ = e + 4d + 4), we get (for

sufficiently large n depending only on c, d, and `) an adversary of size ne
′+2d′+2 = ne+8d+2c+8

that breaks F with advantage at least 1/nc
′+d′+1 = 1/n`+2d+c+2. �

Corollary 3.5.9 Let F : {0, 1}n × {0, 1}n → {0, 1}2n be a pseudo-random function generator,

and let f : {0, 1}2n → {0, 1}c logn be a function. For all d, e, and sufficiently large n, if K

and R are independent distributions over {0, 1}n such that H∞(K) ≥ n− (c+ 3d+ 1) log n and

H∞(R) ≥ log2(n), then there exists a collection of distributions {YαZα}α∈〈R,f(K,R)〉, where Yα

and Zα are each over {0, 1}n, such that

Chapter 3. Leakage-resilient authentication 71

1. For all α ∈ 〈R, f(K,R)〉, we have H∞(YαZα) ≥ 2n− (c+ 2d+ 1) log n.

2. For all α ∈ 〈R, f(K,R)〉 and z ∈ Zα, we have H∞(Yα|Zα = z) ≥ n− (c+ 3d+ 1) log n.

3. For all adversaries D of size ne,∣∣∣∣Pr
K,R

[D(FK(R), R, f(K,R)) = 1]− Pr
α←〈R,f(K,R)〉, Yα, Zα

[D(YαZα, α) = 1]

∣∣∣∣ ≤ 3

nd

Specifically, for sufficiently large n (depending only on c, d, and e), given adversaries breaking

the above, there exists an adversary of size ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3.

Proof Fix d, e, n. Suppose that there exist independent distributions K and R such that

H∞(K) ≥ n−(c+3d+1) log n and H∞(R) ≥ log2(n), but that for all collections of distributions

{YαZα}α∈〈R,f(K,R)〉 satisfying (1) and (2), there exists an adversary of size ne breaking (3). Fix

such distributions K and R.

Then, by Corollary 3.5.2, we have that for all collections of distributions {YαZα}α∈〈R,f(K,R)〉

satisfying (1), there exists an adversary D of size ne such that∣∣∣∣Pr
K,R

[D(FK(R), R, f(K,R)) = 1]− Pr
α←〈R,f(K,R)〉, Yα, Zα

[D(YαZα, α) = 1]

∣∣∣∣ > 2

nd
(3.23)

This means that for all collections of distributions {YαZα}α∈〈R,f(K,R)〉 satisfying (1), there exists

an adversary D of size ne such that with probability greater than 1/nd over α← 〈R, f(K,R)〉,

|Pr [D(FK(R), α) = 1| 〈R, f(K,R)〉 = α]− Pr [D(YαZα, α) = 1]| > 1

nd
(3.24)

It follows that

Pr
α←〈R,f(K,R)〉

[
HHILL

1

nd
,ne

(FK(R)| 〈R, f(K,R)〉 = α) < 2n− (c+ 2d+ 1) log n

]
>

1

nd
(3.25)

But then by Lemma 3.5.8, there exists (for sufficiently large n depending only on c, d, and e)

an adversary of size ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3. �

3.5.6 Main lemmas

We first prove a lemma that allows us to use an inductive approach to proving the theorem.

Lemma 3.5.10 Let F : {0, 1}n × {0, 1}n → {0, 1}2n be a function generator. Let {Zn} be

such that for all n, Zn is a distribution over strings of length n and H∞(Zn) ≥ log2(n). For

all c > 0, d > 0, e > 0, every function p : N → N, and sufficiently large n (depending only

on c, d, and e), and for all (c log n)-bounded adversaries A interacting as described in Section

3.4.2 and obtaining leakage for p(n) rounds, and for some 0 ≤ i < p(n), suppose there exists a

distribution K ′0K
′
1X
′
1K
′
2X
′
2 . . .K

′
iX
′
i|R1R2 . . . Ri with each X ′j and each K ′j over {0, 1}n, such

that the following properties hold:

Chapter 3. Leakage-resilient authentication 72

1. For all 1 ≤ j ≤ i, and all α← sim−j , H∞(K ′jX
′
j |sim

−
j = α) ≥ 2n− (c+ 2d+ 1) log n.

2. For all 0 ≤ j ≤ i, and all β ← simj, H∞(K ′j |simj = β) ≥ n− (c+ 3d+ 1) log n.

3. For all adversaries D such that 2 · size(A) + size(D) + p(n)size(F) ≤ ne, if∣∣∣Pr
[
D(real+p(n)) = 1

]
− Pr

[
D(hybridip(n)) = 1

]∣∣∣ > 3i

nd

then there exists an adversary of size ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3.

Then there exist distributions K ′i+1X
′
i+1|sim

−
i+1, with K ′i+1 and X ′i+1 each over {0, 1}n, such

that the following properties hold:

1. For all α← sim−i+1, H∞(K ′i+1X
′
i+1|sim

−
i+1 = α) ≥ 2n− (c+ 2d+ 1) log n.

2. For all β ← simi+1, H∞(K ′i+1|simi+1 = β) ≥ n− (c+ 3d+ 1) log n.

3. For all adversaries D such that 2 · size(A) + size(D) + p(n)size(F) ≤ ne, if∣∣∣Pr
[
D(real+p(n)) = 1

]
− Pr

[
D(hybridi+1

p(n)) = 1
]∣∣∣ > 3(i+ 1)

nd

then there exists an adversary of size ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3.

Proof Fix c > 0, d > 0, e > 0, function p : N → N, n, (c log n)-bounded adversary A, and

0 ≤ i < p(n). Suppose there exists a distribution K ′0K
′
1X
′
1K
′
2X
′
2 . . .K

′
iX
′
i|R1R2 . . . Ri satisfying

the properties specified in the statement of the lemma.

Fix β ← simi. Let Kβ
i denote the distribution K ′i|simi = β. By assumption, we have

H∞(Kβ
i) ≥ 2n− (c+ 3d+ 1) log n. Now, applying Corollary 3.5.9, there exists (for sufficiently

large n depending only on c, d, and e) a collection of distributions {K ′αX ′α}α∈
〈
Ri+1,fi+1(K

β
i ,Ri+1)

〉
such that: for all α, we have H∞(K ′αX

′
α) ≥ 2n − (c + 2d + 1) log n; for all α and x ∈ X ′α, we

have H∞(K ′α|X ′α = x) ≥ n− (c+ 3d+ 1) log n; and for all adversaries D′ of size ne, if∣∣∣∣∣ Pr
Kβ
i ,Ri+1

[
D′(F

Kβ
i
(Ri+1), Ri+1, fi+1(K

β
i , Ri+1)) = 1

]

− Pr
α←

〈
Ri+1,fi+1(K

β
i ,Ri+1)

〉
,K′α, X

′
α

[
D′(K ′αX

′
α, α) = 1

]∣∣∣∣∣∣ >
3

nd

then there exists an adversary of size ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3.

Now let K ′i+1X
′
i+1|sim

−
i+1 be the distribution obtained by repeating the above argument

over all values β ← simi and α←
〈
Ri+1, fi+1(K

β
i , Ri+1)

〉
. By this, we mean K ′i+1X

′
i+1|sim

−
i+1

are such that for each β ← simi and α←
〈
Ri+1, fi+1(K

β
i , Ri+1)

〉
, the distribution

K ′i+1X
′
i+1|sim−i+1 = 〈β, α〉

Chapter 3. Leakage-resilient authentication 73

is the distribution given by the above argument instantiated with β and α.

Then, for all δ ← sim−i+1, we have H∞(K ′i+1X
′
i+1|sim

−
i+1 = δ) ≥ 2n − (c + 2d + 1) log n.

Also, for all β ← simi+1, we have H∞(K ′i+1|simi+1 = β) ≥ n− (c+ 3d+ 1) log n. In addition,

for all adversaries D′ of size ne and all γ ← simi, if∣∣∣Pr
[
D′
(
FK′i(Ri+1), Ri+1, fi+1(K

′
i, Ri+1)

)
= 1|simi = γ

]
− Pr

[
D′
(
K ′i+1X

′
i+1, Ri+1, fi+1(K

′
i, Ri+1)

)
= 1|simi = γ

]∣∣ >
3

nd

then there exists an adversary of size ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3. It

follows that for all adversaries D′′ of size ne, if∣∣∣Pr
[
D′′(sim−i+1, FK′i(Ri+1)) = 1

]
− Pr

[
D′′(sim−i+1,K

′
i+1X

′
i+1) = 1

]∣∣∣ > 3

nd
(3.26)

then there exists an adversary of size ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3.

Now suppose there exists an adversary D such that 2·size(A)+size(D)+p(n)size(F) ≤ ne

and ∣∣∣Pr
[
D(real+p(n)) = 1

]
− Pr

[
D(hybridi+1

p(n)) = 1
]∣∣∣ > 3(i+ 1)

nd

There are two cases to consider:

• Case 1:
∣∣∣Pr
[
D(real+p(n)) = 1

]
− Pr

[
D(hybridip(n)) = 1

]∣∣∣ > 3i
nd

But then by our assumptions, there exists an adversary of size ne+8d+2c+8 breaking F

with advantage 1/n5d+2c+3.

• Case 2:
∣∣∣Pr
[
D(hybridip(n)) = 1

]
− Pr

[
D(hybridi+1

p(n)) = 1
]∣∣∣ > 3

nd

We will construct an adversary D′′ satisfying (3.26). On input skx, where x, k ∈ {0, 1}n,

D′′ treats s as a sample of sim−i+1, and treats kx as the string produced in step 2 of round

i+ 1 of the stream cipher construction. Then, using A and F , it continues the interaction

between A and the construction (starting at round i+ 2) for another p(n) + 1− (i+ 1) =

p(n)− i rounds, and produces a string t encoding a transcript of this interaction. Finally,

D′′ runs D on input sxt , and outputs whatever D outputs.

Note that since D′′ runs D and A, and must carry out the stream cipher construction for

(p(n)− i) rounds as well as evaluate the leakage functions produced by A in these rounds,

we have size(D′′) ≤ size(D)+2·size(A)+(p(n)−i)size(F), and hence size(D′′) ≤ ne.

Also, observe that when the input to D′′ has distribution (sim−i+1, FK′i(Ri+1)), then the

input D′′ gives to D has distribution hybridip(n). On the other hand, when the input to

D′′ has distribution (sim−i+1,K
′
i+1X

′
i+1), then the input D′′ gives to D has distribution

hybridi+1
p(n). This means that D′′ satisfies (3.26). Also, D′′ can be made deterministic by

a standard argument. It follows that there exists an adversary of size ne+8d+2c+8 that

breaks F with advantage 1/n5d+2c+3.

Chapter 3. Leakage-resilient authentication 74

So in both cases, there exists an adversary of size ne+8d+2c+8 that breaks F with advantage

1/n5d+2c+3. �

We now show that the final two hybrids, hybrid
p(n)
p(n) and hybrid

p(n)+1
p(n) , are also “close”.

Lemma 3.5.11 Let F : {0, 1}n×{0, 1}n → {0, 1}2n be a function generator. Let {Zn} be such

that for all n, Zn is a distribution over strings of length n and H∞(Zn) ≥ log2(n). For all c >

0, d > 0, e > 0, all functions p : N→ N, and sufficiently large n (depending only on c and d), and

for all (c log n)-bounded adversaries A interacting as described in Section 3.4.2, obtaining leak-

age for p(n) rounds, suppose there exists a distribution K ′0K
′
1X
′
1K
′
2X
′
2 . . .K

′
p(n)X

′
p(n)|R1R2 . . . Rp(n)

with each X ′i and each K ′i over {0, 1}n, such that for all β ← simp(n), we have H∞(K ′p(n)|simp(n) =

β) ≥ n− (c+ 3d+ 1) log n. Then, for all adversaries D of size ne, if∣∣∣Pr
[
D(hybrid

p(n)
p(n)) = 1

]
− Pr

[
D(hybrid

p(n)+1
p(n)) = 1

]∣∣∣ > 2

nd

then there exists an adversary of size ne+2d+2 breaking F with advantage 1/n4d+c+2.

Proof Fix c > 0, d > 0, e > 0, function p : N → N, n, (c log n)-bounded adversary A, and

1 ≤ i < p(n). Suppose there exists a distribution K ′0K
′
1X
′
1K
′
2X
′
2 . . .K

′
p(n)X

′
p(n)|R1R2 . . . Rp(n)

satisfying the properties specified in the statement of the lemma.

Suppose there exists an adversary D of size ne such that∣∣∣Pr
[
D(hybrid

p(n)
p(n)) = 1

]
− Pr

[
D(hybrid

p(n)+1
p(n)) = 1

]∣∣∣ > 2

nd

By the definitions of hybrid
p(n)
p(n) and hybrid

p(n)+1
p(n) , we have that∣∣∣Pr

[
D(simp(n), Rp(n)+1, FK′

p(n)
(Rp(n)+1) = 1

]
−

Pr
[
D(simp(n), Rp(n)+1,K

′′
p(n)+1, X

′′
p(n)+1) = 1

]∣∣∣ >
2

nd

where K ′′p(n)+1 and X ′′p(n)+1 are independent random variables, each uniformly distributed over

{0, 1}n. Then, there must exist β ← simp(n) such that, letting Kβ
p(n) denote the distribution

K ′p(n)|simp(n) = β, we have∣∣∣∣Pr

[
D(β,Rp(n)+1, FKβ

p(n)

(Rp(n)+1) = 1

]
− Pr

[
D(β,Rp(n)+1,K

′′
p(n)+1, X

′′
p(n)+1) = 1

]∣∣∣∣ > 2

nd

Fix such β. Then we have with probability at least 1/nd over r ← Rp(n)+1 that∣∣∣∣Pr

[
D(β, r, F

Kβ
p(n)

(r) = 1

]
− Pr

[
D(β, r,K ′′p(n)+1, X

′′
p(n)+1) = 1

]∣∣∣∣ > 1

nd
(3.27)

For sufficiently large n, we have 1/nd > n2d+1/2log
2(n). Then, recalling that Rp(n)+1 ∼ Zn and

H∞(Zn) ≥ log2(n), there exists a set S ⊆ {0, 1}n of size at least n2d+1 such that for all r ∈ S,

(3.27) holds. Also, we have by assumption that H∞(Kβ
p(n)) ≥ n− (c+ 3d+ 1) log n.

Chapter 3. Leakage-resilient authentication 75

Applying Lemma 3.5.7 (with constants c′ = c + 3d + 1, d′ = d, e′ = e), there exists (for

sufficiently large n depending only on c and d) an adversary D′ of size ne+2d+2 that breaks F

with advantage at least 1/n4d+c+2. �

3.5.7 Finishing up

We now have everything we need to prove Theorem 3.4.1.

Proof (Theorem 3.4.1) Fix c > 0, d > 0, e > 0, and function p : N → N. Fix n large

enough (depending on c, d, and e) as required by Lemma 3.5.10 and Lemma 3.5.11. Fix

(c log n)-bounded adversary A. Let K ′0 be distributed uniformly over {0, 1}n.

We would like to apply Lemma 3.5.10 for the case i = 0. To do so, we need to ensure that

the three properties required by this lemma are satisfied. Observe that property 1 is vacuously

true for i = 0. Property 2 is satisfied by our choice of K ′0. Property 3 is trivially satisfied, since

real+
nb

= hybrid0
nb

when K ′0 is uniformly distributed. So we can apply Lemma 3.5.10 for the

case i = 0. But then this gives us everything we need to apply Lemma 3.5.10 for the case i = 1.

We continue in this fashion, repeatedly applying Lemma 3.5.10 for i = 2, 3, . . . , p(n)− 1, using

the previous applications of the Lemma to satisfy the properties needed each time. (We can

view this as complete induction.) This gives us distributions K ′1, X
′
1,K

′
2, X

′
2, . . . ,K

′
p(n), X

′
p(n)

satisfying properties 1 and 2, that also satisfy property 4 for 1 ≤ i ≤ p(n). Then, by applying

Lemma 3.5.11, we see that these distributions also satisfy property 4 for i = p(n) + 1.

We next show that these distributions satisfy property 3. Fix 1 ≤ i ≤ p(n), and consider X ′i.

We have by property 1 that for all α ← sim−i , H∞(K ′iX
′
i|sim

−
i = α) ≥ 2n− (c+ 2d+ 1) log n.

Then, by Lemma 3.5.1, we have that for all α← sim−i ,

Pr
k←K′i

[
H∞(X ′i|sim−i = α ∧K ′i = k) ≥ n− (c+ 3d+ 1) log n

]
≥ 1− 1

nd

That is, property 3 is satisfied.

It remains to consider property 5. Suppose there exists an adversary D such that we have

2 · size(A) + size(D) + p(n)size(F) ≤ ne and∣∣∣Pr
[
D(real+p(n)) = 1

]
− Pr

[
D(realp(n), Rp(n)+1,K

′′
p(n)+1, X

′′
p(n)+1) = 1

]∣∣∣ > 6p(n) + 6

nd

There are two cases to consider:

• Case 1:
∣∣∣Pr
[
D(real+p(n)) = 1

]
− Pr

[
D(hybrid

p(n)+1
p(n)) = 1

]∣∣∣ > 3p(n)+3
nd

But then by property 4, there exists an adversary of size ne+8d+2c+8 breaking F with

advantage 1/n5d+2c+3.

Chapter 3. Leakage-resilient authentication 76

• Case 2:
∣∣∣Pr
[
D(real+p(n)) = 1

]
− Pr

[
D(hybrid

p(n)+1
p(n)) = 1

]∣∣∣ ≤ 3p(n)+3
nd

Then we must have that∣∣∣Pr
[
D(realp(n), Rp(n)+1,K

′′
p(n)+1, X

′′
p(n)+1) = 1

]
− Pr

[
D(hybrid

p(n)+1
p(n)) = 1

]∣∣∣ > 3p(n) + 3

nd

By definition of hybrid
p(n)+1
p(n) , we then have∣∣∣Pr

[
D(realp(n), Rp(n)+1,K

′′
p(n)+1, X

′′
p(n)+1) = 1

]
− Pr

[
D(simp(n), Rp(n)+1,K

′′
p(n)+1, X

′′
p(n)+1) = 1

]∣∣∣ >
3p(n) + 3

nd

But then, since K ′′p(n)+1 and X ′′p(n)+1 are independent distributions, there exist particular

strings k, x ∈ {0, 1}n such that

∣∣Pr
[
D(realp(n), Rp(n)+1, k, x) = 1

]
− Pr

[
D(simp(n), Rp(n)+1, k, x) = 1

]∣∣ > 3p(n) + 3

nd

This allows us to construct an adversary D′ that distinguishes real+p(n) and hybrid
p(n)+1
p(n)

with advantage (3p(n) + 3)/nd. We construct D′ as follows. On input α (of the same

length as samples of real+p(n)), D
′ lets α1 be the first |α| − 2n bits of α, runs D′ on input

(α1, k, x) and outputs whatever D outputs. By construction, we have∣∣∣Pr
[
D′(real+p(n)) = 1

]
− Pr

[
D′(hybrid

p(n)+1
p(n)) = 1

]∣∣∣ > 3p(n) + 3

nd

We also have size(D′) = size(D), and hence 2 · size(A) + size(D′) + p(n)size(F) ≤
ne. Then, by property 4, there exists an adversary of size ne+8d+2c+8 breaking F with

advantage 1/n5d+2c+3.

So in both cases, there exists an adversary of size ne+8d+2c+8 breaking F with advantage

1/n5d+2c+3.

�

3.6 Proof of Theorem 3.2.1

We begin by giving an overview of the proof.

3.6.1 Proof overview

First, consider a setting where there is no leakage. Observe that in the absence of leakage,

our authenticated session protocol is secure even when the high min-entropy distribution Zn

is replaced with a distribution of zero entropy (that is, a distribution that assigns all weight

to a single string). Here we simply use the fact that, in the absence of leakage, the output of

Chapter 3. Leakage-resilient authentication 77

pseudo-random function generator F with a randomly chosen seed and an arbitrary input is,

by definition, indistinguishable from a randomly chosen string. It follows by induction that for

every i, the strings Xi,Ki computed by the i-th invocation of EvalB2 are indistinguishable from

random strings. But an adversary that breaks our protocol is able to predict an output of some

F ′Xi and hence breaks the pseudo-randomness of F ′.

The above idea breaks down when there is leakage – when Zn has zero entropy, the com-

putation of Xi,Ki is deterministic, and hence the adversary can use leakage on rounds prior

to some round i in order to output bits of Xi. This means that the adversary can eventually

learn an entire Xi and trivially break the authentication protocol. Now, by requiring Zn to be

a distribution of high min-entropy, we can attempt to recover some of the above intuition even

in a setting with leakage. This is more subtle than it might first seem. To see this, suppose

we modify our protocol so that strings from high min-entropy distribution Zn are sampled by

A and sent to B over the public channel (instead of vice-versa). In this case, the adversary

can simply run A for several rounds (without running B yet), accumulating its output. At

this point, the adversary knows all the strings sampled from distribution Zn for those rounds,

and hence the computation performed by B for those rounds will be deterministic from the

adversary’s perspective. This means that the adversary can once again mount an attack where

he uses leakage on B on rounds prior to some round i in order to learn Xi. We overcome this

problem by having B sample strings from Zn and send these strings to A; the idea is that

this introduces probabilism and essentially forces the adversary to properly interleave calls to

EvalB1, EvalA and EvalB2.

Observe that if the adversary chooses to properly interleave the scheduling of EvalB1, EvalA

and EvalB2, and also properly passes on the output of EvalB1 as input to EvalA, then the leakage

he obtains on consecutive calls to EvalB1, EvalA and EvalB2 can easily be combined into a single

leakage of three times the output length. The idea is that in this case, the state of A and the

state of B remain equal to each other, and hence a single leakage (of sufficiently long output)

on this common state suffices. But now we can essentially view the adversary as interacting

with a single instance of the stream cipher we described in Section 3.4, for some number j

of rounds. Furthermore, we can disallow leakage in the final two rounds (or indeed, in any

constant number of rounds) with only a polynomial loss in the adversary’s success probability,

since the adversary can simply attempt to guess the leakage for these rounds. We can then use

Theorem 3.4.1 to argue that the adversary also does well when the string Kj−1 produced by

the parties in the second-last round is replaced with a randomly chosen string. But then, in

the final round, we are in a situation very similar to the leakage-free setting we discussed at

the beginning of this section: since Kj−1 is randomly chosen, and since there is no leakage, the

string Xj produced by EvalB2 will be indistinguishable from random, and hence an adversary

Chapter 3. Leakage-resilient authentication 78

that succeeds in round j breaks the pseudo-randomness of F ′.

What if the adversary does not properly interleave the scheduling of EvalB1, EvalA and

EvalB2, or what if he does not properly pass on the output of EvalB1 as an input to EvalA?

We argue that an adversary that does not properly interleave scheduling must correctly guess

an output of EvalB1 in order to prevent the following invocation of EvalB2 from outputting

Fail; however, the output of EvalB1 is chosen according to distribution Zn which has high

min-entropy and hence is unpredictable by definition. To handle the case of an adversary that

does not properly pass on the output of EvalB1 to EvalA, we first relax the conditions needed for

the adversary to succeed so that if EvalB2 does not output Fail in a round where the adversary

does not properly pass on the output of EvalB1 to EvalA, the adversary is considered to have

succeeded. With this change, a round where the adversary does not properly pass on the output

of EvalB1 to EvalA is the final round. Finally, to handle the case of an adversary not properly

passing on the output of EvalB1 to EvalA in the final round j, we observe that this does not

prevent us from applying the reasoning of the previous paragraph to argue that we can make

the final two rounds leakage-free and replace the string Kj−1 produced by the parties in round

j − 1 with a randomly chosen string. Then, it is not difficult to use the pseudo-randomness of

F and F ′ to argue that the failure of the adversary to pass on the output of EvalB1 to EvalA in

the final round does not provide the adversary with any benefit.

3.6.2 Proof details

Let c > 0 and let C = {Cn} be a (c log n)-bounded adversary that breaks SP (in the sense

described in Definition 15). Then we have qC(n) > 1/nd for some d and infinitely many n.

We will describe a sequence of experiments where the first experiment is the security exper-

iment for leakage-resilient authenticated session protocols (that is, the experiment that gives

rise to qC(n)) and the final security experiment is one in which an adversary that “does well”

yields an adversary that breaks F ′. We show that for every pair of consecutive experiments in

the sequence, an adversary that “does well” in the first experiment either yields an adversary

“doing well” in the second experiment or yields an adversary that breaks F .

We first introduce some notation. We write sizen(F) and sizen(F ′) to denote the size of

circuits computing F and F ′ on seeds of length n. For i ≥ 0, we denote by KA,i the state of

party A before invocation i + 1 of EvalA, and we denote by KB,i the state of party B before

invocation i + 1 of EvalB1 (note that this is also the state of B before the invocation i + 1

of EvalB2 since EvalB1 does not change the state of B in our construction SP). For i ≥ 1,

we denote by ri the string output to the adversary by invocation i of EvalB1, we denote by

mi and r′i the strings given by the adversary as input to invocation i of EvalA, we denote

by e = 〈mi, αi〉 the string output to the adversary by invocation i of EvalA, we denote by

Chapter 3. Leakage-resilient authentication 79

e′ = 〈m′i, α′i〉 the string given by the adversary as input to invocation i of EvalB2, we denote by

XA,i the string computed by invocation i of EvalA as the rightmost n bits of FKA,i−1
(r′i), and

we denote by XB,i the string computed by invocation i of EvalB2 as the rightmost n bits of

FKB,i−1
(ri). Turning our attention to leakage functions and their outputs, for i ≥ 1, we denote

by fB1,i the leakage function submitted by the adversary for invocation i of EvalB1, we denote

by leakB1,i the value fB1,i(KB,i−1, ri), we denote by fA,i the leakage function submitted by the

adversary for invocation i of EvalA, we denote by leakA,i the value fA,i(KA,i−1), we denote by

fB2,i the leakage function submitted by the adversary for invocation i of EvalB2, and we denote

by leakB2,i the value fB2,i(KB,i−1).

Consider the following modified version of the security experiment for SP, where we now

make it easier for the adversary to win. Informally, the main difference is that now the adversary

also wins if he chooses r′i 6= ri but invocation i of EvalB2 does not Fail.

Experiment Exp1. Experiment Exp1 proceeds exactly as the security experiment for SP,

except we modify the conditions under which the experiment terminates immediately after an

execution of EvalB2. Previously, the experiment terminates after invocation i of EvalB2 if at

least one of the following conditions holds: 1) invocation i of EvalB2 outputs Fail; 2) EvalA

has been invoked fewer than i times; or 3) mi 6= m′i. In Exp1, the experiment terminates

after invocation i of EvalB2 if one of the previous conditions (1) or (2) holds, or if one of the

following conditions holds: 3′) ei 6= e′i; or 4) ri 6= r′i. Observe that (3′) holds whenever (3) holds.

It follows that whenever at least one of the termination conditions for the previous experiment

is satisfied, one of the stopping conditions for Exp1 is satisfied.

Let D = {Dn} be an adversary interacting as in Exp1. Define q1D(n) to be the probability

that, letting j denote the number of times that EvalB2 is invoked by Dn during the experiment,

we have that the j-th invocation of EvalB2 does not output Fail and either EvalA has been

invoked fewer than j times, or r′j 6= rj , or e′j 6= ej .

Lemma 3.6.1 Let D = {Dn} be an adversary. Then, for all n, we have q1D(n) ≥ qD(n).

Proof First, observe that whenever experiment Exp1 is terminated due only to one of the

new stopping conditions (that is, condition (3′) or (4) holds, but (1), (2), and (3) do not hold,

and, in particular, EvalB2 does not output Fail), the definition of q1D considers such a run to

be a success for the adversary. To conclude, it suffices to observe that whenever Exp1 is not

terminated due only to one of the new stopping conditions (that is, it is terminated due either

to conditions (1), (2), or (3), or because the adversary simply chooses to stop), it proceeds

exactly as the security experiment for SP, and furthermore, since m′j 6= mj implies e′j 6= ej , the

Chapter 3. Leakage-resilient authentication 80

winning condition implicit in the definition of q1D is achieved if the winning condition implicit

in the definition of qD is achieved. It follows that for all n, we have q1D(n) ≥ qD(n). �

We now define an experiment where the adversary is required to be passive until after his

next-to-last invocation of EvalB2; by “passive”, we mean that he chooses leakage functions and

message pieces mi, sees the communication over the public channel, but he does not control

scheduling and cannot change the contents of the public channel.

Experiment Exp2. The adversary D consists of a circuit family {Dn} and a sequence of

integers {jn}. For each n, the experiment proceeds as follows. A string K0 ∈ {0, 1}n is

randomly chosen. Then the experiment proceeds in a sequence of jn rounds.

For 1 ≤ i ≤ jn − 2, round i proceeds as follows. Dn produces the description of a circuit

fB1,i : {0, 1}n × {0, 1}n → {0, 1}c logn. Then ri ← Zn is chosen, leakB1,i ← fB1,i(Ki−1, ri)

is computed, and Dn is given ri and leakB1,i. Dn then produces the description of a circuit

fA,i : {0, 1}n → {0, 1}c logn and a string mi ∈ {0, 1}n. Then, (ei,Ki) ← EvalA(Ki−1,mi, ri)

and leakA,i ← fA,i(Ki−1) are computed, and Dn is given ei and leakA,i. Dn then produces

the description of a circuit fB2,i : {0, 1}n → {0, 1}c logn. Finally, leakB2,i ← fB1,i(Ki−1) is

computed and given to Dn.

Then, round jn−1 proceeds as the previous rounds, except that after being given ejn−1 and

leakjn−1 and before having to produce fB2,jn−1, Dn is given the opportunity to invoke EvalA an

additional time if he wishes. If he chooses to do so, he produces the description of a circuit fA,jn :

{0, 1}n → {0, 1}c logn, and strings mjn , r
′
jn
∈ {0, 1}n; then (ejn ,Kjn) ← EvalA(Kjn−1,mjn , r

′
jn

)

and leakA,jn ← fA,jn(Kjn−1) are computed; then Dn is given ejn , leakA,jn , and he is also given

Kjn .

Next, in round jn, the experiment proceeds as follows. If Dn elected to invoke EvalA an

additional time in round jn − 1, then in round jn he is not allowed to invoke EvalA; otherwise,

he may invoke EvalA at most once. He must also invoke EvalB1 exactly once. If he is invoking

both EvalA and EvalB1, the order in which he does this is his choice. When Dn invokes EvalB1,

the experiment proceeds as follows: Dn produces the description of a circuit fB1,jn : {0, 1}n ×
{0, 1}n → {0, 1}c logn; then rjn ← Zn is chosen, leakB1,jn ← fB1,jn(Ki−1, rjn) is computed,

and Dn is given rjn and leakB1,jn . If and when Dn invokes EvalA, the experiment proceeds

as follows: Dn produces the description of a circuit fA,jn : {0, 1}n → {0, 1}c logn, and strings

mjn , r
′
jn
∈ {0, 1}n; then (ejn ,Kjn) ← EvalA(Kjn−1,mjn , r

′
jn

) and leakA,jn ← fA,jn(Kjn−1) are

computed; then Dn is given ejn , leakA,jn , and he is also given Kjn .

Finally, Dn produces a string e′jn = 〈m′jn , α
′
jn
〉 ∈ {0, 1}2n.

Define q2D(n) to be the probability that EvalB2(Kjn−1, rjn , e
′
jn

) does not output Fail and

either Dn elected not to invoke EvalA in round jn, or r′jn 6= rj , or e′jn 6= ejn .

Chapter 3. Leakage-resilient authentication 81

Lemma 3.6.2 For every e > 0 and every adversary D = {Dn} for Exp1 such that Dn has size

at most ne, there exists an adversary D′ for Exp2 consisting of a circuit family {D′n} of size at

most n2e + ne(sizen(F) + sizen(F ′)) and a sequence {jn} such that q2D′(n) ≥ q1D(n)
ne −

1

2log
2(n)

for all n.

Proof Let e > 0 and let D = {Dn} be an adversary for Exp1 such that Dn has size at most

ne. Fix n > 0. We will define a circuit D′n and an integer jn for Exp2.

Note that since Dn is of size at most ne, the number of times it invokes EvalB2 must be at

most ne. Now, for 1 ≤ i ≤ ne, define q1D,i(n) to be the probability (when Dn is run according

to Exp1) that the number of times EvalB2 is invoked is exactly i, the i-th invocation of EvalB2

does not output Fail, and either EvalA has been invoked fewer than i times, or r′i 6= ri, or

e′i 6= ei. Observe that we must q1D(n) =
∑

1≤i≤ne q
1
D,i(n). It follows that there must be an i,

1 ≤ i ≤ ne, such that q1D,i(n) ≥ q1D(n)/ne. Define jn to be such an i.

For i > 0, we say that Dn behaves non-passively in round i if he does one of the following:

invokes EvalA for the i-th time before invoking EvalB1 for the i-th time; invokes EvalA for the

(i+ 1)-st time before invoking EvalB2 for the i-th time; invokes EvalB2 for the i-th time before

invoking EvalA for the i-th time; provides a string r′i 6= ri as an input to the i-th invocation of

EvalA; or provides a string e′i 6= ei as an input to the i-th invocation of EvalB2.

We now define D′n. D′n begins by running Dn for jn − 2 rounds or until Dn behaves non-

passively, whichever comes first. Specifically, D′n uses the leakage functions and message pieces

produced by Dn as the leakage functions and message pieces it is expected to produce, and D′n

provides Dn with all the output it is given. If Dn behaves non-passively in any of these rounds,

D′n stops running Dn and instead continues on its own in some arbitrary manner (for example,

using 0n as each remaining message piece and using a constant function as each remaining

leakage function).

In round jn − 1, D′n slightly relaxes the passiveness requirement on Dn. Specifically, after

Dn invokes EvalA for the (jn − 1)-st time, D′n allows Dn to invoke EvalA additional times, on

inputs of its choice, before invoking EvalB2 for the (jn − 1)-st time. To handle the first such

additional invocation, D′n simply uses the additional call to EvalA that it is allowed to make in

round jn − 1 of Exp2. Recall that in Exp2, after this additional call, one of the strings given

to D′n is Kjn ; D′n uses this string to simulate any futher invocations of EvalA made by Dn. If

Dn exhibits any other kind of non-passive behavior during round jn − 1, D′n stops running Dn

and instead continues on its own in some arbitrary manner.

Then, in round jn D
′
n continues running Dn until it invokes EvalB2 one more time; during

this phase D′n does not care if Dn is non-passive, since D′n itself is allowed to behave non-

passively at this point in Exp2. As before, D′n uses the leakage functions output by Dn as its

own leakage functions, and passes on the outputs it receives to Dn. Invocations of EvalA by Dn

Chapter 3. Leakage-resilient authentication 82

are handled as follows: if Dn made additional invocations of EvalA during the previous round,

the D′n is able to simulate invocations of EvalA since it was given the string Kjn ; otherwise,

the first time (if any) that Dn invokes EvalA during this phase, D′n uses the message piece mjn

and string r′jn produced by Dn as the strings it is expected to produce for this invocation of

EvalA, and uses the string Kjn it is given after this invocation to simulate future invocations of

EvalA. When Dn invokes EvalB2, D
′
n uses the string e′jn produced by Dn as the final string it

is expected to produce.

Observe that since D′n runs Dn and also needs to simulate any invocations of EvalA made by

Dn after the jn-th invocation of EvalA, we have that D′n is of size at most ne(ne + sizen(F) +

sizen(F ′)) = n2e + ne(sizen(F) + sizen(F ′)).

Note that as long as Dn behaves passively, it is properly simulated according to Exp1 when

D′n is run according to Exp2. Furthermore, observe that if Dn behaves non-passively in some

round i, then in Exp1 we have that the experiment ends after the i-th invocation of EvalB2

unless one of the following happens: 1) the non-passive behavior consists of Dn invoking EvalA

for the i-th time before invoking EvalB1 for the i-th time and nevertheless r′i = ri, that is, Dn

predicts ri before seeing it; or 2) the non-passive behavior consists of Dn invoking EvalA for

the (i+ 1)-st time before invoking EvalB2 for the i-th time. First consider (1): since each ri is

chosen according to Zn and since H∞(Zn) ≥ log2(n), the probability that a prediction of ri is

correct is at most 1/2log
2(n). Now, note that if (2) occurs, then we have that Dn invokes EvalA

for the (i+ 1)-st time before invoking EvalB1 for the (i+ 1)-st time; hence, the experiment will

end after the (i+1)-st invocation of EvalB2 unless Dn successfully predicts ri+1, and this occurs

with probability at most 1/2log
2(n).

That is, whenever D′n stops running Dn in some round i ≤ jn − 2 because of non-passive

behavior, the probability that, if we instead continued running Dn according to Exp1 then

the experiment would continue past the (i+ 1)-st invocation of EvalB2 is at most 1/2log
2(n); in

particular, the probability that a jn-th invocation of EvalB2 would occur is at most 1/2log
2(n).

Furthermore, note that whenever D′n stops running Dn in round jn − 1 because of non-passive

behavior, it will not be in situation (2), since this form of non-passiveness is allowed in round

jn− 1. This means that whenever D′n stops running Dn in round jn− 1 because of non-passive

behavior, the probability that, if we instead continued running Dn according to Exp1 then the

experiment would continue past the (jn − 1)-st invocation of EvalB2 is at most 1/2log
2(n); in

particular, the probability that a jn-th invocation of EvalB2 would occur is at most 1/2log
2(n).

We conclude that the probability that the stopping of Dn by D′n prevents Dn from invoking

EvalB2 a jn-th time when it would have done so had it been allowed to continue running

according to Exp1 is at most 1/2log
2(n).

We conclude that q2D′(n) ≥ q1D,jn(n)− 1

2log
2(n)
≥ q1D(n)

ne −
1

2log
2(n)

.

Chapter 3. Leakage-resilient authentication 83

�

We now define an experiment where there is no leakage in the final two rounds.

Experiment Exp3. The adversary D consists of a circuit family {Dn} and a sequence of

integers {jn}. For each n, the experiment proceeds exactly as experiment Exp2, except that

in rounds jn − 1 and jn, Dn does not produce circuits for leakage functions (that is, he does

not produce fB1,jn−1, fA,jn−1, fB2,jn−1, fB1,jn , or fA,jn) and hence is not given output for

such functions. We define q3D(n) in Exp3 identically to q2D(n) in Exp2; that is, q3D(n) is the

probability that EvalB2(Kjn−1, rjn , e
′
jn

) does not output Fail and either Dn elected not to

invoke EvalA in round jn, or r′jn 6= rj , or e′jn 6= e′jn .

Lemma 3.6.3 Let D be an adversary for Exp2. Then there exists an adversary D′ for Exp3

such that D′ has the same size as D and q3D′(n) ≥ q2D(n)/n5c for all n.

Proof Let circuit family {Dn} and sequence {jn} be an adversary for Exp2. We will define

a circuit family {D′n} such that {D′n} and {jn} is an adversary for Exp3. Fix n > 0. We first

describe a probabilistic circuit D′n and then observe that it can be made deterministic.

Circuit D′n works as follows. It randomly selects zB1,jn−1, zA,jn−1, zB2,jn−1, zB1,jn , zA,jn ∈
{0, 1}c logn. Then D′n simulates Dn, using the leakage functions and message pieces produced by

Dn as the leakage functions and message pieces it is expected to produce, and D′n provides Dn

with all the output it is given. However, in rounds jn− 1 and jn, D′n is not allowed to produce

leakage functions, and hence it uses zB1,jn−1, zA,jn−1, zB2,jn−1, zB1,jn , and zA,jn as responses

to the functions fB1,jn−1, fA,jn−1, fB2,jn−1, fB1,jn , and fA,jn produced by Dn. At the end, D′n

outputs the string e′jn that is output by Dn.

Observe that whenever D′n guesses the correct answers to the leakage queries made by Dn

in rounds jn− 1 and jn, it perfectly simulates Dn according to Exp2. Furthermore, the proba-

bility that D′n correctly guesses all of these answers is exactly 1/n5c. It follows that q3D′(n) ≥
q2D(n)/n5c. Then, there must exist fixed strings zB1,jn−1, zA,jn−1, zB2,jn−1, zB1,jn , zA,jn ∈ {0, 1}c logn

such that if we hardcode these values into D′n (instead of having D′n choose these values ran-

domly), we still have q3D′(n) ≥ q2D(n)/n5c.

Finally, note that since D′n simply simulates Dn, we have that D′n is of the same size as Dn.

�

We now describe an experiment where the adversary does not have control over the ordering

of events in rounds jn − 1 and jn.

Chapter 3. Leakage-resilient authentication 84

Experiment Exp4. The adversary D consists of a circuit family {Dn} and a sequence of

integers {jn}. For each n, the experiment proceeds exactly as experiment Exp3 for the first

jn − 2 rounds.

Round jn−1 proceeds as follows. rjn−1 ← Zn is chosen and given to Dn. Dn then produces

a string mjn−1 ∈ {0, 1}n. Then, (ejn−1,Kjn−1)← EvalA(Kjn−2,mjn−1, rjn−1) is computed, and

Dn is given ejn−1.

Round jn proceeds as follows. rjn ← Zn is chosen and given to Dn. Dn produces strings

mjn , r
′
jn
∈ {0, 1}n. Then, (ejn ,Kjn)← EvalA(Kjn ,mjn , r

′
jn

) is computed, and Dn is given ejn−1.

Finally, Dn produces a string e′jn = 〈m′jn , α
′
jn
〉 ∈ {0, 1}2n.

Define q4D(n) to be the probability that EvalB2(Kjn−1, rjn , e
′
jn

) does not output Fail and

either r′jn 6= rjn or e′jn 6= ejn .

Lemma 3.6.4 Let D be an adversary for Exp3. Then there exists an adversary D′ for Exp4

such that D′ has the same size as D and q4D′(n) = q3D(n) for all n.

Proof Let circuit family {Dn} and sequence {jn} be an adversary for Exp3. We will define a

circuit family {D′n} such that {D′n} and {jn} is an adversary for Exp4. Fix n > 0.

Circuit D′n works as follows. D′n simulates Dn using the leakage functions and message

pieces produced by Dn as the leakage functions and pieces it is expected to produce, and D′n

provides Dn with all of the output it is given.

However, if in round jn − 1, Dn wishes to invoke EvalA an additional time (as he is allowed

to do in Exp3), then D′n first proceeds to round jn and is given rjn , then D′n invokes EvalA

using the inputs that Dn had produced for the additional invocation it wished to perform in

round jn − 1, then D′n passes on the output it receives from EvalA to Dn, then Dn will ask to

invoke EvalB1 (as it is required to do in Exp3) and D′n gives Dn the string rjn .

If Dn does not invoke EvalA an additional time in round jn − 1 and also does not invoke

EvalA in round jn (that is, after invoking EvalB1 in round jn, he immediately produces his

output e′jn) then D′n chooses an arbitrary r′jn 6= rjn and an arbitrary mjn as the strings it is

required to provide as input to EvalA in round jn.

At the end, D′n outputs the string e′jn that is output by Dn.

Observe that D′n perfectly simulates Dn according to Exp3. Further, note that D′n achieves

one of the winning conditions implicit in the definition of q4D′(n) exactly when Dn achieves one

of the winning conditions implicit in the definition of q3D(n). In particular, note that when Dn

wins by not invoking EvalA in round jn, D′n wins since he chooses r′jn 6= rj in this situation. It

follows that q4D′(n) = q3D(n).

Finally, note that since D′n simply simulates Dn, we have that D′n is of the same size as Dn.

�

Chapter 3. Leakage-resilient authentication 85

We now describe an experiment where in rounds in which leakage occurs, it occurs only

once rather than three times, but is allowed to be three times as long.

Experiment Exp5. The adversary consists of a circuit family {Dn} and a sequence of integers

{jn}. For each n, the experiment proceeds as follows. A string K0 ∈ {0, 1}n is randomly chosen.

Then the experiment proceeds in a sequence of jn rounds.

For 1 ≤ i ≤ jn − 2, round i proceeds as follows. Dn produces the description of a circuit

fi : {0, 1}n × {0, 1}n → {0, 1}3c logn. Then ri ← Zn is chosen, leaki ← fi(Ki−1, ri) and

Ki||Xi ← FKi−1(ri) (where |Ki| = |Xi| = n) are computed, and Dn is given ri, Xi, and leaki.

Round jn − 1 proceeds as follows. rjn−1 ← Zn is chosen, Kjn−1||Xjn−1 ← FKjn−2(rjn−1) is

computed, and Dn is given rjn−1 and Xjn−1.

Then, round jn proceeds as follows. rjn ← Zn is chosen and given to Dn. Dn produces

strings mjn , r
′
jn
∈ {0, 1}n. Then, (ejn ,Kjn) ← EvalA(Kjn−1,mjn , r

′
jn

) is computed, and Dn is

given ejn .

Finally, Dn produces a string e′jn = 〈m′jn , α
′
jn
〉 ∈ {0, 1}2n.

Define q5D(n) to be the probability that EvalB2(Kjn−1, rjn , e
′
jn

) does not output Fail and

either r′jn 6= rjn or e′jn 6= ejn .

Lemma 3.6.5 For every e > 0 and every adversary D of size at most ne for Exp4, there exists

an adversary D′ for Exp5 such that D′ is of size at most n2e+ne(sizen(F) + 2sizen(F ′)) and

q5D′(n) = q4D(n) for all n.

Proof Let e > 0, and let circuit family {Dn} of size ne and sequence {jn} be an adversary for

Exp4. We will define a circuit family {D′n} such that {D′n} and {jn} is an adversary for Exp5.

Fix n > 0.

Circuit D′n works in the following way. D′n simulates Dn.

For 1 ≤ i ≤ jn − 2, each round i proceeds as follows. Dn produces a circuit fB1,i :

{0, 1}n × {0, 1}n → {0, 1}c logn. Then, D′n produces a circuit fi : {0, 1}n × {0, 1}n that has a

copy of the current state of Dn embedded within it (which fi uses to compute the two remaining

leakage functions that Dn will produce for round i, and then fi computes the outputs of these

functions), and works as follows:

• fi(Ki−1, ri): First, compute z1 ← fB1,i(Ki−1, ri). Then, using the copy of Dn, continue

the simulation of Dn by giving it ri and z1. The simulation of Dn produces the description

of a circuit fA,i : {0, 1}n → {0, 1}c logn and a string mi ∈ {0, 1}n. Compute Ki||Xi ←
FKi−1(ri), αi ← F ′Xi(mi), and z2 ← fA,i(Ki−1). Let ei = 〈mi, αi〉. Give ei and z2 to

the simulation of Dn. Then the simulation of Dn produces a circuit fB2,i : {0, 1}n →
{0, 1}c logn. Compute z3 ← fB2,i(Ki−1). Output z1||z2||z3.

Chapter 3. Leakage-resilient authentication 86

Then, D′n is given strings ri, Xi, and leaki = z1||z2||z3. D′n gives ri and z1 to Dn. Dn then

produces a function fA,i : {0, 1}n → {0, 1}c logn and a string mi ∈ {0, 1}n. D′n computes

αi ← F ′Xi(mi), lets ei = 〈mi, αi〉, and gives ei and z2 to Dn. Then Dn produces a circuit

fB2,i : {0, 1}n → {0, 1}c logn, and D′n gives Dn the string z3.

Round jn − 1 proceeds as follows. D′n is given strings rjn−1 and Xjn−1. D
′
n gives rjn−1 to

Dn. Then, Dn produces a string mjn−1 ∈ {0, 1}n. D′n computes αjn−1 ← F ′Kjn−1
(mjn−1), lets

ejn−1 = 〈mjn−1, αjn−1〉, and gives ejn−1 to Dn.

In round jn, D′n is given a string rjn , provides this string to Dn, and uses Dn to produce

the strings mjn and rjn it is expected to produce. Then D′n is given ejn , which it passes on to

Dn.

At the end, D′n outputs the string e′jn that is output by Dn.

Observe that D′n perfectly simulates Dn according to Exp4. Further, the winning conditions

implicit in the definition of q4D(n) are exactly the same as those in the definition of q5D′(n). It

follows that q5D′(n) = q4D(n).

Finally, consider the size of D′n. D′n simulates Dn. Also, in each round other than the

final round, D′n evaluates F ′ exactly once. Additionally, in each round other than the final

two rounds, D′n has to produce a leakage function that itself simulates Dn, evaluates F exactly

once, and evaluates F ′ exactly once. It follows that D′n is of size at most ne(sizen(F ′) + ne +

sizen(F) + sizen(F ′)) = n2e + ne(sizen(F) + 2sizen(F ′)).

�

We now define an experiment where in the second-last round, we use a randomly chosen

string in place of the output of F .

Experiment Exp6. The adversary D consists of a circuit family {Dn} and a sequence of

integers {jn}. For each n, the experiment proceeds exactly as experiment Exp5 for the first

jn − 2 rounds.

Round jn − 1 proceeds as follows. Strings Kjn−1, Xjn−1 ∈ {0, 1}n are randomly chosen,

string rjn−1 ← Zn is chosen, and Dn is given rjn−1 and Xjn−1.

Round jn proceeds as follows. rjn ← Zn is chosen and given to Dn. Dn produces strings

mjn , r
′
jn
∈ {0, 1}n. Then, (ejn ,Kjn) ← EvalA(Kjn−1,mjn , r

′
jn

) is computed, and Dn is given

ejn .

Finally, Dn produces a string e′jn = 〈m′jn , α
′
jn
〉 ∈ {0, 1}2n.

Define q6D(n) to be the probability that EvalB2(Kjn−1, rjn , e
′
jn

) does not output Fail and

either r′jn 6= rjn or e′jn 6= ejn .

Chapter 3. Leakage-resilient authentication 87

Lemma 3.6.6 For every d, e > 0 and every adversary D of size at most ne for Exp5 such that

q5D(n) > 1/nd for infinitely many n, at least one of the following holds:

1. q6D(n) > 1/(2nd) for infinitely many n.

2. For every e′ > 0 such that 3ne + ne · sizen(F) + 2 · sizen(F ′) < ne
′

for sufficiently

large n, there exists an adversary of size ne
′+8d+8e+6c+16 that breaks F with advantage

1/n5d+5e+6c+8 for infinitely many n.

Proof Let d, e > 0. Let circuit family {Dn} of size ne and sequence {jn} be an adversary

for Exp5 such that q5D(n) > 1/nd for infinitely many n. Let e′ > 0 be such that 3ne + ne ·
sizen(F) + 2 · sizen(F ′) < ne

′
for sufficiently large n.

If q6D(n) > 1/(2nd) for infinitely many n then we are done, so suppose q6D(n) ≤ 1/(2nd) for

sufficiently large n. This means that q5D(n)− q6D(n) > 1/(2nd) for infinitely many n. Fix such

an n.

We will construct a (3c log n)-bounded adversary An that interacts with our stream cipher

(as described in section 3.4.2), obtaining leakage for jn − 2 rounds, and we will construct

adversary D′n such that in the terminology of Section 3.4.3 (and Theorem 3.4.1), we have∣∣∣Pr
[
D′n(real+jn−2) = 1

]
− Pr

[
D′n(realjn−2, Rjn−1,K

′′
jn−1, X

′′
jn−1) = 1

]∣∣∣ > 6jn − 6

nd′

for some d′ whose value will be specified later.

Our adversary An will work as follows. An will simulate Dn for jn − 2 rounds. In each

round i, Dn will produce the description of a circuit fi : {0, 1}2n → {0, 1}3c logn. An will

use this fi as the circuit it is expected to produce in round i. An will then be given strings

Ri, Xi, fi(Ki−1, Ri), which it will pass on to Dn (as the strings ri, Xi, leaki).

Our adversary D′n will work as follows. The input to D′n will be of the form

〈r1, leak1, x1, r2, leak2, x2, . . . , rjn−2, leakjn−2, xjn−2, rjn−1, kjn−1, xjn−1〉

where each ri ∈ {0, 1}n, each xi ∈ {0, 1}n, each leaki ∈ {0, 1}3c logn, and kjn−2 ∈ {0, 1}n. D′n

will begin by simulating Dn for jn−2 rounds. In each such round i, D′n will ignore the function fi

produced by Dn, and will give the strings ri, xi, leaki to Dn. Then, in round jn−1, D′n will give

Dn the strings rjn−1 and xjn−1. In round jn, D′n will select rjn ← Zn and give this string to Dn.

Dn produces strings mjn , r
′
jn
∈ {0, 1}n. Then, D′n computes (ejn , kjn)← EvalA(kjn−1,mjn , r

′
jn

)

and gives Dn the string ejn . Then Dn produces a string e′jn = 〈m′jn , α
′
jn
〉 ∈ {0, 1}2n. Then,

D′n computes EvalB2(kjn−1, rjn , e
′
jn

). If EvalB2 does not output Fail, and either r′jn 6= rjn or

e′jn 6= ejn , D′n outputs 1; otherwise, D′n outputs 0.

We claim that Pr
[
D′n(real+jn−2) = 1

]
= q5D(n). To see this, observe that when the input to

D′n is chosen according to real+jn−2, it is a transcript of an interaction of An with jn−2 rounds

Chapter 3. Leakage-resilient authentication 88

of the stream cipher. But by the construction of An, this is also a transcript of an interaction

of Dn with the first jn − 2 rounds of Exp5. Since Dn is deterministic, when D′n runs Dn using

the strings from the given transcript, Dn proceeds exactly as it did when this transcript was

produced by An (that is, Dn produces the same sequence of leakage functions). This means

that when D′n begins by simulating Dn for jn−2 rounds, it simply brings Dn to the point where

it was at the end of the run of An. Furthermore, since the input to D′n is chosen according

to real+jn−2, the final two input strings kjn−1 and xjn−1 to D′n are computed using the stream

cipher, and hence they are computed the same way that they are computed in Exp5. This

means that when D′n continues simulating Dn in rounds jn − 1 and jn, it does so according to

Exp5. It follows that Pr
[
D′n(real+jn−2) = 1

]
= q5D(n).

We also claim that Pr
[
D′n(realjn−2, Rjn−1,K

′′
jn−1, X

′′
jn−1) = 1

]
= q6D(n). To see this, ob-

serve that the only difference between an input chosen according to real+jn−2 and an input

chosen according to (realjn−2, Rjn−1,K
′′
jn−1, X

′′
jn−1) is that in the latter case, the final two

input strings kjn−1 and xjn−1 are chosen randomly rather than using the stream cipher. That

is, in the latter case, D′n will use randomly chosen strings kjn−1 and xjn−1 when carrying out

the final two rounds of the simulation of Dn. But this is exactly the manner in which the final

two rounds of Exp6 proceed, and, furthermore, this is the only difference between Exp6 and

Exp5. It follows that Pr
[
D′n(realjn−2, Rjn−1,K

′′
jn−1, X

′′
jn−1) = 1

]
= q6D(n).

We then have that

Pr
[
D′n(real+jn−2) = 1

]
− Pr

[
D′n(realjn−2, Rjn−1,K

′′
jn−1, X

′′
jn−1) = 1

]
= q5D(n)− q6D(n) >

1

2nd

Now, note that we must have ne ≥ jn, since the size of Dn must upper-bound the number

of rounds of interaction that it performs. Then, observe that for sufficiently large n, we have

1

2nd
=

6ne

12nd+e
≥ 6ne

nd+e+1
≥ 6jn
nd+e+1

Then, letting d′ = d+ e+ 1, we have that

Pr
[
D′n(real+jn−2) = 1

]
− Pr

[
D′n(realjn−2, Rjn−1,K

′′
jn−1, X

′′
jn−1) = 1

]
>

6jn
nd′

(3.28)

Note that D′n can be made deterministic by a standard argument (that involves fixing a par-

ticular choice of rjn such that when D′n uses this fixed value, (3.28) still holds).

Observe that An has size ne (since it simply simulates Dn). Also note that D′n has size at

most ne + 2sizen(F) + 2size(F ′), since it simulates D and evaluates EvalA and EvalB2 once

each. It follows that for sufficiently large n,

2 · size(An) + size(D′n) + (jn − 2) · sizen(F) ≤ 3ne + ne · sizen(F) + 2 · sizen(F ′) ≤ ne′

where the first inequality uses the fact that jn ≤ ne and the second inequality is by our choice

of e′.

Chapter 3. Leakage-resilient authentication 89

Now, defining function p : N→ N to be such that for all n, p(n) = jn − 2, we have that for

infinitely many n, there exists an adversary D′n such that

2 · size(An) + size(D′n) + p(n) · sizen(F) ≤ ne′

and

Pr
[
D′n(real+jn−2) = 1

]
− Pr

[
D′n(realjn−2, Rjn−1,K

′′
jn−1, X

′′
jn−1) = 1

]
>

6p(n) + 6

nd′

Applying Theorem 3.4.1, there exists an adversary of size ne
′+8d′+6c+8 = ne

′+8d+8e+6c+16

that breaks F with advantage 1/n5d
′+6c+3 = 1/n5d+5e+6c+8 for infinitely many n.

�

We now describe an experiment where in the final round, randomly chosen strings are used

in place of the output of F .

Experiment Exp7 The adversary consists of a circuit family {Dn} and a sequence of integers

{jn}. For each n, the experiment proceeds exactly as Exp6 for the first jn − 1 rounds.

Round jn proceeds as follows. Strings Xjn , X
′
jn
∈ {0, 1}n are randomly chosen and string

rjn ← Zn is chosen. rjn is given to Dn. Dn produces strings mjn , r
′
jn
∈ {0, 1}n. If r′jn = rjn ,

then αjn ← F ′Xjn (mjn) is computed; otherwise, αjn ← F ′X′jn
(mjn) is computed. Dn is given

ejn = 〈mjn , αjn〉.
Finally, Dn produces a string e′jn = 〈m′jn , α

′
jn
〉 ∈ {0, 1}2n.

Define q7D(n) to be the probability that α′jn = F ′Xjn (m′jn) and either r′jn 6= rjn or e′jn 6= ejn .

Lemma 3.6.7 For every d, e > 0 and every adversary D of size at most ne for Exp6 such that

q6D(n) > 1/nd for infinitely many n, at least one of the following holds:

1. q7D(n) > 1/(2nd) for infinitely many n.

2. There exists an adversary of size 2ne + ne · sizen(F) + 2 · sizen(F ′) that breaks F with

advantage 1/(2nd) for infinitely many n.

Proof Let d, e > 0. Let circuit family {Dn} of size ne and sequence {jn} be an adversary for

Exp6 such that q6D(n) > 1/nd for infinitely many n.

If q7D(n) > 1/(2nd) for infinitely many n then we are done, so suppose q7D(n) ≤ 1/(2nd) for

sufficiently large n. This means that q6D(n)− q7D(n) > 1/(2nd) for infinitely many n. Fix such

an n.

We will define an adversary D′n for breaking F . D′n is given an oracle g : {0, 1}n → {0, 1}2n.

Then D′n proceeds as follows. D′n first runs Dn according to Exp6 for jn − 1 rounds (note

Chapter 3. Leakage-resilient authentication 90

that this is the same as running Dn according to Exp7 for jn − 1 rounds). Then, D′n selects

rjn ← Zn and gives this string to Dn. Next, Dn produces strings mjn , r
′
jn
∈ {0, 1}n. Then, D′n

computes x′ as the rightmost n bits of g(r′jn), and computes αjn ← F ′x′(mjn). D′n then gives

ejn = 〈mjn , αjn〉 to Dn. Then, Dn produces a string e′jn = 〈m′jn , α
′
jn
〉. D′n computes x as the

rightmost n bits of g(rjn). D′n outputs 1 if α′jn = F ′x(m′jn) and either r′jn 6= rjn or m′jn 6= mjn ;

otherwise, D′n outputs 0.

Observe that when the oracle g : {0, 1}n → {0, 1}2n given to D′n is randomly chosen, D′n

simulates Dn according to Exp7. This means that the probability that D′n accepts a randomly

chosen function is exactly q7D(n). On the other hand, when the oracle g is Fz for randomly

chosen z ∈ {0, 1}n, D′n simulates Dn according to Exp6. Then, the probability that D′n accepts

a pseudo-randomly generated function is exactly q6D(n). It follows that D′n breaks F with

advantage q6D(n)− q7D(n) > 1/(2nd).

Finally, consider the size of D′n. D′n simulates Dn. In addition, D′n simulates jn − 1 rounds

of Exp6; this involves evaluating F and evaluating the leakage functions produced by Dn (for

the first jn − 2 rounds). D′n also evaluates F ′ twice. Then, using the fact that jn ≤ ne (since

the size of Dn must upper bound the number of rounds of interaction it performs), we have

that the size of D′n is at most 2ne + ne · sizen(F) + 2 · sizen(F ′). �

We now show that an adversary that does well in Experiment Exp7 yields an adversary

that breaks the pseudo-randomness of F ′.

Lemma 3.6.8 For every d, e > 0 and every adversary D of size at most ne for Exp7 such

that q7D(n) > 1/nd for infinitely many n, there exists an adversary of size 2ne + nesizen(F) +

sizen(F ′) that breaks F ′ with advantage 1/(2nd) for infinitely many n.

Proof Let d, e > 0. Let circuit family {Dn} of size ne and sequence {jn} be an adversary for

Exp7 such that q7D(n) > 1/nd for infinitely many n. Fix such an n.

We will define an adversary D′n for breaking F ′. D′n is given an oracle g : {0, 1}n → {0, 1}n.

Then, D′n proceeds as follows. D′n first runs Dn according to Exp7 for jn − 1 rounds. Then,

D′n selects rjn ← Zn and gives this string to Dn. Next, Dn produces strings mjn , r
′
jn
∈ {0, 1}n.

If r′jn = rjn , then D′n computes αjn ← g(mjn); otherwise, D′n randomly selects X ′jn ∈ {0, 1}
n

and computes αjn ← F ′X′jn
(mjn). Then, D′n gives ejn = 〈mjn , αjn〉 to Dn. Next, Dn produces

a string e′jn = 〈m′jn , α
′
jn
〉. D′n outputs 1 if α′jn = g(m′jn) and either r′jn 6= rjn or e′jn 6= ejn ;

otherwise, D′n outputs 0.

Observe that when the oracle g : {0, 1}n → {0, 1}n that is given to D′n is F ′z for randomly

chosen z ∈ {0, 1}n, D′n simulates Dn according to Exp7. This means that the probability

that D′n accepts a pseudo-randomly generated function is exactly q7D(n). Now consider the

Chapter 3. Leakage-resilient authentication 91

probability that D′n accepts randomly chosen g. Note that in this case, D′n will only accept if

Dn is able to predict g on an input on which it has not yet been queried. This will happen

with probability at most 1/2n. It follows that D′n breaks F ′ with advantage q7D(n) − 1/2n >

1/nd − 1/2n.

Finally, consider the size of D′n. D′n simulates Dn. In addition, D′n simulates jn − 1 rounds

of Exp7; this involves evaluating F and evaluating the leakage functions produced by Dn (for

the first jn − 2 rounds). D′n also evaluates F ′ at most once. Then, using the fact that jn ≤ ne

(since the size of Dn must upper bound the number of rounds of interaction it performs), we

have that the size of D′n is at most 2ne + ne · sizen(F) + sizen(F ′). �

We can now complete the proof of Theorem 3.2.1. Recall that C = {Cn} is a (c log n)-

bounded adversary for SP such that qC(n) > 1/nd for infinitely many n.

Let a, b, e > 0 be such that Cn is of size at most ne, sizen(F) is at most na, and sizen(F ′)

is at most nb.

By Lemma 3.6.1, we have q1C(n) ≥ 1/nd for infinitely many n. Then, by Lemma 3.6.2,

there exists an adversary D2 of size at most n2e +ne(na +nb) such that q2D2(n) ≥ 1/nd+e+1 for

infinitely many n. For sufficiently large n, the size of D2 is at most n2e+a+b. Now, by Lemma

3.6.3, there exists an adversary D3 of size at most n2e+a+b such that q3D3(n) ≥ 1/nd+e+5c+1

for infinitely many n. Then, by Lemma 3.6.4, there exists an adversary D4 of size at most

n2e+a+b such that q4D4(n) ≥ 1/nd+e+5c+1 for infinitely many n. It follows by Lemma 3.6.5

that there exists an adversary D5 of size at most n4e+2a+2b + n2e+a+b(na + 2nb) such that

q5D5(n) ≥ 1/nd+e+5c+1 for infinitely many n. For sufficiently large n, the size of D5 is at most

n4e+2a+2b+1.

We next apply Lemma 3.6.6. Observe that if we choose e′ = 4e+ 3a+ 2b+ 2, then we have

3n4e+2a+2b+1 + n4e+2a+2b+1sizen(F) + 2sizen(F ′) ≤ ne′ for sufficiently large n. We then have

by Lemma 3.6.6 that either q6D5(n) ≥ 1/(2n4e+2a+2b+1) for infinitely many n, or there exists an

adversary of size n44e+19a+18b+8d+46c+27 that breaks F with advantage 1/n5d+25e+10a+10b+31c+18.

In the latter case we are done (since we have an adversary breaking the pseudo-randomness of

F), so suppose q6D5(n) ≥ 1/(2n4e+2a+2b+1) for infinitely many n.

Now, applying Lemma 3.6.7, we have that either q7D5(n) ≥ 1/(4n4e+2a+2b+1) for infinitely

many n, or there exists an adversary of size n4e+3a+2b+2 that breaks F with advantage 1/(4n4e+2a+2b+1)

for infinitely many n. In the latter case we are done (since we have an adversary breaking the

pseudo-randomness of F), so suppose q7D5(n) ≥ 1/(4n4e+2a+2b+1) for infinitely many n. But

then by Lemma 3.6.8, there exists an adversary of size n4e+3a+2b+2 that breaks the pseudo-

randomness of F ′ with advantage 1/(8n4e+2a+2b+1) for infinitely many n.

Chapter 3. Leakage-resilient authentication 92

3.7 Open problems

One-flow leakage-resilient authentication Our leakage-resilient authenticated session pro-

tocol uses two flows for each message piece. As we noted previously, a protocol that uses only

one flow per message can be constructed using leakage-resilient signature schemes. However,

existing leakage-resilient signature schemes either require stronger assumptions than the exis-

tence of pseudo-random generators, or use the “only computation leaks” assumption. Further,

these schemes are more complex (computationally and conceptually) than simply evaluating a

pseudo-random function generator. Can we get a one-flow authenticated session protocol con-

struction that is simpler and more efficient than protocols based on existing signature schemes?

Can we construct a one-flow protocol using only the minimal assumption that pseudo-random

generators exist (without requiring the “only computation leaks” assumption)? Recall that in

the authenticated session protocol setting, we seem to have an important advantage over the

signature scheme setting: the parties have a shared private key. This suggests that constructing

a better one-flow leakage-resilient authenticated session protocol might be an easier problem

than simplifying existing leakage-resilient signature schemes.

Leakage-resilient privacy In our session protocol, each message piece is made public. Can

we construct a leakage-resilient session protocol that achieves authentication and privacy? In

Section 2.4.2, we discussed the issues involved when defining privacy in a setting with leakage.

Recall that there are two approaches one might follow – a leak-free challenge, or weakening

security so that we only require that the adversary doesn’t learn “too much” about the challenge

(as long as the challenge message is sampled from a distribution of high min-entropy). We

believe it should be possible to modify our construction to achieve privacy according to either

approach.

At first glance, it might seem sufficient to modify our construction so that F outputs 3n

bits instead of 2n bits, with the additional n bits of output used as a key Yi for encrypting

a single message piece mi; that is, instead of sending mi in the clear over the public channel,

EvalA would send Yi ⊕ mi. However, it turns out that this protocol fails to achieve privacy

in the worst possible way – the adversary can learn every bit of some message piece mj . The

adversary can simply ignore party B (by never invoking EvalB1 or EvalB2), providing EvalA

with 0̄ as input in place of the output of EvalB1. In this way, the computation of EvalA becomes

deterministic, and hence the adversary can use leakage to eventually learn every bit of the state

of party A at some future round j. Then, designating this round j as the challenge round, the

adversary succeeds trivially according to both notions of privacy.

What if we further modify our construction so that party A also samples a string from a

Chapter 3. Leakage-resilient authentication 93

distribution of high min-entropy, and uses the concatenation of this string and the purported

output of EvalB1 as the input to F? (Of course, A must then also include this sampled string

in the output of EvalA, so that EvalB2 can evaluate F on the same input.) This prevents the

computation of either party from becoming deterministic, no matter what the adversary does,

and hence seems to prevent the kind of attack described in the previous paragraph. Does this

protocol indeed achieve authentication and privacy? We believe this to be the case, but we

have not proved it.

Chapter 4

Black-box impossibility results

It is well known that if there exist pseudo-random generators obtaining even one bit of stretch,

then for every polynomial p(n), there exist pseudo-random generators obtaining p(n) bits of

stretch. The usual approach for constructing a pseudo-random generator of large stretch from

a pseudo-random generator of smaller stretch involves composing the smaller-stretch generator

with itself repeatedly. Similarly, the usual approach for constructing a pseudo-random genera-

tors of large stretch from a one-way permutation involves composing the one-way permutation

with itself repeatedly.

In this chapter, we consider whether there exist such constructions that do not involve

composition. To formalize this requirement about composition, we consider constructions that

only have oracle access to the given object (a smaller-stretch pseudo-random generator or a

one-way permutation) and query this oracle non-adaptively. We refer to such constructions as

non-adaptive (oracle) constructions.

We give a number of black-box impossibility results for non-adaptive oracle constructions of

pseudo-random generators. Some of these arguments are rather technically involved. Roughly

speaking, we answer in the negative whether we can obtain, with only a constant number of

queries to a pseudo-random generator, a pseudo-random generator of much larger stretch, where

answers to these non-adaptive queries are combined arbitrarily. The challenge is to deal with

this arbitrary computation phase.

Non-adaptive constructions are conceptually related to streaming cryptography ; that is,

computing private-key primitives with a device that uses small space and accesses the seed a

small number of times. One of the three non-adaptive settings we consider in this chapter is

motivated by questions in streaming cryptography.

Our results. Observe that if pseudo-random generators exist, then there exist trivial non-

adaptive oracle constructions of large-stretch pseudo-random generators: such constructions

94

Chapter 4. Black-box impossibility results 95

can simply ignore their oracle and directly compute a large-stretch pseudo-random generator.

Since we are interested in constructions that use their oracle in a non-trivial way, we focus on

constructions whose pseudo-randomness is proven using a black-box reduction [IR89] to the the

security (pseudo-randomness or one-wayness) of their oracle.

We consider three classes of such constructions, and give bounds on the stretch that can be

obtained by each class. For each class, our results demonstrate a contrast between the stretch

that can be achieved by adaptive and non-adaptive constructions. We show that, in some sense,

whatever was already known regarding algorithms for non-adaptive constructions is the best

we can hope for. While we are primarily interested in constructions that are polynomial-time

computable, our bounds hold even for computationally-unbounded constructions (where the

number of oracle queries is still bounded).

• Class 1: Constructions with short seeds

We begin by considering constructions whose seed length is not too much longer than the

length of each oracle query. Suppose we have a pseudo-random generator f : {0, 1}n →
{0, 1}n+s(n) and we wish to obtain a pseudo-random generator with larger stretch, say

stretch 2 · s(n). We can easily define such a generator Gf : {0, 1}n → {0, 1}n+2·s(n) as

follows: on input x ∈ {0, 1}n, Gf computes y0||y1 = f(x) (where |y0| = s(n) and |y1| = n),

and outputs y0||f(y1). Gf can be formalized as a fully black-box construction making

two adaptive oracle queries, each of the same length as G’s seed x, to an oracle mapping

n bits to n+s(n) bits. This idea can easily be extended to obtain, for every k ∈ N, a fully

black-box construction making k adaptive oracle queries and achieving stretch k · s(n).

We show that fully black-box constructions making constantly-many queries, each of the

same length as their seed length n, must make adaptive queries even to achieve stretch

s(n) + 1, that is, even to achieve a one-bit increase in stretch. We show that this also

holds for constructions whose seed length is at most O(log n) bits longer than the length

n of each oracle query.

• Class 2: Constructions with long seeds

What about constructions whose seed length is significantly longer than the length of

each oracle query? Can we also show that such constructions must make adaptive oracle

queries in order to achieve greater stretch than their oracle? In fact, a very simple

way for such a construction to make non-adaptive oracle queries, yet achieve greater

stretch than its oracle, involves splitting up its seed into two or more portions, and using

each portion as an oracle query. For example, if f : {0, 1}n → {0, 1}n+1 is pseudo-

random, then the generator Gf : {0, 1}2n → {0, 1}2n+2 defined for all x1, x2 ∈ {0, 1}n as

Chapter 4. Black-box impossibility results 96

Gf (x1||x2) = f(x1)||f(x2) is also pseudo-random. Observe that when this construction

is given an input chosen uniformly at random, the oracle queries x1 and x2 are chosen

independently (and uniformly at random); this property is crucial for the construction’s

security.

What about constructions where oracle queries cannot be chosen independently and uni-

formly at random? Specifically, what if we consider constructions where we place no

restriction on the seed length, but insist that oracle queries are collectively chosen in a

manner that depends only on a portion of the seed that is not too much longer than

the length of each oracle query (making it impossible to simply split up the seed into

multiple queries)? While this setting may seem unnatural at first, it is possible in this

setting to obtain a construction that makes constantly-many non-adaptive oracle queries

to a pseudo-random generator and achieves more stretch than its oracle; indeed, even a

single query suffices. For example, if f : {0, 1}n → {0, 1}n+s(n) is pseudo-random, then by

the Goldreich-Levin theorem [GL89] we have that for all functions m(n) ∈ O(log n),

the number generator Gf : {0, 1}n·m(n)+n → {0, 1}n·m(n)+n+s(n)+m(n) defined for all

r1, r2, . . . , rm(n), x ∈ {0, 1}n as

Gf
(
r1||r2|| . . . ||rm(n)||x

)
= r1||r2|| . . . ||rm(n)||f(x)||〈r1, x〉||〈r2, x〉|| . . . ||〈rm(n), x〉

is pseudo-random; the stretch of Gf is m(n) bits greater than the stretch of f . Also

observe that the query made by G(·) depends only on a portion of the seed of G(·) whose

length is the same as the length of the query (indeed, the query is identical to this portion

of the seed). Using this Goldreich-Levin-based approach, it is easy to see that adaptive

black-box constructions whose input length is much longer than the length n of each

oracle query can obtain stretch k · s(n) + O(log n) by making k queries to an oracle of

stretch s(n), even when the portion of the seed that is used to choose oracle queries has

length n.

We show that fully black-box constructions G(·) making constantly-many queries of length

n to a pseudo-random generator f : {0, 1}n → {0, 1}n+s(n), such that only the rightmost

n+O(log n) bits of the seed of G(·) are used to choose oracle queries, must make adaptive

queries in order to achieve stretch s(n) + ω(log n). That is, such constructions making

constantly-many non-adaptive queries cannot achieve greater stretch than the stretch

provided by Goldreich-Levin with just a single query. This holds no matter how long a

seed is used by the construction G(·).

• Class 3: Goldreich-Levin-like constructions

The final class of constructions we consider is motivated by the streaming computation of

Chapter 4. Black-box impossibility results 97

pseudo-random generators. What is the relationship between non-adaptivity and stream-

ing? Using a one-way permutation π, we wish to compute a pseudo-random generator G

of linear stretch in a streaming manner, that is, using small space and a small number of

passes over the seed. Even if we are able to compute π under such restrictions, adaptive

use of π seems to require either storing intermediate results (but in streaming we lack

sufficient space) or recomputing them (but we also lack sufficient access to the seed).

In this sense, non-adaptivity serves as a clean setting for studying black-box streaming

constructions.

We consider a class of constructions where the seed has a public portion that is always

included in the output, the choice of each oracle query does not depend on the public

portion of the seed, and the computation of each individual output bit depends only on

the seed and on the response to a single oracle query. We refer to such constructions

making non-adaptive oracle queries as bitwise-nonadaptive constructions. It is not hard

to see that such constructions making polynomially-many adaptive queries to a one-way

permutation π : {0, 1}n → {0, 1}n can achieve arbitrary polynomial stretch; the idea is to

repeatedly compose π with itself, outputting a hardcore bit of π on each composition. For

example, using the Goldreich-Levin hardcore bit [GL89], a standard way of constructing

a pseudo-random generator G of polynomial stretch p(n) is the following: On input

r, x ∈ {0, 1}n,

Gπ(r||x) = r||〈r, x〉||〈r, π(x)〉||〈r, π2(x)〉|| . . . ||〈r, πp(n)+n(x)〉

where πi := π ◦ π ◦ . . . ◦ π︸ ︷︷ ︸
i times

, and 〈α, β〉 denotes the standard inner product of α and β.

Observe that the leftmost n bits of the seed of G are public in the sense that they are

included in the output. Also observe that each of the remaining output bits of G is

computed using only a single output of π along with the input bits of G. Finally, observe

that the queries made to π do not depend on the public input bits of G, and the number

of non-public input bits is no greater than the length n of each oracle query. It is natural

to ask whether the adaptive use of π in a construction of this form is necessary. This is

particularly interesting if we wish to compute G in a streaming setting where we have

small workspace, we are allowed to produce the output bit-by-bit, and we are allowed to

re-read the input once per output bit.

We show that fully black-box bitwise-nonadaptive constructions G(·) making queries of

length n to a one-way permutation, such that the non-public portion of the seed of G(·)

is of length at most n+O(log n), cannot achieve linear stretch. This holds no matter the

length of the public portion of the seed of G(·).

Chapter 4. Black-box impossibility results 98

Related work. Black-box reductions were formalized by Impagliazzo and Rudich [IR89],

who observed that most proofs of security in cryptography are of this form. Impagliazzo and

Rudich also gave the first black-box impossibility results. In their most general form, such

results show that for particular security properties P1 and P2, it is impossible to give a black-

box construction of P1 from P2. The same approach can also be applied to particular classes

of black-box constructions, such as those making some restricted number of oracle queries or

those that query their oracle non-adaptively. A large number of impossibility results have been

given using this framework. The results most closely related to the problem we are considering

are those of Gennaro et al [GGKT05], Viola [Vio05], Lu [Lu06], and Miles and Viola [MV11].

Gennnaro et al [GGKT05] consider black-box constructions of pseudo-random generators

from one-way permutations. They show that such constructions cannot achieve ω(log n) bits

of stretch per oracle query of length n, even when queries are chosen adaptively. Their result

can be extended in a straightforward way to show that for the second class of constructions we

consider (and also for a more general class where queries are allowed to depend on the entire

seed), for every k ∈ N, constructions making k oracle queries to a pseudo-random generator

of stretch s(n) cannot achieve stretch k · s(n) + ω(log n), even when these queries are chosen

adaptively. By contrast, recall that we show that for this class of constructions, for every k ∈ N,

constructions making k non-adaptive oracle queries to a pseudo-random generator of stretch

s(n) cannot achieve stretch s(n) + ω(log n).

Viola [Vio05] considers black-box constructions of pseudo-random generators from one-way

functions where oracle queries are non-adaptive but chosen in a computationally unbounded

way, while the output of the construction is computed from the query responses by an AC0

(polynomial-size and constant-depth) circuit. He shows that such constructions cannot achieve

linear stretch. The class of constructions considered by Viola is, in general, incomparable to

the classes we consider. His class is more general in terms of the numbers of queries allowed

and the way that queries are chosen: he places no bounds on the number of queries, allows

the queries to be chosen arbitrarily based on the seed (while we require queries to be chosen in

a computable manner), and places no restrictions on the length of the queries relative to the

length of the seed. On the other hand, his class is more restrictive in terms of the computational

power allowed after the query responses are received: he only allows AC0 computation, while

we allow unbounded computation.

Lu [Lu06] considers the same class of constructions as Viola, except that Lu allows the

output to be computed from the query responses by a subexponential-size constant-depth circuit

(rather than an AC0 circuit). He shows that such constructions cannot achieve linear stretch.

Miles and Viola [MV11] consider black-box constructions of pseudo-random generators from

pseudo-random generators of 1-bit stretch, where the oracle queries are non-adaptive but chosen

Chapter 4. Black-box impossibility results 99

in a computationally unbounded way, while the output of the construction consists simply of

query response bits; that is, these constructions are not allowed to perform any computation

on query responses. They show that such constructions cannot achieve linear stretch. Like the

constructions considered by Viola [Vio05] and Lu [Lu06], the class of constructions considered

by Miles and Viola is, in general, incomparable to the classes we consider: the constructions they

consider are more general in the manner in which queries are chosen (they place no restrictions

on the length of queries relative to the length of the seed), but much more restrictive in terms

of the computational power allowed after query responses are received.

In the positive direction, Haitner et al [HRV10] give the first non-adaptive black-box con-

struction of a pseudo-random generator from a one-way function. Their construction achieves

sublinear stretch. They also give a non-adaptive black-box construction achieving linear stretch,

but this requires an exponentially-hard one-way function. In both of these constructions, the

oracle queries are collectively chosen based on a portion of the seed that is significantly longer

than the length of each oracle query. By contrast, recall that all of our impossibility results are

for constructions where the oracle queries are collectively chosen based on a portion of the seed

that is no more than logarithmically-many bits longer than the length of each oracle query.

Organization. Section 4.1 contains definitions and preliminaries. In Section 4.2, we show

that if a distribution yields pseudo-random generators “on the average”, then it does so with

probability 1; we need this result for our impossibility results about the first two classes of

constructions that we consider. The impossibility results for constructions with short seeds

and long seeds are discussed in Sections 4.3 and 4.4 respectively. In Section 4.5, we state a

restriction on the way that constructions choose oracle queries, and under this restriction we

extend the results of Sections 4.3 and 4.4 to constructions making polynomially-many queries.

The impossibility result for Goldreich-Levin-like constructions is found in Section 4.6.

4.1 Preliminaries

Notation. We use “PPT” to denote “probabilistic polynomial time”. We denote by 〈a〉n the

n-bit binary string representation of a ∈ N, padded with leading zeros when necessary. If the

desired representation length is clear from the context, we write 〈a〉 instead of 〈a〉n. If a ≥ 2n,

then 〈a〉n denotes the n least significant bits of the binary representation of a. We denote by

x||y the concatenation of strings x and y.

Chapter 4. Black-box impossibility results 100

4.1.1 Pseudo-random generators and one-way functions

A length-increasing function G : {0, 1}`1(n) → {0, 1}`2(n) is a pseudo-random generator if for

every PPT adversary M , we have

∣∣∣∣∣ Pr
x←{0,1}`1(n)

[M (G (x)) = 1]− Pr
z←{0,1}`2(n)

[M (z) = 1]

∣∣∣∣∣ ≤ 1/nc

for all c and sufficiently large n.

A function f : {0, 1}`1(n) → {0, 1}`2(n) is one-way if for every PPT adversary M , we have

Pr
x←`1(n)

[f (M (f (x))) = f (x)] ≤ 1/nc for all c and sufficiently large n.

4.1.2 Non-adaptive constructions

Our impossibility results are for constructions that use their oracle in a non-adaptive manner.

Definition 16 (Non-adaptive oracle machine) Let M (·) be a deterministic oracle Turing

machine. We say that M (·) is a non-adaptive oracle machine if the oracle queries made by M (·)

are determined by only the input to M (·), and, in particular, do not depend on the responses

to previous queries.

We will sometimes need to refer to the querying function of a non-adaptive oracle machine.

Definition 17 (Querying function) Let `1(n), `2(n), and p(n) be polynomials, and let M (·) :

{0, 1}`1(n) → {0, 1}`2(n) be a non-adaptive oracle machine that makes p(n) oracle queries, each

of length n. The querying function of M (·), denoted QM , is the function QM : {0, 1}`1(n) ×
{0, 1}log p(n) → {0, 1}n such that for all x ∈ {0, 1}`1(n) and 0 ≤ i < p(n), the i-th oracle query

made by M (·)(x) is QM (x, 〈i〉). When p(n) ≡ 1, the second argument to QM is omitted.

If there exists a polynomial r(n) such that the queries made by M (·) depend only on the

rightmost r(n) bits of the input of M (·), then the r(n)-restricted querying function of M (·),

denoted Q
r(n)
M , is the function Q

r(n)
M : {0, 1}r(n) × {0, 1}log p(n) → {0, 1}n such that for all

v ∈ {0, 1}`1(n)−r(n), w ∈ {0, 1}r(n), and 0 ≤ i < p(n), the i-th oracle query made by M (·)(v||w)

is Q
r(n)
M (w, 〈i〉).

4.1.3 Black-box reductions

Reingold, Trevisan, and Vadhan [RTV04] give a classification of black-box security reductions.

Our impossibility results apply to what Reingold et al call fully-black box reductions. We avoid

defining such reductions in their full generality and instead focus on security reductions for

constructions of pseudo-random number generators from pseudo-random generators of smaller

stretch.

Chapter 4. Black-box impossibility results 101

Definition 18 (Fully black-box reduction [IR89]) Let G(·) : {0, 1}`1(n) → {0, 1}`2(n) be a

number generator whose construction has access to an oracle for a length-increasing function

mapping `′1(n) bits to `′2(n) bits. There is a fully black-box reduction of the pseudo-randomness

of G(·) to the pseudo-randomness of its oracle if there exists a PPT oracle machine M (·,·) such

that for every function f : {0, 1}`′1(n) → {0, 1}`′2(n) and every function A : {0, 1}`2(n) → {0, 1},
if A breaks the pseudo-randomness of Gf then M (f,A) breaks the pseudo-randomness of f .

Definition 18 can be modified in a straightforward way for constructions of pseudo-random

number generators from other primitives, such as from one-way permutations.

An oracle construction whose security is proven using a black-box reduction is called a

black-box construction.

4.2 Pseudo-random “on the average” =⇒ pseudo-random with

probability 1

When giving a black-box impossibility result showing that an object with some security property

P2 cannot be obtained from security property P1, the usual approach is to define a joint distribu-

tion (F ,A) over pairs of functions and then show that with probability one over (f,A)← (F ,A),

A can be used to break P2-ness but f satisfies property P1 even with respect to adversaries

that are given oracle access to f and A. How might we go about proving that with probability

one over (f,A) ← (F ,A), f satisfies property P1 with respect to adversaries that are given

oracle access to f and A? Impagliazzo and Rudich [IR89] consider the case when property P1

is one-wayness, and show that if (f,A) ← (F ,A) is one-way “on the average” (where “on the

average” means that the choice (f,A)← (F ,A) is part of the security experiment) with respect

to adversaries that are given oracle access to f and A, then (f,A) ← (F ,A) is one-way with

probability one with respect to such adversaries. Specifically, Impagliazzo and Rudich show

that if for every PPT oracle machine D(·,·) we have that

Pr
(f,A)←(F ,A)
x←r{0,1}n

[
f
(
D(f,A) (f(x))

)
= f(x)

]
<

1

nc

for all c and sufficiently large n, then with probability one over the choice (f,A)← (F ,A) we

have that for every PPT oracle machine D(·,·),

Pr
x←r{0,1}n

[
f
(
D(f,A) (f(x))

)
= f(x)

]
<

1

nc

for all c and sufficiently large n.

For some of our black-box impossibility results, we need a similar result for pseudo-randomness

instead of one-wayness. We are not aware of any previous such result, so we give a proof here.

Chapter 4. Black-box impossibility results 102

The main differences between our proof and that of Impagliazzo and Rudich arise from the

fact that the definition of pseudo-randomness involves comparing two probabilities, while the

definition of one-wayness involves only a single probability.

Theorem 4.2.1 Let `1(n) and `2(n) be polynomials. Let (F ,A) = {(Fn,An)} be a joint dis-

tribution such that for all n > 0, Fn is a distribution over functions mapping n bits to `1(n)

bits and An is a distribution over functions mapping `2(n) bits to 1 bit. Suppose that for every

PPT oracle machine D(·,·), we have∣∣∣∣∣∣∣∣ Pr
(f,A)←(F ,A)
s←r{0,1}n

[
D(f,A) (f(s)) = 1

]
− Pr

(f,A)←(F ,A)
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

]∣∣∣∣∣∣∣∣ <
1

nc
(4.1)

for all c and sufficiently large n. Then, with probability 1 over the choice (f,A) ← (F ,A), we

have that for every PPT oracle machine D(·,·),∣∣∣∣∣ Pr
s←r{0,1}n

[
D(f,A) (f(s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

]∣∣∣∣∣ < 1

nc

for all c and sufficiently large n.

Proof The main part of the proof is the following claim, which essentially says that for a

fixed adversary D(·,·) and large enough n, “most” (f,A) ∈ (F ,A) are such that D(f,A) does

not break the pseudo-randomness of f for security parameter n. Once we have the claim, we

proceed similarly to the proof of Impagliazzo and Rudich, using the Borel-Cantelli lemma.

Claim 4.2.2 Let D(·,·) be a PPT oracle machine. For all c > 0 and sufficiently large n, we

have

Pr
(f,A)←(F ,A)

[(
Pr

s←r{0,1}n

[
D(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

])
≥ 1

nc

]
<

1

n2

Proof (Claim 4.2.2) Suppose for the sake of contradiction that there exists a PPT oracle

machine D(·,·) and a c ∈ N such that

Pr
(f,A)←(F ,A)

[(
Pr

s←r{0,1}n

[
D(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

])
≥ 1

nc

]
≥ 1

n2

(4.2)

for infinitely many n. We will obtain a contradiction to our assumption (4.1).

We define a PPT oracle machine D̂(·,·). On input t ∈ `1(n) and given access to oracles f and

A, D̂ behaves as follows. First, D̂ runs experiments to approximate the probabilities pD,f,A(n)

and rD,f,A(n), where we define

pD,f,A(n) = Pr
s←r{0,1}n

[
D(f,A) (f (s)) = 1

]

Chapter 4. Black-box impossibility results 103

and

rD,f,A(n) = Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

]
In particular, for each of the two probabilities above, D̂ runs n2c+3 experiments, obtaining

estimates p̂D,f,A(n) and r̂D,f,A(n). Then, if p̂D,f,A(n)− r̂D,f,A(n) ≥ 1/nc− 2/nc+1, D̂ simulates

D(f,A)(t), outputting whatever the simulation outputs. Otherwise, D̂ outputs a randomly

chosen bit.

Now, fix n ≥ 4 such that (4.2) holds. That is, we have

Pr
(f,A)←(F ,A)

[
pD,f,A(n)− rD,f,A(n) ≥ 1

nc

]
≥ 1

n2
(4.3)

Using Chernoff bounds, we have that for all (f,A), the probability that |p̂D,f,A(n)−pD,f,A(n)| ≤
1/nc+1 is at least 1 − 1/2n. Similarly, the probability that |r̂D,f,A(n) − rD,f,A(n)| ≤ 1/nc+1 is

at least 1−1/2n. Then, by the union bound, the probability that both estimates p̂D,f,A(n) and

r̂D,f,A(n) each have additive error at most 1/nc+1 is at least 1− 2/2n. It follows that if

pD,f,A(n)− rD,f,A(n) ≥ 1

nc

then with probability at least 1− 2/2n we have

p̂D,f,A(n)− r̂D,f,A(n) ≥ 1

nc
− 2

nc+1
, (4.4)

and hence for such (f,A) we have

Pr
s←r{0,1}n

[
D̂(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D̂(f,A) (z) = 1

]
≥
(

1− 2

2n

)
1

nc
. (4.5)

Also, if

pD,f,A(n)− rD,f,A(n) <
1

nc
− 4

nc+1

then with probability at least 1− 2/2n we have

p̂D,f,A(n)− r̂D,f,A(n) <
1

nc
− 2

nc+1
, (4.6)

and hence for such (f,A) we have

Pr
s←r{0,1}n

[
D̂(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D̂(f,A) (z) = 1

]
≥ − 2

2n
. (4.7)

Finally, if
1

nc
− 4

nc+1
≤ pD,f,A(n)− rD,f,A(n) <

1

nc

then our choice of n ≥ 4 ensures pD,f,A(n)− rD,f,A(n) ≥ 0, and hence for such (f,A) we have

Pr
s←r{0,1}n

[
D̂(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D̂(f,A) (z) = 1

]
≥ 0. (4.8)

Chapter 4. Black-box impossibility results 104

Putting everything together, we have

Pr
(f,A)←(F ,A)
s←r{0,1}n

[
D̂(f,A) (f(s)) = 1

]
− Pr

(f,A)←(F ,A)
z←r{0,1}`1(n)

[
D̂(f,A) (z) = 1

]

= E
(f,A)←(F ,A)

[
Pr

s←r{0,1}n

[
D̂(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D̂(f,A) (z) = 1

]]
(4.9)

≥ 1

n2

(
1− 2

2n

)(
1

nc

)
+

(
1− 1

n2

)(
− 2

2n

)
(4.10)

≥ 1

nc+2
− 4

2n
(4.11)

where equality (4.9) is by linearity of expectation, and inequality (4.10) follows from (4.3),

(4.5), (4.7), (4.8), and the definition of expected value.

It follows that

Pr
(f,A)←(F ,A)
s←r{0,1}n

[
D̂(f,A) (f(s)) = 1

]
− Pr

(f,A)←(F ,A)
z←r{0,1}`1(n)

[
D̂(f,A) (z) = 1

]
> 1/nc+3

for infinitely many n, contradicting our assumption (4.1). �

By Claim 4.2.2, we have that for all PPT oracle machines D(·,·), all c, and sufficiently large

n, the measure of (f,A) ∈ (F ,A) such that

Pr
s←r{0,1}n

[
D(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

]
≥ 1

nc

is less that 1/n2. Then, by the Borel-Cantelli lemma, we have that for all PPT oracle machines

D(·,·) and all c, the the measure of (f,A) ∈ (F ,A) such that

Pr
s←r{0,1}n

[
D(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

]
≥ 1

nc

for infinitely many n is 0.

Then, since there are only countably-many PPT oracle machines and (of course) only count-

ably many c ∈ N, the measure of (f,A) ∈ (F ,A) such that there exists a PPT oracle machine

D(·,·) and a natural number c such that

Pr
s←r{0,1}n

[
D(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

]
≥ 1

nc

for infinitely many n is 0.

Now, observe that for every (f,A) ∈ (F ,A) and every c ∈ N, there exists a PPT oracle

machine D(·,·) such that

Pr
s←r{0,1}n

[
D(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

]
≥ 1

nc

Chapter 4. Black-box impossibility results 105

for infinitely many n if and only if there exists a PPT oracle machine D(·,·) such that∣∣∣∣∣ Pr
s←r{0,1}n

[
D(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

]∣∣∣∣∣ ≥ 1

nc

for infinitely many n. The “only if” direction is obvious. For the “if” direction, we note that

if
∣∣∣Prs←r{0,1}n

[
D(f,A) (f (s)) = 1

]
− Prz←r{0,1}`1(n)

[
D(f,A) (z) = 1

]∣∣∣ ≥ 1
nc for infinitely many n,

then either Prs←r{0,1}n
[
D(f,A) (f (s)) = 1

]
− Prz←r{0,1}`1(n)

[
D(f,A) (z) = 1

]
≥ 1

nc for infinitely

many n, or Prs←r{0,1}n
[
D(f,A) (f (s)) = 1

]
−Prz←r{0,1}`1(n)

[
D(f,A) (z) = 1

]
≤ − 1

nc for infinitely

many n; the former case is again obvious, and for the latter case it is sufficient to complement

the output of D.

It follows that the measure of (f,A) ∈ (F ,A) such that there exists a PPT oracle machine

D(·,·) and a natural number c such that∣∣∣∣∣ Pr
s←r{0,1}n

[
D(f,A) (f (s)) = 1

]
− Pr
z←r{0,1}`1(n)

[
D(f,A) (z) = 1

]∣∣∣∣∣ ≥ 1

nc

for infinitely many n is 0, completing the proof of Theorem 4.2.1. �

4.3 Constructions with short seeds

In this section, we consider constructions whose seed length is not more than O(log n) bits

longer than the length n of each oracle query. Recall that such constructions making k adaptive

queries to a given pseudo-random generator can achieve stretch that is k times the stretch of

the given generator. We show that such constructions making constantly-many non-adaptive

queries cannot achieve stretch that is even a single bit longer than the stretch of the given

generator.

Theorem 4.3.1 Let k ∈ N, and let `1(n) and `2(n) be polynomials such that `1(n) ≤ n +

O(log n) and `2(n) > n. Let G(·) : {0, 1}`1(n) → {0, 1}`1(n)+(`2(n)−n)+1 be a non-adaptive oracle

construction of a number generator, making k queries of length n to an oracle mapping n bits

to `2(n) bits. Then there is no fully black-box reduction of the pseudo-randomness of G(·) to the

pseudo-randomness of its oracle.

The approach we use to prove Theorem 4.3.1 does not seem to extend to the case of

polynomially-many (or even ω(1)-many) queries. However, a similar approach does work for

polynomially-many queries when we place a restriction on the many-oneness of the number

generator’s querying function. We state this restriction in Section 4.5.

We give an overview of the proof of Theorem 4.3.1 in Section 4.3.1, and we give the proof

details in Section 4.3.2 and Section 4.3.3.

Chapter 4. Black-box impossibility results 106

4.3.1 Proof overview for Theorem 4.3.1

A simpler case

We first consider the simpler case of constructions making just a single query, where the query

made is required to be the same as the construction’s input. That is, we consider constructions

G(·) : {0, 1}n → {0, 1}`2(n)+1 such that on every input x ∈ {0, 1}n, G makes query x to an oracle

mapping n bits to `2(n) bits. Fix such a construction G(·). We need to show the existence of

functions f : {0, 1}n → {0, 1}`2(n) and A : {0, 1}`2(n) → {0, 1} such that A breaks the pseudo-

randomness of Gf but f is pseudo-random even with respect to adversaries that have oracle

access to f and A. Following the approach for proving black-box impossibility results initiated

by Impagliazzo and Rudich [IR89], we actually define a joint distribution (F ,A) over pairs of

functions, such that with probability one over (f,A)← (F ,A), A breaks the pseudo-randomness

of Gf but f is pseudo-random even with respect to adversaries that have oracle access to f and

A.

Consider how we might define such a joint distribution (F ,A). The most obvious approach

is to let (F ,A) be the distribution defined by the following procedure for sampling a tuple

(f,A)← (F ,A): randomly select f from the (infinite) set of all functions that, for each n ∈ N,

map n bits to `2(n) bits; let A be the function such that for every z ∈ {0, 1}`2(n)+1, A(z) = 1 if

and only if there exists an s ∈ {0, 1}n such that Gf (s) = z. Following this approach, we have

that with probability one over (f,A) ← (F ,A), A breaks the pseudo-randomness of Gf but f

is pseudo-random with respect to adversaries that have oracle access to f alone. However, it is

not necessarily the case that f is pseudo-random with respect to adversaries that have oracle

access to f and A. For example, suppose construction G is such that for every x ∈ {0, 1}n−1

and every b ∈ {0, 1}, Gf (x||b) = f(x||b)||b. In this case, it is easy to use A to break f : on input

y ∈ {0, 1}`2(n), output 1 if and only if either A(y||0) = 1 or A(y||1) = 1.

To overcome this problem, we add some “noise” to A. We need to be careful that we add

enough noise to A so that it is no longer useful for breaking f , but we do not add so much noise

that A no longer breaks Gf . Our basic aproach is to modify A so that instead of only accepting

Gf (s) for all s ∈ {0, 1}n, A accepts Gfi(s) for all s, all i, and some appropriate collection of

functions {f0, f1, f2, . . . } where f0 = f . How should this collection of functions be defined?

Since we want to make sure that A still breaks Gf , and since we have that A accepts Gf (s)

with probability 1 over s← {0, 1}n, we need to ensure that A accepts randomly chosen strings

with probability non-negligibly less than 1. For this, it suffices to ensure that (# of n-bit strings

s)*(# of functions fi) is at most, say, half the number of strings of length `2(n)+1. At the same

time, to prevent A from helping to break f , we would like it to be the case that, intuitively, A

treats strings that are not in the image of f on an equal footing with strings that are in the

Chapter 4. Black-box impossibility results 107

image of f . One way to accomplish these objectives, which we follow, is to randomly select a

permutation π on {0, 1}`2(n), define f(x) = π(0`2(n)−n||x) for all x ∈ {0, 1}n, and define A to

accept Gπ(y||·)(s) for every y ∈ {0, 1}`2(n)−n and every s ∈ {0, 1}n. We formalize this as a joint

distribution (F ,A,Π) over tuples (f,A, π) that are sampled in the manner just described.

It is easy to show that with probability one over (f,A, π)← (F ,A,Π), A does indeed break

Gf . It is much more difficult to show that with probability one over (f,A, π) ← (F ,A,Π), f

is pseudo-random ever with respect to PPT adversaries that have oracle access to f and A.

We argue that it suffices to show that for every PPT oracle machine D(·,·), the probability

over (f,A, π) ← (F ,A,Π) and s ← {0, 1}n that D(f,A)(f(s)) makes oracle query s to f is

negligible. Now, instead of only showing this for every PPT oracle machine D(·,·), we find it

more convenient to show this for every computationally unbounded probabilistic oracle machine

D(·,·) that makes at most polynomially-many oracle queries. How might we do so? We would

like to argue that A does not help D to find s since a computationally unbounded D can try

to compute A by itself. More formally, we would like to show that given D, we can build a D′

that, given input f(s) and given oracle access only to f , simulates D on input f(s), answers

f -queries of D using the given oracle, and “makes up” answers to the A-queries of D in a

manner that ensures that the probability that the simulation of D makes query s is very close

to the probability that D(f,A)(f(s)) makes oracle query s. Of course, D′ does not “know” π,

so it is not immediately clear how it should answer the A-queries of the simulation of D. If

D′ simply randomly chooses its own permutation π′ and answers A-queries using π′ in place of

the unknown π, the simulation of D may “notice” this sleight of hand. For example, since D is

given f(s) as input, it might (depending on the definition of G) be able to compute the value

of Gf (s), and hence make query Gf (s) to A; if this query does not produce response 1, D will

“know” that queries are not being responded to properly.

We address this by showing that D′ can still compute “most” of A on its own, and that

the “rest” of A is not helpful for finding s. Specifically, we split A into two functions, A1 and

A2, that together can be used to compute A. Function A1 outputs 1 only on input Gf (s). For

every (`2(n) + 1)-bit string z 6= Gf (s), A2(z) = 1 if and only if A(z) = 1. We then argue that

querying A1 provides very little help for finding s. Let X be the set of all strings x ∈ {0, 1}n

such that Gf (x) = Gf (s). Roughly speaking, if X is large, then A1 gives no information about

s beyond the fact that s ∈ X. On the other hand, if X is small, then we argue it is unlikely

that an adversary making polynomially-many queries to A1 will receive a non-zero response to

any of its queries (in other words, it is unlikely that query Gf (s) will be made). It remains to

argue that D′ can compute A2 on its own. We show that if D′ randomly selects a permutation

π′, computes an A′2 based on π′ (rather than π), uses this A′2 along with the given A1 to answer

the A-queries of the simulation of D, and answers the f -queries of the simulation of D based

Chapter 4. Black-box impossibility results 108

on π′(0`2(n)−n||·) (rather than using the given oracle f), then it is unlikely that the simulation

of D will make a query that “exposes” the fact that its oracle queries are not being answered

by f and A.

The general case

We extend the above argument to constructions G(·) : {0, 1}`1(n) → {0, 1}`1(n)+(`2(n)−n)+1 mak-

ing constantly-many non-adaptive queries, where the length `1(n) of the construction’s input is

allowed to be O(log n) bits longer than the length n of each oracle query. The high-level idea

is the same: we define a joint distribution (F ,A,Π) by specifying a procedure for sampling a

tuple (f,A, π) ← (F ,A,Π), and the way we sample π and f is (almost) the same as before.

But now we change the way A behaves. Our goal is to follow the same style of argument as

before. To accomplish this, we would still like it to be the case that when we “split up” A into

functions A1 and A2, there is still at most one string accepted by A1 (this helps us ensure that

A1 does not provide too much information about s). Recall that before, when D′ was run on

an input f(s), the unique string accepted by A1 was Gf (s). This made sense because in the

previous setting, the only input on which G(·) made oracle query s was s itself. But in the

current setting, for each s ∈ {0, 1}n, there may be many inputs x ∈ {0, 1}`1(n) on which G(·)

makes oracle query s. We would like to modify the definition of A so that rather than accepting

Gπ(y||·)(x) for every y ∈ {0, 1}`2(n)−n and every x ∈ {0, 1}`1(n), A accepts Gπ(y||·)(x) for every

y ∈ {0, 1}`2(n)−n and x in some subset Good(n) ⊆ {0, 1}`1(n) such that for every s ∈ {0, 1}n,

there is at most one x ∈ Good(n) such that G(·) on input x makes query s. But we cannot do

exactly this (and still have that A breaks Gf), since, for example, there might be some string

t that G(·) queries no matter what its input is.

Instead, we need to proceed very carefully, partitioning the set of strings t of length n into

those that are queried by G(·) for “many” of its inputs x ∈ {0, 1}`1(n), and those queried by G(·)

for “at most a few” of its inputs x ∈ {0, 1}`1(n). We call the former set Fixed(n) and the latter

set NotF ixed(n). We then define a set Good(n) ⊆ {0, 1}`1(n) of inputs to G(·) such that for no

pair of distinct inputs from Good(n) does G(·) make the same query t ∈ NotF ixed(n). That

is, each t ∈ NotF ixed(n) is queried by G(·) for at most one of its inputs x ∈ Good(n). The

challenge, of course, is ensuring that that the set Good(n) defined this way is “large enough”.

We define A to accept Gπ(y||·)(x) for every y ∈ {0, 1}`2(n)−n and every x ∈ Good(n). Now

we can “split up” A into A1 and A2 in a manner similar to what we did before: on input f(s)

to D′, where s ∈ NotF ixed(n), if there exists a string x ∈ Good(n) such that G(·)(x) makes

query s (note that there can be at most one such string x by definition of Good(n)), then A1

only accepts Gf (x), and if there is no such string x then A1 does not accept any strings; as

before, we define A2 to accept the remaining strings accepted by A. We then argue as before

Chapter 4. Black-box impossibility results 109

about the (lack of) usefulness of A1 and A2 for helping to find s. Finally, we argue that our

definition of Fixed(n) ensures that this set will be of negligible size, and hence it does not hurt

to ignore the case s ∈ Fixed(n) (since this case will occur with negligible probability).

4.3.2 Proof of Theorem 4.3.1: The case k = 1

To develop the intuition needed to prove Theorem 4.3.1, we first consider the special case of

fully black-box constructions G(·) : {0, 1}n → {0, 1}`2(n)+1 making a single query to an oracle

mapping n bits to `2(n) bits. Towards this goal, we begin by considering the special case where

the only query made by the construction is required to be the same as the construction’s input.

Theorem 4.3.2 Let `(n) be a length function. Let G(·) : {0, 1}n → {0, 1}`(n)+1 be an oracle

construction of a number generator, using its own input as the only query to an oracle mapping

n bits to `(n) bits. Then there is no fully black-box reduction of the pseudo-randomness of G(·)

to the pseudo-randomness of its oracle.

Proof To prove this theorem, it suffices to show the existence of functions f : {0, 1}n →
{0, 1}`(n) and A : {0, 1}`(n)+1 → {0, 1} such that A breaks the pseudo-randomness of Gf but

every PPT oracle machine M (·,·) is such that M (f,A) does not break the pseudo-randomness of

f .

Let g : {0, 1}n×{0, 1}`(n) → {0, 1}`(n)+1 be such that for all x ∈ {0, 1}n and all α ∈ {0, 1}`(n),
g(x, α) is the output of G(·) on input x when given α as the response to its oracle query. That is,

for all x ∈ {0, 1}n and for every function O : {0, 1}n → {0, 1}`(n), we have g(x,O(x)) = GO(x).

We begin by defining a joint distribution (F ,A,Π) = {(Fn,An,Πn)}. Specifically, for each

n > 0, (Fn,An,Πn) is the distribution defined by the following procedure for sampling a triple

(fn, An, πn).

• Randomly select a permutation πn : {0, 1}`(n) → {0, 1}`(n).

• Define function fn : {0, 1}n → {0, 1}`(n) as follows: for all x ∈ {0, 1}n, fn(x) = πn(0`(n)−n||x).

• Define function An : {0, 1}`(n)+1 → {0, 1} as follows: for all z ∈ {0, 1}`(n)+1, An(z) = 1 if

and only if there exists x ∈ {0, 1}n and y ∈ {0, 1}`(n)−n such that g(x, πn(y||x)) = z.

We now consider the pseudo-randomness of G(·) when its oracle f and the adversary A are

chosen as (f,A)← (F ,A). Also, for (f,A)← (F ,A), we consider the pseudo-randomness of f

with respect to adversaries that have oracle access to f and A.

Lemma 4.3.3 With probability 1 over the choice (f,A) ← (F ,A), adversary A breaks the

pseudo-randomness of Gf .

Chapter 4. Black-box impossibility results 110

Lemma 4.3.4 Let D(·,·) be a PPT oracle machine. For all n ∈ N, define pD(n) to be the

probability that when (f,A) ← (F ,A) and s ←r {0, 1}n, D(f,A) accepts f(s). For all n ∈ N,

define rD(n) to be the probability that when (f,A)← (F ,A) and z ←r {0, 1}`(n), D(f,A) accepts

z. Then, |pD(n)− rD(n)| < 1/nc for all c and sufficiently large n.

Observe that Theorem 4.3.2 follows from Lemma 4.3.3, Lemma 4.3.4, and Theorem 4.2.1.

We first prove Lemma 4.3.3.

Proof (Lemma 4.3.3) Fix a sample (f,A, π) ← (F ,A,Π). We will show that A breaks Gf .

The main idea is that A accepts every pseudo-randomly generated string, but we have by a

counting argument that A accepts at most half of all strings in {0, 1}`(n)+1.

Fix n > 0.

Define pA(n) to be the probability that A accepts Gf (s) for randomly chosen s ∈ {0, 1}n.

Fix s ∈ {0, 1}n. Recall that by definition of g, we have that Gf (s) = g(s, f(s)). Also, by

definition of (F ,A,Π), we have that that f(s) = π(0`(n)−n||s) and A accepts g(s, π(0`(n)−n||s)).
That is, A accepts Gf (s). So we have pA(n) = 1.

Define rA(n) to be the probability that A accepts randomly chosen z ∈ {0, 1}`(n)+1. By

definition of (F ,A,Π), we have that the set of (`(n) + 1)-bit strings accepted by A is exactly{
g (x, πn (y||x)) : x ∈ {0, 1}n and y ∈ {0, 1}`(n)−n

}
.

But this set clearly has size at most 2`(n). It follows that rA(n) ≤ 2`(n)/2`(n)+1 = 1/2. �

Proof (Lemma 4.3.4) Intuitively, this lemma says that when we choose (f,A)← (F ,A), even

adversaries that have oracle access to A cannot break the pseudo-randomness of f . We first

observe that the probabilities defined in the statement of Lemma 4.3.4 can be expressed in a

different (but equivalent) way that is more convenient.

For each probabilistic oracle machine D(·,·) and each n ∈ N, consider the following experi-

ments and associated probabilities.

Experiment 1

(a) Choose (f,A, π)← (F ,A,Π) and s←r {0, 1}n.

(b) Run D(f,A) on input π(0`(n)−n||s).

Define p′D(n) to be the probability that D accepts. Define qpD(n) to be the probability

that D makes oracle query s to f .

Experiment 2

(a) Choose (f,A, π)← (F ,A,Π), y ←r {0, 1}`(n)−n, and s←r {0, 1}n.

Chapter 4. Black-box impossibility results 111

(b) Run D(f,A) on input π(y||s).

Define r′D(n) to be the probability that D accepts. Define qrD(n) to be the probability

that D makes oracle query s to f .

Finally, define qD(n) = max{qpD(n), qrD(n)}.
Observe that we have p′D(n) = pD(n), since π(0`(n)−n||s) = f(s). Also, observe that we

have r′D(n) = rD(n), since π is a permutation.

Now, note that in the two experiments defined above, unless D queries f on s, its view will

be distributed identically. This holds even if we do not place any computational bound on D.

Claim 4.3.5 For all probabilistic oracle machines D(·,·) and all n ∈ N, we have qD(n) =

qpD(n) = qrD(n) and |p′D(n)− r′D(n)| ≤ qD(n).

Proof (Claim 4.3.5) Consider the following experiments, parametrized by probabilistic oracle

machine D(·,·) and n ∈ N.

Experiment 3

(a) Choose s←r {0, 1}n.

(b) Randomly choose 2`(n)−n distinct strings z1, z2, . . . , z2`(n)−n ∈ {0, 1}`(n).

(c) Let V =
{
y||s : y ∈ {0, 1}`(n)−n

}
. Let W = {z1, z2, . . . , z2`(n)−n}.

(d) Randomly choose bijection πn :
(
{0, 1}`(n) − V

)
→
(
{0, 1}`(n) −W

)
.

(e) Define function An : {0, 1}`(n)+1 → {0, 1} as follows: for all γ ∈ {0, 1}`(n)+1, An(γ) =

1 if and only if either there exists x ∈ ({0, 1}n − {s}) and y ∈ {0, 1}`(n)−n such that

g(x, πn(y||x)) = γ OR there exists z ∈W such that g(s, z) = γ.

(f) Define function fn : ({0, 1}n − {s})→ {0, 1}`(n) as follows: for all x ∈ ({0, 1}n−{s}),
fn(x) = πn(0`(n)−n||x).

(g) Define fn(s) = z1.

(h) For all i 6= n, choose (fi, Ai)← (Fi,Ai). Define f = {fm} and A = {Am}.

(i) Run D(f,A) on input z1.

Experiment 4

This experiment is identical to Experiment 3, except we modify step (g) as follows:

(g) Choose z ←r W . Define fn(s) = z.

Chapter 4. Black-box impossibility results 112

It is not difficult to verify that s, f , A, and the input to D in Experiment 1 are jointly distributed

identically to s, f , A, and the input to D in Experiment 3. Similarly, s, f , A, and the input

to D in Experiment 2 are jointly distributed identically to s, f , A, and the input to D in

Experiment 4.

The intuition is that even though we do not define πn on V , we have in mind that πn(V) = W

without fixing a particular bijection between V and W ; this information is sufficient for defining

An. Of course, in order to define fn(s), we need to have a value in mind for πn(0`(n)−n||s). In

Experiment 3, this value is z1, the input to D. In Experiment 4, we view the input z1 to D

as the value of πn(y||s) for randomly chosen y ∈ {0, 1}`(n)−n, that is, as the value of πn(v) for

randomly chosen v ∈ V ; in this case, it suffices to view πn on V as a randomly chosen bijection

between V and W , and hence we view the value of πn(0`(n)−n||s) as simply a random element

of W .

Observe that Experiments 3 and 4 differ only in step (g), and this difference only affects

the view1 of D when query s is made to f . Indeed, step (g) of these experiments can even

be deferred until D makes query s to f . This means that so long as D has not made query

s to f , the joint distribution of s and the view of D in Experiment 3 is identical to the joint

distribution of s and the view of D in Experiment 4. Equivalently, so long as D has not made

query s to f , the joint distribution of s and the view of D in Experiment 1 is identical to the joint

distribution of s and the view of D in Experiment 2. It follows that qD(n) = qpD(n) = qrD(n).

It also follows that whenever D fails to make query s, it has no information whatsoever to

distinguish Experiment 1 from Experiment 2. We conclude that |p′D(n)− r′D(n)| ≤ qD(n)|. �

To complete the proof of Lemma 4.3.4, it suffices to show that for every PPT oracle machine

D(·,·), qpD(n) is negligible. It turns out to be more convenient to show something stronger:

for every computationally unbounded probabilistic oracle machine D(·,·) that makes at most

polynomially-many oracle queries, we have that qpD(n) is negligible.

Recall that qpD(n) is the probability, in Experiment 1, that D(f,A) queries oracle f on s.

Also recall that in Experiment 1, D’s oracles (f,A) are chosen according to distribution (F ,A).

By the definition of (F ,A), choosing (f,A) ← (F ,A) means choosing (fi, Ai) according to

(Fi,Ai) independently for each i > 0. It follows that in Experiment 1, for all i 6= n, (fi, Ai) is

independent of s even given D’s input fn(s). This means that a computationally unbounded

probabilistic oracle machine D(·,·) can simulate (fi, Ai) for i 6= n on its own, without reducing

the probability that it queries f on s. That is, it is sufficient to give such D(·,·) only oracles

for (fn, An). For the sake of simplifying our analysis, we in fact replace An with a pair of

oracles that together are at least as strong as An. Consider the following modified version of

1The view of D consists of its input as well as the responses to its oracle queries.

Chapter 4. Black-box impossibility results 113

Experiment 1, parametrized by probabilistic oracle machine D(·,·,·) and n ∈ N.

Experiment 1′

(a) Choose (fn, An, πn)← (Fn,An,Πn) and s←r {0, 1}n.

(b) Let α = πn(0`(n)−n||s).

(c) Define function A1
n : {0, 1}`(n)+1 → {0, 1} as follows: for all γ ∈ {0, 1}`(n)+1, A1

n(γ) =

1 if and only if g(s, α) = γ.

(d) Define function A2
n : {0, 1}`(n)+1 → {0, 1} as follows: for all γ ∈ {0, 1}`(n)+1, A2

n(γ) =

1 if and only if there exists x ∈ {0, 1}n and y ∈ {0, 1}`(n)−n such that y||x 6= 0`(n)−n||s
and g(x, πn(y||x)) = γ.

(e) Run D(fn,A1
n,A

2
n) on input α.

Observe that for all γ ∈ {0, 1}`(n)+1, we have An(γ) = max(A1
n(γ), A2

n(γ)) and hence D

can compute An using the oracles it is given for A1
n and A2

n.

Define q′D(n) to be the probability that D makes oracle query s to fn.

We need to show that for every computationally unbounded probabilistic oracle machine D(·,·,·)

that makes at most polynomially-many oracle queries, q′D(n) is negligible.

We begin by considering probabilistic oracle machines E(·,·,·) that make no queries to A2
n

and that query A1
n and fn in a particular structured manner.

Claim 4.3.6 Let E(·,·,·) be a probabilistic oracle machine. Let function m(n) be a bound on the

number of oracle queries made by E(·,·,·) when run on inputs of length `(n). Suppose E makes

no queries to its third oracle, and uses its first and second oracles in the following restricted

“two-phase” manner: initially, E makes queries only to its second oracle; if, at some point, E

receives response 1 to an oracle query, then E makes no further queries to its second oracle,

and makes queries only to its first oracle. Then, for all n, q′E(n) ≤ [(m(n))2 −m(n)]/2n+1.

Proof (Claim 4.3.6) Fix n. Consider running E(·,·,·) as in Experiment 1′. Let X denote the set

of x ∈ {0, 1}n such that g(x, α) = g(s, α). We will abuse notation by using m to denote m(n);

that is, E makes at most m oracle queries.

By assumption, E’s behaviour can be viewed as consisting of two phases. In the first phase,

E makes queries only to A1
n. If some query to A1

n has response 1, then E immediately enters a

second phase where it makes queries only to fn.

Note that before E begins making queries, we have that given the view of E, every x ∈
{0, 1}n is equally likely to be the value of s. Each query γ to A1

n whose response is 0 rules out

(as potential values of s) all x such that g(x, α) = γ. But note that after such a query, the

Chapter 4. Black-box impossibility results 114

“un-ruled-out” values x ∈ {0, 1}n – that is, all x ∈ {0, 1}n such that query g(x, α) has not yet

been made to A1
n – are all equally likely to be the value of s given the view of E. Similarly,

note that a query γ to A1
n whose response is 1 rules out (as potential values of s) all x such

that g(x, α) 6= γ (that is, all x /∈ X are ruled out); immediately following such a query γ, all

x′ such that g(x′, α) = γ (that is, all x′ ∈ X) are equally likely, given the view of E, to be the

value of s. Once E begins querying fn (and has so far not queried fn on s), each query x ∈ X
whose response is not α rules out x as a potential value of s; after such a query, all the x′ ∈ X
that have not yet been queried to fn are equally likely, given the view of E, to be the value of

s. Also note that once E begins querying fn, each query x /∈ X provides no information about

s, since such x has already been ruled out as a potential value of s.

For 1 ≤ N ≤ 2n and w ≥ 0, define q
(N,w)
E to be the probability that if E has not yet

made a query to A1
n whose response is 1, there are N “un-ruled-out” values x ∈ {0, 1}n, and

E is allowed to make at most w additional oracle queries, then E queries fn on s. Note that

q′E(n) ≤ q(2
n,m)

E , and hence q
(2n,m)
E is the value we are ultimately interested in upper bounding.

We will prove by strong induction on w that for all 1 ≤ N ≤ 2n and w ≥ 0, we have

q
(N,w)
E ≤ w(w − 1)/(2N).

It is clear that q
(N,0)
E = 0 for all 1 ≤ N ≤ 2n. We also have that q

(N,1)
E = 0 for all 1 ≤ N ≤ 2n,

since E must make a query to A1
n whose response is 1 before making queries to fn, and hence

if E is allowed only a single oracle query then it cannot query fn.

Now consider q
(N,w)
E for w ≥ 2 and 1 ≤ N ≤ 2n. Let γ denote the next query to A1

n that

will be made by E. Let V be the set of strings x such that g(x, α) = γ. If |V | = 0 or if E has

previously made query γ, then A1
n(γ) = 0 but no additional x ∈ {0, 1}n will be ruled out by

this query; in this case, E has simply “wasted a query”, and the probability E queries fn on

s is q
(N,w−1)
E , which by induction is at most (w − 1)(w − 2)/(2N) < w(w − 1)2N . So suppose

|V | > 0 and E has not previously made query γ. Observe that given the view of E before

making query γ, the probability that s ∈ V is |V |/N . Now, if s ∈ V , then A1
n(γ) = 1, and

hence E will stop querying A1
n and henceforth only query fn. In this case, the probability that

E queries fn on s is at most (w − 1)/|V |. On the other hand, if s /∈ V , then A1
n(γ) = 0, and

hence E will continue making queries to A1
n. However, since A1

n(γ) = 0, all x ∈ V are ruled

out as potential values of s. It follows that, in this case, the probability that E queries fn on s

is at most q
(N−|V |,w−1)
E ; by induction, we have q

(N−|V |,w−1)
E ≤ (w− 1)(w− 2)/(2N − 2|V |). We

Chapter 4. Black-box impossibility results 115

then have that

q
(N,w)
E ≤ |V |

N
· w − 1

|V |
+
N − |V |
N

· (w − 1)(w − 2)

2(N − |V |)

=
w − 1

N
+

(w − 1)(w − 2)

2N

=
2(w − 1) + (w − 1)(w − 2)

2N

=
w(w − 1)

2N
,

as required.

We then have that q
(2n,m)
E ≤ m(m− 1)/2n+1 = (m2 −m)/2n+1. �

To finish the proof of Lemma 4.3.4, we consider probabilistic oracle machines D(·,·,·) that

have no restrictions in the manner in which they query their oracles.

Claim 4.3.7 Let D(·,·,·) be a probabilistic oracle machine. Let function m(n) be a bound on the

number of oracle queries made by D(·,·,·) when run on inputs of length `(n). Then, for all n,

q′D(n) ≤ [(m(n))2 + 5m(n) + 1]/2n.

Proof (Claim 4.3.7) We define a probabilistic oracle machine E(·,·,·) that, when run according

to Experiment 1′, simulates D “almost” according to Experiment 1′, but uses its own oracles in

the restricted two-phase manner described in Claim 4.3.6. E(fn,A1
n,A

2
n) will simulate D(f̂n,Â1

n,Â
2
n).

E will answer Â1
n queries using its own oracle A1

n. To answer Â2
n and f̂n queries, E will randomly

select a permutation π̂n : {0, 1}`(n) → {0, 1}`(n), and define Â2
n and f̂n using π̂ in the same way

that A2
n and fn are defined from permutation πn in Experiment 1′. For some of the queries x

made by D to f̂n, E will query fn on x (but will not use the response when responding to D).

We will bound q′E(n) using Claim 4.3.6, and argue that E queries fn on s in Experiment 1′

whenever its simulation of D queries f̂n on s. Then, to bound q′D(n), we will argue that it is

unlikely that D will make a query that “exposes” the fact that E is making up the answers it is

providing to f̂n and Â2
n queries, and hence the bound on the probability that the simulation of

D queries s must be “very close” to a bound on the probability that D queries s in Experiment

1′.

On input α ∈ {0, 1}`(n) and with access to oracles fn : {0, 1}n → {0, 1}`(n), A1
n : {0, 1}`(n)+1 →

{0, 1}, and A2
n : {0, 1}`(n)+1 → {0, 1}, E behaves as follows. E randomly selects s′ ∈ {0, 1}n,

and randomly selects a permutation π̂n : {0, 1}`(n) → {0, 1}`(n) such that π̂n(0`(n)−n||s′) = α.

Then, E simulates D(·,·,·) on input α and with access to oracles f̂n : {0, 1}n → {0, 1}`(n),
Â1
n : {0, 1}`(n)+1 → {0, 1}, and Â2

n : {0, 1}`(n)+1 → {0, 1} whose behaviour we define now.

Chapter 4. Black-box impossibility results 116

Whenever D makes a query x to its oracle f̂n, E provides response π̂n(0`(n)−n||x) to D.

Then, E checks if A1
n(g(x, α)) = 1: if E has previously made query γ = g(x, α) to A1

n, it checks

the response it received to that query; if E has previously received response 1 to a query to A1
n

different from γ, then it “knows” that A1
n(γ) 6= 1 without needing to make any query; otherwise,

E makes query γ to A1
n. If A1

n(g(x, α)) = 1, E makes query x to its oracle fn.

Whenever D makes a query γ to its oracle Â1
n, E first checks if it has previously made query

γ to (its own oracle) A1
n. If so, E gives the (previously obtained) value A1

n(γ) to D as the

response to query γ. If not, E checks if any previous query (of its own) to A1
n had response 1;

if so, E gives 0 to D as the response to query γ. Otherwise, E makes query γ to A1
n, and then

gives A1
n(γ) to D as the response to query γ.

Whenever D makes a query γ to its oracle Â2
n, E checks if there exists x ∈ {0, 1}n and

y ∈ {0, 1}`(n)−n such that π̂n(y||x) 6= α and g(x, π̂n(y||x)) = γ; if so, E gives 1 to D as the

response to query γ, and otherwise E gives 0 to D as the response to query γ. If there is a

unique string x ∈ {0, 1}n such that π̂n(0`(n)−n||x) 6= α and g(x, π̂n(0`(n)−n||x)) = γ, E checks if

A1
n(g(x, α)) = 1 (using the same approach it uses to check if A1

n(g(x, α)) = 1 when answering

query x to f̂n), and if so, E makes query x to its oracle fn.

Note that the number of oracle queries made by E is at most one more than the number of

oracle queries made by the simulation of D. For each Â1
n query made by D, E makes at most one

query to A1
n and no queries to f̂n. For each f̂n query x made by D such that A1

n(g(x, α)) = 0,

E makes at most one query to A1
n and no queries to f̂n. Next, consider f̂n queries x such that

A1
n(g(x, α)) = 1. For the first such query, E makes one query to A1

n one query to fn; for the

rest of these queries E makes one query to fn and no queries to A1
n. It remains to consider

the Â2
n queries γ made by D. When there does not exist a unique string x ∈ {0, 1}n such that

π̂n(0`(n)−n||x) 6= α and g(x, π̂n(0`(n)−n||x)) = γ, E does not make any oracle queries. When

such a unique string x does exist, E makes the same queries that it would make if D made

query x to f̂n. It follows that the number of oracle queries made by E when run on inputs of

length `(n) is at most m(n) + 1.

Consider running E(·,·,·) according to Experiment 1′, and let s and α be as chosen in this

experiment. We claim that E simulates D(·,·,·) “almost according” to Experiment 1′ with the

same choice of α and s. Specifically, if E defined permutation π′n to be the same as π̂n except

that the values of π̂n at points 0`(n)−n||s and 0`(n)−n||s′ are interchanged (so π′n(0`(n)−n||s) =

π̂n(0`(n)−n||s′) = α and π′n(0`(n)−n||s′) = π̂n(0`(n)−n||s)) and then used π′n in place of π̂n to

answer the oracle queries of D, then when E is run according to Experiment 1′ it would simulate

D according to Experiment 1′ with the same choice of α and s. Of course, E is not given s, so it

cannot actually construct π′n. However, since π′n and π̂n are identical except at points 0`(n)−n||s
and 0`(n)−n||s′, the only queries made by D that may receive a different response from E when

Chapter 4. Black-box impossibility results 117

E answers using π̂n instead of π′n are the following (where we assume, for now, that s 6= s′):

1. Query s to f̂n. When E uses π̂n, it gives answer π̂n(0`(n)−n||s) instead of α.

2. Query s′ to f̂n. When E uses π̂n, it gives answer α instead of π̂n(0`(n)−n||s).

3. Query γs = g(s, π̂n(0`(n)−n||s)) = g(s, π′n(0`(n)−n||s′)) to Â2
n. When E uses π̂n, it gives

answer 1. When E uses π′n, it gives answer 1 if and only if there exists x ∈ {0, 1}n and

y ∈ {0, 1}`(n)−n such that π′n(y||x) 6= α (that is, y||x 6= 0`(n)−n||s) and g(x, π′n(y||x)) = γs.

4. Query δs′ = g(s′, π̂n(0`(n)−n||s)) = g(s′, π′n(0`(n)−n||s′)) to Â2
n. When E uses π̂n, it gives

answer 1 if and only if there exists x ∈ {0, 1}n and y ∈ {0, 1}`(n)−n such that π̂n(y||x) 6= α

(that is, y||x 6= 0`(n)−n||s′) and g(x, π̂n(y||x)) = δs′ . When E uses π′n, it gives answer 1

since δs′ = g(s′, π′n(0`(n)−n||s′)).

We will say that γs = g(s, π̂n(0`(n)−n||s)) is bad if there does not exist x ∈ {0, 1}n and

y ∈ {0, 1}`(n)−n such that y||x 6= 0`(n)−n||s and g(x, π′n(y||x)) = γs. We will say that δs′ =

g(s′, π′n(0`(n)−n||s′)) is bad if there does not exist x ∈ {0, 1}n and y ∈ {0, 1}`(n)−n such that

y||x 6= 0`(n)−n||s′ and g(x, π̂n(y||x)) = δs′ . We will say that D makes a bad query if it makes

one of the following queries: s to f̂n, s′ to f̂n, bad γs to Â2
n, or bad δs′ to Â2

n.

Observe that E simulates D according to Experiment 1′ until D makes a bad query. This

means that the probability that D makes query s in Experiment 1′ must be at most the prob-

ability that the simulation of D makes query s or a bad query, which is simply the probability

that the simulation of D makes a bad query. That is, q′D(n) is at most the probability that the

simulation of D makes a bad query2. We now bound the probability that the simulation of D

makes a bad query.

We first claim that whenever the simulation of D queries s to f̂n or queries bad γs to

Â2
n, E makes query s to fn. To see this, first suppose the simulation of D makes query s to

f̂n. Then, since A1
n(g(s, α)) = 1, E will make query s to fn. Now suppose the simulation

of D queries bad γs to Â2
n. Since γs is bad, there is no x ∈ {0, 1}n such that x 6= s and

g(x, π′(0`(n)−n||x)) = γs. Then, since π′n and π̂n agree everywhere except at 0`(n)−n||s and

0`(n)−n||s′, there is no x ∈ {0, 1}n such that x 6= s, x 6= s′, and g(x, π̂(0`(n)−n||x)) = γs. Also,

recall that π̂n(0`(n)−n||s′) = α. This means that there is a unique string x ∈ {0, 1}n – in

particular, x = s – such that π̂n(0`(n)−n||x) 6= α and g(x, π̂n(0`(n)−n||x)) = γs. Then, since

A1
n(g(s, α)) = 1, E will make query s to fn. It follows that the probability that the simulation

of D queries s to f̂n or queries bad γs to Â2
n is at most q′E(n).

2More precisely, since we have assumed s′ 6= s, q′D(n) is at most the probability that either s′ = s or the
simulation of D makes a bad query.

Chapter 4. Black-box impossibility results 118

We next upper-bound the probability that the simulation of D makes at least one bad query

and that the first such bad query is either s′ to f̂n or bad δs′ to Â2
n. When upper-bounding this

probability of this event, we will assume that E answers oracle queries using π′n rather than

π̂n, since this only changes answers to bad queries, and hence will not change the probability

that at at least one bad query is made by the simulation of D, nor will it change the first bad

query made by D. Under this assumption, observe that the response to each oracle query made

by the simulation of D is completely determined by π′n and α (recall that s itself is completely

determined by α and π′n since π′n(0`(n)−n||s) = α).

Note that given π′n, α, and s, we have that s′ is simply a random n-bit string different from

s. That is, given s along with the entire view of the simulation of D, we have that s′ is a

random n-bit string different from s. Now, fix π′n and α (and hence s), and, conditioned on

these values, consider the probability that the simulation of D makes at least one bad query

and that the first such bad query is either s′ to f̂n or bad δs′ to Â2
n. Define Bad ⊆ {0, 1}n−{s}

to be the set of strings z such that if s′ = z, then δs′ = g(s′, π′n(0`(n)−n||s′)) is bad (note that

fixing s′ also fixes π̂n, allowing us to determine if δs′ is bad).

We claim that for all distinct z1, z2 ∈ Bad, we have δz1 6= δz2 . Suppose not, that is,

suppose z1, z2 ∈ Bad are distinct strings such that δz1 = δz2 . Now, if s′ = z1, we have that

π̂n(0`(n)−n||z2) = π′n(0`(n)−n||z2) since z2 is neither s nor s′, and hence g(z2, π̂n(0`(n)−n||z2)) =

g(z2, π
′
n(0`(n)−n||z2)) = δz2 = δz1 = δs′ . But this means that δs′ is not bad, contradicting

z1 ∈ Bad. Now, definining Badδ = {δz : z ∈ Bad}, we have |Badδ| = |Bad|.
First condition on the case that s′ /∈ Bad. Then, s′ is uniformly distributed over ({0, 1}n −

Bad)− {s}. It follows that the probability that the simulation of D queries s′ to f̂n is at most

m(n)/(2n − |Bad| − 1).

Now condition on the case that s′ ∈ Bad. Then, s′ is uniformly distributed over Bad, and

δs′ is uniformly distributed over Badδ. We will say that z ∈ Bad is covered by the simulation

of D if D queries z to f̂n or D queries δz to Â2
n. Observe that each query made by D can cover

at most one z ∈ Bad. It follows that the probability that s′ is covered is at most m(n)/|Bad|.
Removing conditioning on s′, π′n and α, we have that the probability that the simulation of

D makes at least one bad query and that the first such bad query is either s′ to f̂n or bad δs′

to Â2
n is at most

2n − |Bad| − 1

2n − 1
· m(n)

2n − |Bad| − 1
+
|Bad|
2n − 1

· m(n)

|Bad|
=

2m(n)

2n − 1
.

Putting everything together, we have that the probability that the simulation of D makes

a bad query is at most q′E(n) + 2m(n)
2n−1 . Then, recalling that we did our analysis under the

assumption that s′ 6= s, we have that q′D(n) ≤ q′E(n) + 2m(n)
2n−1 + 1

2n . It remains to bound q′E(n).

Observe that E makes no queries to its oracle A2
n. Furthermore, E’s querying behaviour

Chapter 4. Black-box impossibility results 119

consists of two phases, where in the first phase E makes queries only to A1
n, the second phase

commences as soon as some query receives response 1, and in the second phase E makes queries

only to fn. Then, since E makes at most m(n) + 1 queries, we have by Claim 4.3.6 that

q′E(n) ≤ (m(n))2+m(n)
2n+1 .

We now have

q′D(n) ≤ (m(n))2 +m(n)

2n+1
+

2m(n)

2n − 1
+

1

2n

<
(m(n))2 +m(n)

2n
+

4m(n)

2n
+

1

2n

We conclude that q′D(n) < [(m(n))2 + 5m(n) + 1]/2n. �

This completes the proof of Lemma 4.3.4. �

This also completes the proof of Theorem 4.3.2.

�

It is easy to extend Theorem 4.3.2 to the case of constructions whose querying function is

a permutation.

Corollary 4.3.8 Let `(n) be a length function. Let G(·) : {0, 1}n → {0, 1}`(n)+1 be an oracle

construction of a number generator, making a single query of length n to an oracle mapping n

bits to `(n) bits, such that the querying function of G(·) is a permutation. Then there is no fully

black-box reduction of the pseudo-randomness of G(·) to the pseudo-randomness of its oracle.

Proof sketch We briefly describe how to modify the proof of Theorem 4.3.2 to obtain Corollary

4.3.8.

Let QG : {0, 1}n → {0, 1}n be the querying function of G(·). As before, we define g :

{0, 1}n × {0, 1}`(n) → {0, 1}`(n)+1 to be such that for all x ∈ {0, 1}n and all α ∈ {0, 1}`(n),
g(x, α) is the output of G(·) on input x when given α as the response to its oracle query. That is,

for all x ∈ {0, 1}n and every function O : {0, 1}n → {0, 1}`(n), we have g(x,O(QG(x)) = GO(x).

We modify the definition of distribution (F ,A,Π) in the following way to take into account

the behaviour of QG. When sampling a triple (fn, An, πn) ∈ (Fn,An,Πn), we sample πn

and fn as before, but we now define function An : {0, 1}`(n)+1 → {0, 1} as follows: for all

z ∈ {0, 1}`(n)+1, An(z) = 1 if and only if there exists x ∈ {0, 1}n and y ∈ {0, 1}`(n)−n such that

g(Q−1G (x), πn(y||x)) = z.

Recall that the proof of Theorem 4.3.2 consists of Lemmas 4.3.3 and 4.3.4. It is straightfor-

ward to modify the proof of Lemma 4.3.3 to take into account the new definition of distribution

Chapter 4. Black-box impossibility results 120

(F ,A,Π). The changes to the proof of Lemma 4.3.4 are more numerous but none involve any

new or difficult ideas – they simply consist of small changes to experiments and simulations to

make them consistent with the modified definition of (F ,A,Π). For example, when defining

Experiment 3, we modify step (e) so that Q−1G is applied to the first argument of each occurrence

of g(·, ·); the other changes to the proof of Lemma 4.3.4 are similar. �

Observe that the changes we make in order to obtain the proof of Corollary 4.3.8 rely on the

fact that Q−1G is well-defined on {0, 1}n. Once we can no longer rely on this fact (that is, once

we consider constructions whose querying function QG is not required to be a permutation),

the changes we need to make to the proof are more significant.

Theorem 4.3.9 Let k ∈ N, and let `1(n) and `2(n) be length functions such that `1(n) ≤
n + O(log n) and `2(n) > n. Let G(·) : {0, 1}`1(n) → {0, 1}`1(n)+(`2(n)−n)+1 be a non-adaptive

oracle construction of a number generator, making a single query of length n to an oracle

mapping n bits to `2(n) bits. Then there is no fully black-box reduction of the pseudo-randomness

of G(·) to the pseudo-randomness of its oracle.

Proof Let QG : {0, 1}`1(n) → {0, 1}n be the querying function of G(·). Define g : {0, 1}`1(n) ×
{0, 1}`2(n) → {0, 1}`1(n)+(`2(n)−n)+1 to be such that for all x ∈ {0, 1}`1(n) and all α ∈ {0, 1}`2(n),
g(x, α) is the output of G(·) on input x when given α as the response to its oracle query. That

is, for all x ∈ {0, 1}`1(n) and every function O : {0, 1}n → {0, 1}`2(n), we have g(x,O(QG(x))) =

GO(x).

There are two cases to consider, one where the image of QG is “small” and the other where

the image of QG is “large”.

Define QG,n to be QG restricted to inputs of length `1(n); that is, QG,n is the querying

function of G(·,·) for security parameter n.

For every function f , let Im(f) denote the image of f .

Case 1: |Im(QG,n)| < 2n

nd
for all d and sufficiently large n

This is the easy case. The basic idea is to define a distribution F = {Fn} over functions

mapping n bits to `2(n) bits such that functions chosen according to this distribution are “very

non-random” on Im(QG,n) but random everywhere else. Since Im(QG) is small, the “non-

random” behaviour on Im(QG) cannot be used to break the pseudo-randomness of f ∈ F . On

the other hand, the “non-random” behaviour on Im(QG) makes it easy to break the pseudo-

randomness of Gf for all f ∈ F .

We begin by defining a distribution F = {Fn}. For each n > 0, Fn is the distribution over

functions mapping n bits to `2(n) bits defined by following procedure for sampling a function

Chapter 4. Black-box impossibility results 121

fn. For all x ∈ {0, 1}n such that x /∈ Im(QG,n), fn(x) is a randomly chosen `2(n)-bit string.

For all x ∈ Im(QG,n), fn(x) is 0`2(n). In other words, Fn is the uniform distribution on the set

of all functions fn : {0, 1}n → {0, 1}`2(n) such that fn(x) = 0`2(n) for all x ∈ Im(QG,n).

We now define a function A = An (which we will show breaksGf for all f ∈ F). For each n >

0, An : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1} is defined as follows: for all z ∈ {0, 1}`1(n)+(`2(n)−n)+1,

An(z) = 1 if and only if there exists x ∈ {0, 1}`1(n) such that g(x, 0`2(n)) = z.

Claim 4.3.10 With probability 1 over the choice f ← F , adversary A breaks the pseudo-

randomness of Gf .

Proof (Claim 4.3.10) Fix f ∈ F . We will show that A breaks Gf . Specifically, we show that

A accepts every pseudo-randomly generated string, but accepts randomly chosen strings with

probability at most 1/4.

Fix n > 0.

First consider the probability that A accepts pseudo-randomly generated strings. Ob-

serve that by definition of distribution F , we have that for all s ∈ {0, 1}`1(n), Gf (s) =

g(s, f(QG(s))) = g(s, 0`2(n)). Then we have by definition of A that A accepts Gf (s). That

is, A accepts pseudo-randomly generated strings with probability 1.

Now consider the probability that A accepts a randomly chosen (`1(n) + (`2(n)−n) + 1)-bit

string. It is easy to see from the definition of A that A accepts at most 2`1(n) strings of length

`1(n) + (`2(n)−n) + 1. This means that A accepts randomly chosen strings with probability at

most 2`1(n)/2`1(n)+(`2(n)−n)+1 = 1/2`2(n)−n+1. Then, since `2(n) > n, we have that A accepts

randomly chosen strings with probability at most 1/4. �

To complete Case 1, it suffices to prove the following claim and then apply Theorem 4.2.1.

Claim 4.3.11 Let D(·,·) be a PPT oracle machine. For all n ∈ N, define pD(n) to be the

probability that when f ← F and s ←r {0, 1}n, D(f,A) accepts f(s). For all n ∈ N, define

rD(n) to be the probability that when f ← F and z ←r {0, 1}`2(n), D(f,A) accepts z. Then,

|pD(n)− rD(n)| < 1/nc for all c and sufficiently large n.

Proof (Claim 4.3.11) It turns out to be more convenient to consider computationally unbounded

probabilistic oracle machines D(·,·) that make at most polynomially-many queries, rather than

only considering PPT oracle machines. Observe that since A is a computable function, a

computationally unbounded machine can compute A for itself (that is, without being given an

oracle for A). We will therefore show that for every computationally unbounded probabilistic

oracle machine D(·) that makes at most polynomially-many oracle queries, if we define

p̂D(n) = Pr
f←F

s←r{0,1}n

[
Df (f(s)) = 1

]

Chapter 4. Black-box impossibility results 122

and

r̂D(n) = Pr
f←F

z←r{0,1}`2(n)

[
Df (z) = 1

]
,

then |p̂D(n)− r̂D(n)| < 1/nc for all c and sufficiently large n.

Let D(·) be a probabilistic oracle machine that makes at most polynomially-many oracle

queries. Let m(n) be a polynomial that bounds the number of oracle queries made by D(·)

when D(·) is run on inputs of length `2(n). Consider the following experiments.

Experiment 1

(a) Choose f ← F

(b) Choose s←r {0, 1}n.

(c) Define z = f(s)

(d) Run Df on input z.

Experiment 2

(a) Choose f ← F

(b) Choose s←r {0, 1}n.

(c) Choose z ←r {0, 1}`2(n)

(d) Run Df on input z.

Observe that p̂D(n) is the probability that D outputs 1 in Experiment 1, and r̂D(n) is the

probability that D outputs 1 in Experiment 2.

Now note that conditioned on s /∈ Im(QG), D’s view is identical in these two experiments

until it queries s; specifically, D sees a randomly chosen input and (until it queries s) sees random

and independently chosen answers to each distinct oracle query. It follows that |p̂D(n)− r̂D(n)|
is at most the probability that either s ∈ Im(QG), or both s /∈ Im(QG) and D queries s. The

probability that s ∈ Im(QG) is exactly |Im(QG,n)|/2n. Also, it is easy to see that conditioned

on s /∈ Im(QG), the probability that D queries s is at most m(n)/(2n − |Im(QG,n)|). We then

have

|p̂D(n)− r̂D(n)| ≤
|Im(QG,n)|

2n
+

2n − |Im(QG,n)|
2n

· m(n)

2n − |Im(QG,n)|

=
|Im(QG,n)|

2n
+
m(n)

2n
.

But then since (by assumption) |Im(QG,n)| < 2n

nd
for all d and sufficiently large n, and since

m(n) is a polynomial, we have that |p̂D(n)− r̂D(n)| < 1/nc for all c and sufficiently large n. �

Chapter 4. Black-box impossibility results 123

Case 2: |Im(QG)| ≥ 2n

nd
for some d and infinitely many n The main idea for this case is

to restrict our attention to a portion of the domain of QG such that QG is 1-1 on this portion.

This allows us to proceed largely as in the proof of Theorem 4.3.2. We need this portion of the

domain of QG to be large, and for this we rely on the assumption about |Im(QG)|.
Fix d such that |Im(QG)| ≥ 2n

nd
for infinitely many n. Let N be the set of all n ∈ N such

that |Im(QG)| ≥ 2n

nd
.

For each n ∈ N , we will abuse notation by letting Q−1G,n : Im(QG,n) → {0, 1}`1(n) be the

function defined as follows: for all x ∈ Im(QG,n), Q−1G,n(x) is the lexicographically-first string y

such that QG,n(y) = x.

Now, as in the proof of Theorem 4.3.2, we define a joint distribution (F ,A,Π) = {(Fn,An,Πn)}.
For each n /∈ N , (Fn,An,Πn) is the distribution defined by the following procedure for

sampling a triple (fn, An, πn).

• Define πn : {0, 1}`2(n) → {0, 1}`2(n) to be the identity function.

• Randomly select a function fn : {0, 1}n → {0, 1}`2(n).

• Define function An : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1} to be the constant 0 function.

For each n ∈ N , (Fn,An,Πn) is the distribution defined by the following procedure for

sampling a triple (fn, An, πn).

• Randomly select a permutation πn : {0, 1}`2(n) → {0, 1}`2(n).

• Define function fn : {0, 1}n → {0, 1}`2(n) as follows: for all x ∈ {0, 1}n, fn(x) =

πn(0`2(n)−n||x).

• Define function An : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1} as follows: for every z, An(z) = 1 if

and only if there exists x ∈ Im(QG,n) and y ∈ {0, 1}`2(n)−n such that g(Q−1G,n(x), πn(y||x)) =

z.

Observe that for n ∈ N , the definition of distribution (Fn,An,Πn) is very similar to the

definition in the proof of Theorem 4.3.2, except that we now need to take into account Q−1G,n

when sampling function An.

Now, for (f,A) ← (F ,A), we consider the pseudo-randomness of Gf with respect to ad-

versary A, and we consider the pseudo-randomness of f with respect to adversaries that have

oracle access to f and A.

Lemma 4.3.12 With probability 1 over the choice (f,A) ← (F ,A), adversary A breaks the

pseudo-randomness of Gf .

Chapter 4. Black-box impossibility results 124

Lemma 4.3.13 Let D(·,·) be a PPT oracle machine. For all n ∈ N, define pD(n) to be the

probability that when (f,A) ← (F ,A) and s ←r {0, 1}n, D(f,A) accepts f(s). For all n ∈ N,

define rD(n) to be the probability that when (f,A)← (F ,A) and z ←r {0, 1}`2(n), D(f,A) accepts

z. Then, |pD(n)− rD(n)| < 1/nc for all c and sufficiently large n.

Observe that Lemma 4.3.12, Lemma 4.3.13, and Theorem 4.2.1 complete the proof of Case

2.

We first prove Lemma 4.3.12.

Proof (Lemma 4.3.12) Fix a sample (f,A, π) ← (F ,A,Π). We will show that A breaks

Gf . The main idea is that for all n ∈ N , A accepts at least a |Im(QG,n)|/2`1(n) frac-

tion of pseudo-randomly generated strings, but by a counting argument, A accepts at most

a |Im(QG,n)|/2`1(n)+1 fraction of randomly chosen strings.

Fix n ∈ N .

Define pA(n) to be the probability that A accepts Gf (s) for randomly chosen s ∈ {0, 1}`1(n).
We claim that A accepts Gf (s) for every s ∈ Im(Q−1G,n). Fix s ∈ Im(Q−1G,n). Let t = QG,n(s)

(and hence we have s = Q−1G,n(t)). Recall that by definition of g, we have that Gf (s) =

g(s, f(t)). Also, by definition of (F ,A,Π), we have that that f(t) = π(0`2(n)−n||t) and A

accepts g(s, π(0`2(n)−n||t)). That is, A accepts Gf (s). So we have pA(n) ≥ |Im(QG,n)|/2`1(n).
Define rA(n) to be the probability thatA accepts randomly chosen z ∈ {0, 1}`1(n)+(`2(n)−n)+1.

It is easy to see by the definition of (F ,A,Π) that A accepts at most |Im(QG,n)| · 2`2(n)−n

strings of length `1(n) + (`2(n) − n) + 1. This means that rA(n) is at most |Im(QG,n)| ·
2`2(n)−n/2`1(n)+(`2(n)−n)+1 = |Im(QG,n)|/2`1(n)+1.

So we have pA(n)−rA(n) ≥ |Im(QG,n)|/2`1(n)+1 for all n ∈ N . Then, since (by assumption)

|Im(QG)| ≥ 2n/nd for all n ∈ N , we have pA(n) − rA(n) ≥ 2n/2`1(n)+1+d logn for all n ∈ N .

Finally, since `1(n) ≤ n + O(log n), we conclude that pA(n) − rA(n) > 1/nc for some c and

sufficiently large n ∈ N (and hence infinitely many n ∈ N). �

It remains to prove Lemma 4.3.13.

Proof (Lemma 4.3.13) The proof is very similar to the proof of Lemma 4.3.4. For the sake of

conciseness, we focus only on the differences.

First, note that by the definition of distribution (F ,A,Π), it is easy to see that for every

PPT oracle machine D(·,·), we have |pD(n)−rD(n)| < 1/nc for all c and sufficiently large n /∈ N .

The point is that for such n, when we choose (fn, An) ← (Fn,An), fn is a randomly-chosen

function and An is a constant function (which is of no help for breaking the pseudo-randomness

of fn). It therefore suffices to show that |pD(n)− rD(n)| < 1/nc for all c and sufficiently large

n ∈ N .

Chapter 4. Black-box impossibility results 125

Now, for each probabilistic oracle machine D(·,·) and each n ∈ N , consider the following

experiment.

Experiment 1

(a) Choose (f,A, π)← (F ,A,Π) and s←r {0, 1}n.

(b) Run D(f,A) on input π(0`2(n)−n||s).

Define qpD(n) to be the probability that D makes oracle query s to f .

By the same argument as in the proof of Lemma 4.3.4, we have |pD(n)− rD(n)| ≤ qpD(n), and

hence it suffices to bound qpD(n).

Now, as in the proof of Lemma 4.3.4, instead of considering only PPT oracle machine D(·,·),

it is more convenient to consider computationally unbounded probabilistic oracle machines

D(·,·) that make at most polynomially-many queries. Also as before, it suffices to give such

machines D(·,·) oracles for (fn, An) in Experiment 1, since for all i 6= n, we have that (fi, Ai) is

independent of s even given D’s input f(s), and hence such machines D(·,·) can sample (fi, Ai)

for i 6= n by themselves without reducing the probability that they make oracle query s. Finally,

as before, we modify Experiment 1 by replacing An with a pair of oracle that together are at

least as strong as An. The details are different, since the definition of An itself is different, and

hence we now describe the entire modified experiment, parametrized by probabilistic oracle

machine D(·,·,·) and n ∈ N .

Experiment 1′

(a) Choose (fn, An, πn)← (Fn,An,Πn) and s←r {0, 1}n.

(b) Let α = πn(0`2(n)−n||s).

(c) Define function A1
n : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1,⊥} as follows:

• If s /∈ Im(QG,n): for all γ ∈ {0, 1}`2(n)+(`1(n)−n)+1, A1
n(γ) = ⊥.

• If s ∈ Im(QG,n): for all γ ∈ {0, 1}`2(n)+(`1(n)−n)+1, if g(Q−1G,n(s), α) = γ then

A1
n(γ) = 1, and otherwise A1

n(γ) = 0.

(d) Define function A2
n : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1} as follows:

For all γ ∈ {0, 1}`2(n)+(`1(n)−n)+1, A2
n(γ) = 1 if and only if there exists x ∈ Im(QG,n)

and y ∈ {0, 1}`2(n)−n such that y||x 6= 0`2(n)−n||s and g(Q−1G,n(x), πn(y||x)) = γ.

(e) Run D(fn,A1
n,A

2
n) on input α.

Observe that for all γ ∈ {0, 1}`(n)+1, we have An(γ) = 1 if either A1
n(γ) = 1 or A2

n(γ) = 1,

and otherwise we have An(γ) = 0. This means that D can compute An using the oracles

it is given for A1
n and A2

n.

Chapter 4. Black-box impossibility results 126

Define q′D(n) to be the probability that D makes oracle query s to fn.

To complete the proof of Lemma 4.3.13, it suffices to prove the following claim.

Claim 4.3.14 Let D(·,·,·) be a probabilistic oracle machine. Let function m(n) be a bound on

the number of oracle queries made by D(·,·,·) when run on inputs of length `2(n). Then, for all

n ∈ N , q′D(n) ≤ [(m(n))2 + 7m(n) + 1]/2n.

Proof (Claim 4.3.14) We proceed in a manner very similar to the proof of Claim 4.3.7. As

before, we define a probabilistic machine E(·,·,·) that, when run according to Experiment 1′,

simulates D “almost” according to Experiment 1′, and we analyze this simulation in order to

bound q′D(n). The key difference is that in our definition of E, we need to do cases based on

whether s ∈ Im(QG,n). In particular, E will use its oracle A1
n to determine if s ∈ Im(QG,n).

When s ∈ Im(QG,n), E will randomly choose s′ ∈ Im(QG,n) and then proceed as before, and

otherwise E will randomly choose s′ ∈ ({0, 1}n−Im(QG,n)) and then proceed almost as before.

We now provide more details, and rely on the arguments in the proof of Claim 4.3.7 where

possible.

On input α ∈ {0, 1}`2(n) and with access to oracles fn : {0, 1}n → {0, 1}`2(n), A1
n :

{0, 1}`1(n)+(`2(n)−n)+1, and A2
n : {0, 1}`1(n)+(`2(n)−n)+1, E behaves as follows. E first makes

query 0`1(n)+(`2(n)−n)+1 to A1
n. If the response to this query is ⊥, then E randomly selects

s′ ∈ ({0, 1}n − Im(QG,n)); otherwise, E randomly selects s′ ∈ Im(QG,n). Then, E ran-

domly selects a permutation π̂n : {0, 1}`2(n) → {0, 1}`2(n) such that π̂n(0`2(n)−n||s′) = α.

Then, E simulates D(·,·,·) on input α and with access to oracles f̂n : {0, 1}n → {0, 1}`2(n),
Â1
n : {0, 1}`1(n)+(`2(n)−n)+1, and Â2

n : {0, 1}`1(n)+(`2(n)−n)+1 defined almost as in the proof of

Claim 4.3.7, except that we need to use Q−1G,n when answering certain queries. For the sake of

completeness, we now fully describe the behaviour of these oracles.

If the response to E’s initial oracle query was ⊥, then E responds to D’s oracle queries as

follows. Whenever D makes query x to its oracle f̂n, E provides response π̂n(0`2(n)−n||x) to

D, and makes query x to fn. Whenever D makes a query γ its oracle Â1
n, E provides response

⊥. Whenever D makes a query γ to its oracle Â2
n, E checks if there exists x ∈ Im(QG,n) and

y ∈ {0, 1}`2(n)−n such that g(Q−1G,n(x), π̂n(y||x)) = γ; if so, E gives 1 to D as the response to

query γ, and otherwise E gives 0 to D as the response to query γ.

If the response to E’s initial oracle query was not ⊥, then E responds to D’s oracle queries

as follows.

Whenever D makes a query x to its oracle f̂n, E provides response π̂n(0`2(n)−n||x) to

D. If x /∈ Im(QG,n), then E takes no further action for query x. Otherwise, E checks if

A1
n(g(Q−1G,n(x), α)) = 1: if E has previously made query γ = g(Q−1G,n(x), α) to A1

n, it checks the

Chapter 4. Black-box impossibility results 127

response it received to that query; if E has previously received response 1 to a query to A1
n

different from γ, then it “knows” that A1
n(γ) 6= 1 without needing to make any query; otherwise,

E makes query γ to A1
n. If A1

n(g(Q−1G,n(x), α)) = 1, E makes query x to its oracle fn.

Whenever D makes a query γ to its oracle Â1
n, E first checks if it has previously made query

γ to (its own oracle) A1
n. If so, E gives the (previously obtained) value A1

n(γ) to D as the

response to query γ. If not, E checks if any previous query (of its own) to A1
n had response 1;

if so, E gives 0 to D as the response to query γ. Otherwise, E makes query γ to A1
n, and then

gives A1
n(γ) to D as the response to query γ.

Whenever D makes a query γ to its oracle Â2
n, E checks if there exists x ∈ Im(QG,n) and

y ∈ {0, 1}`(n)−n such that π̂n(y||x) 6= α and g(Q−1G,n(x), π̂n(y||x)) = γ; if so, E gives 1 to D as the

response to query γ, and otherwise E gives 0 to D as the response to query γ. If there is a unique

string x ∈ Im(QG,n) such that π̂n(0`2(n)−n||x) 6= α and g(Q−1G,n(x), π̂n(0`2(n)−n||x)) = γ, E

checks if A1
n(g(Q−1G,n(x), α)) = 1 (using the same approach it uses to check if A1

n(g(Q−1G,n(x), α)) =

1 when answering query x to f̂n), and if so, E makes query x to its oracle fn.

Observe that when the response to E’s initial oracle query is ⊥, the total number of oracle

queries made by E is at most one more than the number of oracle queries made by simulation

of D, that is, at most m(n) + 1. Also, when the response to E’s initial oracle query is not ⊥,

then by exactly the reasoning given in the proof of Claim 4.3.7, the number of oracle queries

made by E (not counting the initial query) is at most one more than the number of oracle

queries made by the simulation of D; it follows that in this case, the total number of oracle

queries made by E is at most m(n) + 2.

Consider running E(·,·,·) according to Experiment 1′, and let s and α be as chosen in this

experiment. We claim that, as in the proof of Claim 4.3.7, E simulatesD(·,·,·) “almost according”

to Experiment 1′ with the same choice of α and s. Specifically, if E defined permutation π′n

to be the same as π̂n except that the values of π̂n at points 0`2(n)−n||s and 0`2(n)−n||s′ are

interchanged (so π′n(0`2(n)−n||s) = π̂n(0`2(n)−n||s′) = α and π′n(0`2(n)−n||s′) = π̂n(0`2(n)−n||s))
and then used π′n in place of π̂n to answer the oracle queries of D, then when E is run according

to Experiment 1′ it would simulate D according to Experiment 1′ with the same choice of α

and s. Of course, E is not given s, so it cannot actually construct π′n. However, since π′n and

π̂n are identical except at points 0`2(n)−n||s and 0`2(n)−n||s′, there are only a small number of

possible queries made by D that receive a different response from E when E answers using π̂n

instead of π′n.

First consider the case that the first query made by E receives response ⊥, that is, the case

s /∈ Im(QG,n).

This case occurs with probability exactly (2n − |Im(QG,n)|)/2n. In this case, by definition

of E, we also have s′ /∈ Im(QG,n). But then it is easy to see by the way that E answers oracle

Chapter 4. Black-box impossibility results 128

queries in this case that all queries made by D to Â1
n and Â2

n receive the same response whether

E answers using π′n or π̂n. This means that the only queries made by D that receive a different

response from E when E answers using π̂n instead of π′n are queries s and s′ to f̂n (of course, if

it happens to be the case that s = s′, then even these queries receive the same response whether

E answers using π′n and π̂n).

Now, it is easy to see that the probability that D makes query s′ when s 6= s′ (and hence s′ is

uniformly distributed over ({0, 1}n− Im(QG,n))−{s}) is at most m(n)/(2n− |Im(QG,n)| − 1).

The probability that s′ 6= s is exactly (2n − |Im(QG,n)| − 1)/(2n − |Im(QG,n)|). Then, the

probability that both s′ 6= s and D makes query s is at most m(n)/(2n − |Im(QG,n)|).

Also, note that whenever D makes query s, so does E. But it is easy to see that the

probability that E makes query s is at most m(n)/(2n−|Im(QG,n)|), since the only information

that E gets from oracle A1
n is that s /∈ Im(QG,n), E makes no queries to A2

n, and E makes at

most m(n) queries to fn. This means that the probability that D makes query s is at most

m(n)/(2n − |Im(QG,n)|).

Note that E simulates D according to Experiment 1′ until D makes query s or query s′ 6= s.

This means the probability that D makes query s in Experiment 1′ is at most the probability

that the simulation of D makes query s or query s′ 6= s. That is, conditioned on s /∈ Im(QG,n),

the probability that D makes query s in Experiment 1′ is at most 2m(n)/(2n − |Im(QG,n)|).

Now consider the case that the first query made by E receives a response different from ⊥,

that is, the case s ∈ Im(QG,n).

This case occurs with probability exactly |Im(QG,n)|/2n. In this case, as in the proof of

Claim 4.3.7, there are at most four possible queries made by D that receive a different response

from E (where we assume, for now, that s 6= s′):

1. Query s to f̂n. When E uses π̂n, it gives answer π̂n(0`2(n)−n||s) instead of α.

2. Query s′ to f̂n. When E uses π̂n, it gives answer α instead of π̂n(0`2(n)−n||s).

3. Query γs = g(Q−1G,n(s), π̂n(0`2(n)−n||s)) = g(Q−1G,n(s), π′n(0`2(n)−n||s′)) to Â2
n. When E

uses π̂n, it gives answer 1. When E uses π′n, it gives answer 1 if and only if there exists

x ∈ Im(QG,n) and y ∈ {0, 1}`2(n)−n such that π′n(y||x) 6= α (that is, y||x 6= 0`2(n)−n||s)
and g(Q−1G,n(x), π′n(y||x)) = γs.

4. Query δs′ = g(Q−1G,n(s′), π̂n(0`2(n)−n||s)) = g(Q−1G,n(s′), π′n(0`2(n)−n||s′)) to Â2
n. When E

uses π̂n, it gives answer 1 if and only if there exists x ∈ Im(QG,n) and y ∈ {0, 1}`2(n)−n

such that π̂n(y||x) 6= α (that is, y||x 6= 0`2(n)−n||s′) and g(Q−1G,n(x), π̂n(y||x)) = δs′ . When

E uses π′n, it gives answer 1 since δs′ = g(Q−1G,n(s′), π′n(0`2(n)−n||s′)).

Chapter 4. Black-box impossibility results 129

Staying consistent with the terminology from the proof of Claim 4.3.7, we will say that γs =

g(Q−1G,n(s), π̂n(0`2(n)−n||s)) is bad if there does not exist x ∈ Im(QG,n) and y ∈ {0, 1}`2(n)−n such

that y||x 6= 0`2(n)−ns and g(Q−1G,n(x), π′n(y||x)) = γs. We will say δs′ = g(Q−1G,n(s′), π′n(0`2(n)−n||s′))
is bad if there does not exist x ∈ Im(QG,n) and y ∈ {0, 1}`2(n)−n such that y||x 6= 0`2(n)−n||s′

and g(Q−1G,n(x), π̂n(y||x)) = δs′ . We will say that D makes a bad query if it makes one of the

following queries: s to f̂n, s′ to f̂n, bad γs to Â2
n, or bad δs′ to Â2

n.

Observe that E simulates D according to Experiment 1′ until D makes a bad query. This

means that the probability that D makes query s in Experiment 1′ must be at most the prob-

ability that the simulation of D makes query s or a bad query, which is simply the probability

that the simulation of D makes a bad query. Now, to bound the probability that the simulation

of D makes a bad query, it suffices to apply the reasoning used in the proof of Claim 4.3.7,

modified to account for the fact that in the current proof, s and s′ are randomly chosen from

Im(QG,n), not from {0, 1}n. We then have that the probability that the simulation of D makes

a bad query is at most ((m(n))2 + 5m(n) + 1)/|Im(QG,n)| (this also accounts for the possibility

that s′ = s). That is, conditioned on s ∈ Im(QG,n), the probability that D makes query s in

Experiment 1′ is at most ((m(n))2 + 5m(n) + 1)/|Im(QG,n)|.
Then, putting together our probability bounds for the two cases s ∈ Im(QG,n) and s /∈

Im(QG,n), we have

q′D(n) ≤
2n − |Im(QG,n)|

2n
· 2m(n)

2n − |Im(QG,n)|
+
|Im(QG,n)|

2n
· (m(n))2 + 5m(n) + 1

|Im(QG,n)|

=
(m(n))2 + 7m(n) + 1

2n
,

and hence we have finished proving the claim. �

This completes the proof of Lemma 4.3.13. �

This also completes the proof of Theorem 4.3.9.

�

4.3.3 Proof of Theorem 4.3.1: The general case

We now consider constructions that make constantly-many queries. Recall that when consid-

ering constructions that make a single query (that is, when proving Theorem 4.3.9), we did

cases based on whether the image of the querying function was “large” or “small”. When the

image was “large”, we restricted our attention (when defining our distribution over oracles)

to a sufficiently large portion of the domain of the querying function such that the querying

function was 1-1 on this portion. This had the effect of uniquely associating particular inputs

to the construction with particular queries. We would like to follow a similar approach here.

Chapter 4. Black-box impossibility results 130

However, the querying function is more complicated now, since in addition to an input x of the

construction, it also takes a query number (between 0 and k− 1) as input. When the image of

the querying function is “large”, we would now like to define a sufficiently large set Good(n) of

inputs to the construction where each input in Good(n) is uniquely associated with a particular

set of k queries, such that no pair of these inputs shares a common query. But this might not

be possible – for example, the construction might make query 〈0〉 on every input, and yet still

have a querying function with a large image as a result of the other queries made on each input.

This means we need to proceed more carefully when defining Good(n), by considering, for each

i, whether the size of the image of the querying function restricted to the i-th query is “large”

or “small”. We then combine ideas from Case 1 and Case 2 of the proof of Theorem 4.3.9.

Proof (Theorem 4.3.1) Let QG : {0, 1}`1(n)+log k → {0, 1}n be the querying function of G(·).

We assume without loss of generality that G(·) always makes k distinct queries. We also as-

sume without loss of generality that QG encodes the queries of G(·) in lexicographical order:

specifically, we assume that for every x ∈ {0, 1}`1(n) and every 0 ≤ i < j < k, we have

QG(x, 〈i〉) < QG(x, 〈j〉). For all n > 0, define QG,n to be QG restricted to inputs of length

`1(n) + log k; that is, QG,n is the querying function of G(·,·) for security parameter n.

Define g : {0, 1}`1(n) × {0, 1}k·`2(n) → {0, 1}`1(n)+(`2(n)−n)+1 to be such that for all x ∈
{0, 1}`1(n) and all α0, . . . , αk−1 ∈ {0, 1}`2(n), g(x, α0, . . . , αk−1) is the output of G(·) on input x

when given α0, . . . , αk−1 as the responses to its oracle queries. That is, for every x ∈ {0, 1}`1(n)

and for every function O : {0, 1}n → {0, 1}`2(n), we have g(x,O(QG(x, 〈0〉)), . . . , O(QG(x, 〈k −
1〉))) = GO(x).

We now give a procedure that iteratively defines a sequence of sets Nk ⊆ Nk−1 · · · ⊆
N0 ⊆ N and, at the same time, for each 0 ≤ i ≤ k and for each n ∈ Ni, defines a set

Goodi(n) ⊆ {0, 1}`1(n). The procedure also defines a set Small ⊆ {0, . . . k− 1}, and a sequence

of polynomials pi+1(n) for i /∈ Small. We need the following properties:

(i) For all 0 ≤ i ≤ k, Ni is of infinite size.

(ii) For all 0 ≤ i ≤ k, there exists a polynomial p(n) such that for sufficiently large n ∈ Ni,
|Goodi(n)| ≥ 2`1(n)/p(n).

(iii) For all 0 ≤ i ≤ k, all n ∈ Ni, all x, x′ ∈ Goodi(n), all 0 ≤ j < i and all 0 ≤ j′ < k, if

x 6= x′ and j /∈ Small, then QG(x, 〈j〉) 6= QG(x′, 〈j′〉).

Initially, Small = ∅. We define N0 = N and Good0(n) = {0, 1}`1(n) for all n ∈ N. We then

proceed as follows:

For every 1 ≤ i ≤ k do:

Chapter 4. Black-box impossibility results 131

1. For each n ∈ Ni−1, define Imagei−1(n) = {QG(x, 〈i− 1〉) : x ∈ Goodi−1(n)}.
2. If there exists a polynomial p(n) such that |Imagei−1(n)| ≥ 2n/p(n) for infinitely

many n ∈ Ni−1 then:

2.1 Define pi(n) to be such a polynomial.

2.2 Define Ni to be the maximal subset of Ni−1 such that |Imagei−1(n)| ≥ 2n/pi(n)

for all n ∈ Ni.
2.3 For each n ∈ Ni do:

2.3.1 Let Image′i−1(n) = Imagei−1(n)−
⋃

j∈Small
Imagej(n).

2.3.2 While Image′i−1(n) 6= ∅ do:

2.3.2.1 Let y ∈ Image′i−1(n) be lexicographically first.

2.3.2.2 Let x ∈ Goodi−1(n) be the lexicographically first string such that

QG(x, 〈i− 1〉) = y.

2.3.2.3 Add x to Goodi(n).

2.3.2.4 For every y ∈ {QG(x, 〈j〉) : i− 1 ≤ j < k} ∩ Image′i−1(n), remove y

from Image′i−1(n).

3. Else:

3.1 Define Ni = Ni−1.
3.2 Define Goodi(n) = Goodi−1(n).

3.3 Add i− 1 to Small.

Now, define N = Nk, and for all n ∈ N , define Good(n) = Goodk(n).

We note that the set Good(n) is computable given input n ∈ N . It is not hard to see that

a Turing machine that has set Small and polynomials pi+1 for i ∈ ({0, . . . k − 1} − Small)

hardcoded can use the ideas from the above procedure to compute Good(n).

It is easy to see that property (i) is satisfied. The fact that property (iii) is satisfied

can be shown by induction on i, 0 ≤ i ≤ k, where we use the fact that QG encodes queries in

lexicographical order and the fact that step 2.3.2.1 in the procedure selects elements of Image′i−1

in lexicographical order, and hence steps 2.3.1 and 2.3.2.4 prevent any potential violations of

property (iii). We now show that property (ii) is satisfied.

Claim 4.3.15 For all 0 ≤ i ≤ k, there exists a polynomial p(n) such that for sufficiently large

n ∈ Ni, |Goodi(n)| ≥ 2`1(n)/p(n).

Proof (Claim 4.3.15) We will use induction on i. The base case is trivial since Good0(n) =

{0, 1}`1(n). So fix 0 ≤ i < k, and suppose there exists a polynomial p(n) such that for all

n ∈ Ni, |Goodi(n)| ≥ 2`1(n)/p(n). If i ∈ Small, then Goodi+1(n) = Goodi(n) and Ni+1 =

Ni so we are done. So suppose i /∈ Small; then, by definition of Ni+1 and pi+1, we have

Chapter 4. Black-box impossibility results 132

|Imagei(n)| ≥ 2n/pi+1(n) for all n ∈ Ni+1. Now, note that by definition of Image′i(n), we

have |Image′i(n)| ≥ |Imagei(n)| −
∑

j∈Small,j<i |Imagej(n)| for all n ∈ Ni+1. But for every

j ∈ Small, we must have |Imagej(n)| < 2n/(k · pi+1(n)) for sufficiently large n ∈ Nj+1. Then,

for j ∈ Small such that j < i, we must have |Imagej(n)| < 2n/(k · pi+1(n)) for sufficiently

large n ∈ Ni+1, since Ni+1 ⊆ Nj+1 for all j < i. It follows that |Image′i(n)| ≥ |Imagei(n)| −
(k − 1)2n(k · pi+1(n)) ≥ 2n/(k · pi+1(n)) for sufficiently large n ∈ Ni+1. Now, observe that

by the procedure used to construct Goodi+1(n), we have |Goodi+1(n)| ≥ |Image′i(n)|/k for all

n ∈ Ni+1. It follows that for sufficiently n ∈ Ni+1, we have |Goodi+1(n)| ≥ 2n/(k2 · pi(n)).

To conclude, recall that by assumption, we have `1(n) ≤ n + O(log n). Let c be such that

`1(n) ≤ n + c log n for sufficiently large n. Then, for sufficiently large n ∈ Ni+1, we have

|Goodi+1(n)| ≥ 2n+c logn/(k2ncpi(n)) ≥ 2`1(n)/(k2ncpi(n)). �

Claim 4.3.16 There exists a polynomial p(n) such that for sufficiently large n ∈ N , |Good(n)| ≥
2`1(n)/p(n).

Proof (Claim 4.3.16) Follows immediately from Claim 4.3.15 and from the definitions of

Good(n) and N . �

Claim 4.3.17 For all n ∈ N , all x, x′ ∈ Good(n), and all 0 ≤ j, j′ < k, if x 6= x′ and

j /∈ Small, then QG(x, 〈j〉) 6= QG(x′, 〈j′〉).

Proof (Claim 4.3.17) Follows immediately from property (iii) of the above procedure and from

the definitions of Good(n) and N . �

For all n ∈ N , define Fixed(n) = {QG(x, 〈i〉) : i ∈ Small and x ∈ Good(n)}, NotF ixed(n) =

{0, 1}n − Fixed(n). and GoodQueries(n) = {QG(x, 〈i〉) : i /∈ Small and x ∈ Good(n)}.
For each n ∈ N , we will abuse notation by letting Q−1G,n : GoodQueries(n) → Good(n)

be the function defined as follows: for all x ∈ GoodQueries(n), Q−1G,n(x) is the unique string

y ∈ Good(n) for which there exists an i /∈ Small such that QG,n(y, 〈i〉) = x. Q−1G,n is well-defined

by Claim 4.3.17 and the definition of GoodQueries(n).

Finally, for each n ∈ N and each x ∈ {0, 1}n, if x ∈ GoodQueries(n) then define Siblingsn(x)

to be the set
{
QG(Q−1G,n(x), 〈i〉) : i /∈ Small

}
, and if x /∈ GoodQueries(n) then define Siblingsn(x)

to be the set {x}.
We note that the sets Fixed(n) and GoodQueries(n) are computable given input n ∈ N ,

since the set Good(n) and the function QG are computable.

Claim 4.3.18 |Fixed(n)| < 2n

nd
for all d and sufficiently large n ∈ N .

Chapter 4. Black-box impossibility results 133

Proof (Claim 4.3.18) By the above procedure, we have that |{QG(x, 〈i〉) : x ∈ Goodi(n)}| < 2n

nd

for all i ∈ Small, all d, and sufficiently large n ∈ N . Then, since Goodi(n) ⊆ Good(n) for all

i ≤ k and all n ∈ N , and since |Small| ≤ k, we have

|Fixed(n)| =

∣∣∣∣∣ ⋃
i∈Small

{QG(x, 〈i〉) : x ∈ Good(n)}

∣∣∣∣∣ < 2n

nd

for all d and sufficiently large n ∈ N . �

Now, as in the proof of Theorem 4.3.9, we define a joint distribution (F ,A,Π) = {(Fn,An,Πn)}.
For each n /∈ N , (Fn,An,Πn) is the distribution defined by the following procedure for

sampling a triple (fn, An, πn).

• Define πn : {0, 1}`2(n) → {0, 1}`2(n) to be the identity function.

• Randomly select a function fn : {0, 1}n → {0, 1}`2(n).

• Define function An : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1} to be the constant 0 function.

For each n ∈ N , (Fn,An,Πn) is the distribution defined by the following procedure for

sampling a triple (fn, An, πn).

• Randomly select a permutation ρn : {0, 1}`2(n)−n × NotF ixed(n) → {0, 1}`2(n)−n ×
NotF ixed(n). Define function πn : {0, 1}`2(n) → {0, 1}`2(n) as follows: for all y ∈
{0, 1}`2(n)−n and all x ∈ {0, 1}n, if x ∈ NotF ixed(n) then πn(y||x) = ρn(y, x), and

otherwise πn(y||x) = 0`2(n)−n||x.

• Define function An : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1} as follows: for every z, An(z) = 1 if

and only if there exists an x ∈ Good(n) and y ∈ {0, 1}`2(n)−n such that

g(x, πn(y||QG(x, 〈0〉)), . . . , πn(y||QG(x, 〈k − 1〉))) = z.

In light of the way we have defined distribution (Fn,An,Πn) for n ∈ N , we will also find it

convenient to define a modified version of function g that “automatically” uses response 0`2(n)q

for each query q ∈ Fixed(n). For each n ∈ N , define ĝn : Good(n) × {0, 1}(k−|Small|)`2(n) →
{0, 1}`1(n)+(`2(n)−n)+1 to be such that for all x ∈ Good(n) and all α0, . . . αk−|Small|−1 ∈ {0, 1}`2(n),
ĝn(x, α0, . . . αk−|Small|−1) is the output of G(·) on input x when given α0, . . . αk−|Small|−1 as

the responses its queries that are not in Fixed(n) and when given 0`2(n)q for each query

q ∈ Fixed(n). That is, letting I = {0, . . . , k − 1} − Small and letting i0, . . . , ik−|Small|−1

denote the members of I in lexicographical order, we have that for all x ∈ Good(n) and all

α0, . . . αk−|Small|−1 ∈ {0, 1}`2(n), ĝn(x, α0, . . . αk−|Small|−1) = g(x, α′0, . . . , α
′
k) where for 0 ≤ j ≤

k − |Small| − 1 we have α′ij = αj and for i /∈ I we have α′i = 0`2(n)−nQG(x, 〈i〉).

Chapter 4. Black-box impossibility results 134

Now, for (f,A) ← (F ,A), we consider the pseudo-randomness of Gf with respect to ad-

versary A, and we consider the pseudo-randomness of f with respect to adversaries that have

oracle access to f and A.

Lemma 4.3.19 With probability 1 over the choice (f,A) ← (F ,A), adversary A breaks the

pseudo-randomness of Gf .

Lemma 4.3.20 Let D(·,·) be a PPT oracle machine. For all n ∈ N, define pD(n) to be the

probability that when (f,A) ← (F ,A) and s ←r {0, 1}n, D(f,A) accepts f(s). For all n ∈ N,

define rD(n) to be the probability that when (f,A)← (F ,A) and z ←r {0, 1}`2(n), D(f,A) accepts

z. Then, |pD(n)− rD(n)| < 1/nc for all c and sufficiently large n.

Observe that Lemma 4.3.19, Lemma 4.3.20, and Theorem 4.2.1 complete the proof of The-

orem 4.3.1.

We first prove Lemma 4.3.19.

Proof (Lemma 4.3.19) Fix a sample (f,A, π)← (F ,A,Π). We will show that A breaks Gf .

Fix n ∈ N .

Define pA(n) to be the probability that A accepts Gf (s) for randomly chosen s ∈ {0, 1}`1(n).
We have by definition of (F ,A,Π) that A accepts Gf (s) for every s ∈ Good(n). This means

that pA(n) ≥ |Good(n)|/2`1(n).
Define rA(n) to be the probability thatA accepts randomly chosen z ∈ {0, 1}`1(n)+(`2(n)−n)+1.

It is easy to see by the definition of (F ,A,Π) that A accepts at most |Good(n)| · 2`2(n)−n

strings of length `1(n) + (`2(n) − n) + 1. This means that rA(n) is at most |Good(n)| ·
2`2(n)−n/2`1(n)+(`2(n)−n)+1 = |Good(n)|/2`1(n)+1.

So we have pA(n)−rA(n) ≥ |Good(n)|/2`1(n)+1 for all n ∈ N . Now, let q(n) be a polynomial

such that for sufficiently large n ∈ N , |Good(n)| ≥ 2`1(n)/q(n); such a polynomial exists by

Claim 4.3.16. We then have that pA(n) − rA(n) ≥ 1/(2q(n)) for sufficiently large n ∈ N (and

hence for infinitely many n ∈ N). �

It remains to prove Lemma 4.3.20.

Proof (Lemma 4.3.20) The approach we use is similar to the proof of Lemma 4.3.13.

First, note that by the definition of distribution (F ,A,Π), it is easy to see that for every

PPT oracle machine D(·,·), we have |pD(n) − rD(n)| < 1/nc for all c and sufficiently large

n /∈ N . The point is that for such n, when we choose (fn, An) ← (Fn,An), fn is a randomly-

chosen function and An is a constant function (which is of no help for breaking the pseudo-

randomness of fn). It therefore suffices to show that for every PPT oracle machine D(·,·), we

have |pD(n)− rD(n)| < 1/nc for all c and sufficiently large n ∈ N .

Chapter 4. Black-box impossibility results 135

Now, for each probabilistic oracle machine D(·,·) and each n ∈ N , consider the following

experiments.

Experiment 1

(a) Choose (f,A, π)← (F ,A,Π) and s←r {0, 1}n.

(b) Run D(f,A) on input π(0`2(n)−n||s).

Define p′D(n) to be the probability that D accepts. Define qpD(n) to be the probability

that D queries a string from Siblingsn(s) to f .

Experiment 2

(a) Choose (f,A, π)← (F ,A,Π), y ←r {0, 1}`2(n)−n, and s←r {0, 1}n.

(b) Run D(f,A) on input π(y||s).

Define r′D(n) to be the probability that D accepts. Define qrD(n) to be the probability

that D queries a string from Siblingsn(s) to f .

Finally, define qD(n) = max{qpD(n), qrD(n)}.
Observe that we have p′D(n) = pD(n), since π(0`(n)−n||s) = f(s). Also, observe that in Ex-

periment 2, we have by definition of (F ,A,Π) that each string z ∈ {0, 1}`2(n)−n×NotF ixed(n)

has probability exactly 1/2`2(n) of being the input to D – that is, such strings are cho-

sen as the input to D with the same probability in Experiment 2 as in an alternative ex-

periment where the input to D is chosen uniformly at random. This means that we have

|r′D(n)− rD(n)| ≤ |Fixed(n)|/2n.

Then, for every PPT oracle machine D(·,·) and every n ∈ N , we have |pD(n) − rD(n)| =

|p′D(n) − rD(n)| ≤ |p′D(n) − r′D(n)| + |Fixed(n)|/2n. However, by Claim 4.3.18, we have that

|Fixed(n)|/2n < 1/nd for all d and sufficiently large n. This means that in order to show that for

every PPT oracle machine D(·,·), we have |pD(n)− rD(n)| < 1/nc for all c and sufficiently large

n ∈ N , it suffices to show that for every PPT oracle machine D(·,·), we have |p′D(n)− r′D(n)| <
1/nc for all c and sufficiently large n ∈ N .

Claim 4.3.21 For all probabilistic oracle machines D(·,·) and all n ∈ N, we have qD(n) =

qpD(n) = qrD(n) and |p′D(n)− r′D(n)| ≤ qD(n).

Proof (Claim 4.3.21) Consider the following experiments, parametrized by probabilistic oracle

machine D(·,·) and n ∈ N .

Experiment 3

Chapter 4. Black-box impossibility results 136

(a) Choose s←r {0, 1}n.

(b) If s ∈ Fixed(n), choose (f,A, π)← (F ,A,Π), run D(f,A) on input 0`2(n)||s, and skip

the remaining steps of this experiment.

(c) Let σ = |Siblingsn(s)|. Let s1, . . . , sσ denote the strings in Siblingsn(s) in lexico-

graphical order. Randomly choose σ · 2`2(n)−n distinct strings zi,j ∈ {0, 1}`2(n), 1 ≤
i ≤ σ, 1 ≤ j ≤ 2`2(n)−n. Let W = {zi,j : 1 ≤ i ≤ σ, 1 ≤ j ≤ 2`2(n)−n}.

(d) Randomly choose bijection ρn : {0, 1}`2(n)−n × (NotF ixed(n) − Siblingsn(s)) →
{0, 1}`2(n)−n × (NotF ixed(n) −W). Define function πn : {0, 1}`2(n)−n × ({0, 1}n −
Siblingsn(s)) → {0, 1}`2(n)−n × ({0, 1}n −W) as follows: for all y ∈ {0, 1}`2(n)−n

and all x ∈ {0, 1}n−Siblingsn(s), if x ∈ NotF ixed(n) then πn(y, x) = ρn(y, x), and

otherwise πn(y, x) = 0`2(n)−n||x.

(e) If s /∈ GoodQueries(n), define function An : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1} as

follows: for every z, An(z) = 1 if and only if there exists an x ∈ Good(n) and

y ∈ {0, 1}`2(n)−n such that g(x, πn(y,QG(x, 〈0〉)), . . . , πn(y,QG(x, 〈k − 1〉))) = z.

If s ∈ GoodQueries(n) define function An : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1} as fol-

lows: for every γ, An(γ) = 1 if and only if either there exists an x ∈ Good(n) −
{Q−1G,n(s)} and y ∈ {0, 1}`2(n)−n such that

g(x, πn(y,QG(x, 〈0〉)), . . . , πn(y,QG(x, 〈k − 1〉))) = γ

or there exists a j, 1 ≤ j ≤ 2`)2(n)−n, such that γ = ĝn(Q−1G,n(s), z1,j , . . . , zσ,j).

(f) Define function fn : ({0, 1}n − Siblingsn(s)) → {0, 1}`2(n) as follows: for all x ∈
({0, 1}n − Siblingsn(s)), fn(x) = πn(0`(n)−nx).

(g) For all 1 ≤ i ≤ σ, define fn(si) = zi,1.

(h) For all i 6= n, choose (fi, Ai)← (Fi,Ai). Define f = {fm} and A = {Am}.

(i) Let h be such that sh = s, and run D(f,A) on input z = zh,1.

Experiment 4

This experiment is identical to Experiment 3, except we modify step (g) as follows:

(g) Choose j ←r {1, . . . , 2`2(n)−n}. For all 1 ≤ i ≤ σ, define fn(si) = zi,j .

It is not difficult to verify that s, f , A, and the input to D in Experiment 1 are jointly distributed

identically to s, f , A, and the input to D in Experiment 3. Similarly, s, f , A, and the input

to D in Experiment 2 are jointly distributed identically to s, f , A, and the input to D in

Experiment 4.

Chapter 4. Black-box impossibility results 137

The intuition for the case s /∈ Fixed(n) is that even though we do not define πn on

{0, 1}`2(n)−n × Siblingsn(s), we have in mind that for each 1 ≤ i ≤ σ, πn({0, 1}`2(n)−n ×
{si}) = {zi,1, . . . zi,2`2(n)−n} without fixing a particular bijection between {0, 1}`2(n)−n × {si}
and {zi,1, . . . zi,2`2(n)−n}; this information is sufficient for defining An. Of course, in order to

define fn(si) for each 1 ≤ i ≤ σ, we need to have a value in mind for πn(0`2(n)−n||si). In Experi-

ment 3, this value is zi,1. In Experiment 4, we view the input zh,1 to D as the value of πn(y||sh)

for randomly chosen y ∈ {0, 1}`2(n)−n. In this case, it suffices to view πn on {0, 1}`2(n)−n×{sh}
as a randomly chosen bijection between {0, 1}`2(n)−n×{sh} and {zh,1, . . . zh,2`2(n)−n}, and hence

we view πn(0`2(n)−n||sh) as simply zh,j for randomly chosen j; for the sake of consistency with

the behaviour of An, we view πn(0`2(n)−n||si) for all 1 ≤ i ≤ σ as zi,j for the same randomly

chosen j.

Observe that Experiments 3 and 4 differ only in step (g), and this difference only affects the

view of D when a query from Siblingsn(s) is made to f . Indeed, step (g) of these experiments

can even be deferred until D makes a query from Siblingsn(s) to f . This means that so long

as D has not made a query from Siblingsn(s) to f , the joint distribution of Siblingsn(s) and

the view of D in Experiment 3 is identical to the joint distribution of Siblingsn(s) and the

view of D in Experiment 4. Equivalently, so long as D has not made query from Siblingsn(s)

to f , the joint distribution of Siblingsn(s) and the view of D in Experiment 1 is identical

to the joint distribution of Siblingsn(s) and the view of D in Experiment 2. It follows that

qD(n) = qpD(n) = qrD(n). It also follows that whenever D fails to make a query from Siblingsn(s)

to f , it has no information whatsoever to distinguish Experiment 1 from Experiment 2. We

conclude that |p′D(n)− r′D(n)| ≤ qD(n)|. �

Now, as in the proof of Lemma 4.3.4, instead of considering only PPT oracle machine D(·,·),

it is more convenient to consider computationally unbounded probabilistic oracle machines D(·,·)

that make at most polynomially-many queries. Also as before, it suffices to give such machines

D(·,·) oracles for (fn, An) in Experiment 1, since for all i 6= n, we have that (fi, Ai) is independent

of s even given D’s input f(s), and hence such machines D(·,·) can sample (fi, Ai) for i 6= n by

themselves without reducing the probability that they make oracle query s. Finally, as before,

we modify Experiment 1 by replacing An with a pair of oracle that together are at least as

strong as An. We also provide An with additional information as input. We now describe the

entire modified experiment, parametrized by probabilistic oracle machine D(·,·,·) and n ∈ N .

Experiment 1′

(a) Choose (fn, An, πn)← (Fn,An,Πn) and s←r {0, 1}n.

(b) Let α = πn(0`2(n)−n||s).

Chapter 4. Black-box impossibility results 138

(c) Define function A1
n : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1,⊥} as follows:

• If s /∈ GoodQueries(n): for all γ ∈ {0, 1}`2(n)+(`1(n)−n)+1, A1
n(γ) = ⊥.

• If s ∈ GoodQueries(n): for all γ ∈ {0, 1}`2(n)+(`1(n)−n)+1, if Gfn(Q−1G,n(s)) = γ

then A1
n(γ) = 1, and otherwise A1

n(γ) = 0.

(d) Define function A2
n : {0, 1}`1(n)+(`2(n)−n)+1 → {0, 1} as follows:

• If s /∈ GoodQueries(n): for all γ, A2
n(γ) = An(γ).

• If s ∈ GoodQueries(n): for all γ, A2
n(γ) = 1 if and only if there exists x ∈

Good(n) and y ∈ {0, 1}`2(n)−n such that y||x 6= 0`2(n)−n||Q−1G,n(s) and

g(x, πn(y||QG(x, 〈0〉)), . . . , πn(y||QG(x, 〈k − 1〉))) = γ.

(e) Let σ = |Siblingsn(s)|. Let s1, . . . , sσ denote the strings in Siblingsn(s) in lexico-

graphical order. For 1 ≤ i ≤ σ, let zi = πn(0`2(n)−n||si). Let β = (z1, . . . zσ).

(f) Run D(fn,A1
n,A

2
n) on input (α, β).

Observe that for all γ ∈ {0, 1}`(n)+1, we have An(γ) = 1 if either A1
n(γ) = 1 or A2

n(γ) = 1,

and otherwise we have An(γ) = 0. This means that D can compute An using the oracles

it is given for A1
n and A2

n.

Define q′D(n) to be the probability that D makes an oracle query from Siblingsn(s) to fn.

We need to show that for every computationally unbounded probabilistic oracle machine D(·,·,·)

that makes at most polynomially-many oracle queries, q′D(n) is negligible.

We begin by considering probabilistic oracle machines E(·,·,·) that make no queries to A2
n

and that query A1
n and fn in a particular structured manner. We consider a conditioned

version of Experiment 1′; the relevance of this conditioning will become clear when we consider

unrestricted probabilistic oracle machines D(·,·,·) in Claim 4.3.23.

Claim 4.3.22 Let E(·,·,·) be a probabilistic oracle machine. Let function m(n) be a bound on

the number of queries made by E(·,·,·) when its first input is of length `2(n). Suppose E makes

no queries to its third oracle, and uses its first and second oracles in the following restricted

“two-phase” manner: initially, E makes queries only to its second oracle; if, at some point, E

receives response 1 to an oracle query, then E makes no further queries to its second oracle,

and makes queries only to its first oracle. Suppose E is run according to Experiment 1′. Then,

for every w ∈ Good(n), we have that conditioned on s ∈ GoodQueries(n) and w 6= Q−1G,n(s),

the probability that E(fn,A1
n,A

2
n) makes a query from Siblingsn(s) to fn is at most (m(n))2−m(n)

2|Good(n)|−2 .

Proof (Claim 4.3.22) We proceed in a manner similar to the proof of Claim 4.3.6. Fix w ∈
Good(n), and consider running E(·,·,·) as in Experiment 1′, conditioning on the case that s ∈

Chapter 4. Black-box impossibility results 139

GoodQueries(n) and w 6= Q−1G,n(s). Let V denote the set of v ∈ Good(n) − {w} such that

ĝn(v, z1, . . . , zσ) = ĝn(Q−1G,n(s), z1, . . . , zσ). That is, V is the set of v ∈ Good(n)−{w} such that

A1
n(ĝn(v, z1, . . . , zσ)) = 1. We will abuse notation by using m to denote m(n); that is, E makes

at most m oracle queries.

Bu assumption, E’s querying behaviour can be viewed as consisting of two phases. In the

first phase E makes queries only to A1
n. If some query to A1

n receives response 1, then E

immediately enters a second phase where it makes queries only to fn.

Note that before E begins making queries, we have that given the view of E, every v ∈
Good(n)−{w} is equally likely to be the value of Q−1G,n(s). Each query γ to A1

n whose response

is 0 rules out (as potential values of Q−1G,n(s)) all v such that ĝn(v, z1, . . . , zσ) = γ. But note

that after such a query, the “un-ruled-out” values v (that is, all v ∈ Good(n)− {w} such that

query ĝn(v, z1, . . . , zσ) has not yet been made to A1
n) are all equally likely to be the value of

Q−1G,n(s) given the view of E. Similarly, note that a query γ to A1
n whose response is 1 rules

out (as potential values of Q−1G,n(s)) all v such that ĝn(v, z1, . . . , zσ) 6= γ; immediately following

such a query γ, all v′ ∈ Good(n)− {w} such that ĝn(v′, z1, . . . , zσ) = γ (that is, all v′ ∈ V) are

equally likely, given the view of E to be the value of Q−1G,n(s). Once E begins querying fn (and

has so far not made a query from Siblingsn(s) to fn), each query x whose response is different

from all the zi rules out Q−1G,n(x) as a potential value of Q−1G,n(s); after such a query, all the

v ∈ V such that no string in {QG(v, 〈i〉) : 0 ≤ i ≤ k− 1 and i /∈ Small} has yet been queried to

fn are equally likely, given the view of E, to be the value of Q−1G,n(s).

For 1 ≤ N ≤ |Good(n)|−1 and u ≥ 0, define q
(N,u)
E to be the probability that if E has not yet

made a query to A1
n whose response is 1, there are N “un-ruled-out” values v ∈ Good(n)−{w},

and E is allowed to make at most w additional oracle queries, then E makes a query from

Siblingsn(s) to fn. The value we are ultimately interested in upper bounding is q
(|Good(n)|−1,m)
E .

We will prove by strong induction on u that for all 1 ≤ N ≤ |Good(n)| − 1 and u ≥ 0, we

have q
(N,u)
E ≤ u(u− 1)/(2N).

It is clear that q
(N,0)
E = 0 for all 1 ≤ N ≤ |Good(n)| − 1. We also have that q

(N,1)
E = 0 for all

1 ≤ N ≤ |Good(n)| − 1, since E must make a query to A1
n whose response is 1 before making

queries to fn, and hence if E is allowed only a single query then it cannot query fn.

Now consider q
(N,u)
E for u ≥ 2 and 1 ≤ N ≤ |Good(n)|−1. Let γ denote the next query to A1

n

that will be made by E. Let V ′ be set of strings v ∈ Good(n)−{w} such that ĝn(v, z1, . . . , zσ) =

γ. If |V ′| = 0 or if E has previously made query γ, then A1
n(γ) = 0 but no additional v ∈

Good(n) − {w} will be ruled out by this query; in this case, E has simply “wasted a query”,

and the probability E makes a query from Siblingsn(s) to fn is q
(N,u−1)
E , which by induction is

at most (u− 1)(u− 2)/(2N) < u(u− 1)/(2N). So suppose |V ′| > 0 and E has not previously

made query γ. Observe that given the view of E before making query γ, the probability that

Chapter 4. Black-box impossibility results 140

Q−1G,n(s) ∈ V ′ is |V ′|/N . Now, if Q−1G,n(s) ∈ V ′, then A1
n(γ) = 1, and hence E will stop querying

A1
n and henceforth only query fn. In this case, the probability that E makes a query from

Siblingsn(s) to fn is at most (u− 1)/|V ′|: we say a string v ∈ V ′ is covered if E makes a query

from {QG(v, 〈i〉) : 0 ≤ i ≤ k− 1 and i /∈ Small} to fn; then, making a query from Siblingsn(s)

is equivalent to covering Q−1G,n(s); but each query made by E to fn covers at most one string

v ∈ V ′, and as long as Q−1G,n(s) has not yet been covered, each of the uncovered strings in V ′

are equally likely (given the view of E) to be Q−1G,n(s). On the other hand, if Q−1G,n(s) /∈ V ′,
then A1

n(γ) = 0, and hence E will continue making queries to A1
n. However, since A1

n = 0, all

v ∈ V ′ are ruled out as potential values of Q−1G,n(s). It follows that, in this case, the probability

that E makes a query from Siblingsn(s) to fn is at most q
(N−|V ′|,u−1)
E ; by induction we have

q
(N−|V ′|,u−1)
E ≤ (u− 1)(u− 2)/(2N − 2|V ′|). We then have that

q
(N,u)
E ≤ |V ′|

N
· u− 1

|V ′|
+
N − |V ′|

N
· (u− 1)(u− 2)

2(N − |V ′|)

=
u− 1

N
+

(u− 1)(u− 2)

2N

=
2(u− 1) + (u− 1)(u− 2)

2N

=
u(u− 1)

2N
,

as required.

We then have that q
(|Good(n)|−1,m)
E ≤ m(m−1)/(2|Good(n)|−2) = (m2−m)/(2|Good(n)|−2).

�

To complete the proof of Lemma 4.3.20, we consider probabilistic oracle machines D(·,·,·)

that have no restrictions in the manner in which they query their oracles. It suffices to prove

the following claim (recall that by Claim 4.3.18, we have |Fixed(n)|/2n < 1/nd for all d and

sufficiently large n).

Claim 4.3.23 Let D(·,·,·) be a probabilistic oracle machine. Let function m(n) be a bound on

the number of oracle queries made by D(·,·,·) when its first input is of length `2(n). Then, for

all n ∈ N , q′D(n) ≤ k(m(n))2+(7k)m(n)+4k
2n+1 + 2m(n)

2n + |Fixed(n)|
2n .

Proof (Claim 4.3.23) We proceed in a manner based on ideas from the proof of Claim 4.3.7.

We define a probabilistic machine E(·,·,·) that, when run according to Experiment 1′, simulates

D “almost” according to Experiment 1′, but uses its own oracles in the restricted two-phase

manner described in Claim 4.3.22. We will argue that it is unlikely that D will make a query

Chapter 4. Black-box impossibility results 141

that “exposes” the fact that it is being simulated only “almost” according to Experiment 1′

rather than perfectly according to Experiment 1. Then, to bound q′D(n), we will show that

whenever the simulation of D makes a query from Siblingsn(s) so does E, and we will use

Claim 4.3.22 to bound the probability that E makes such a query.

A key difference from the proof of Claim 4.3.7 is that in our definition of E, we need to

do cases based on whether s ∈ GoodQueries(n). E will use its oracle A1
n to determine if

s ∈ GoodQueries(n).

On input (α, β) where α ∈ {0, 1}`2(n) and with access to oracles fn : {0, 1}n → {0, 1}`2(n),
A1
n : {0, 1}`1(n)+(`2(n)−n)+1, and A2

n : {0, 1}`1(n)+(`2(n)−n)+1, E behaves as follows. E first checks

if α ∈ {0`2(n)−n}×Fixed(n); if so E simply halts. Otherwise, E makes query 0`1(n)+(`2(n)−n)+1

to A1
n.

If the response to this first query is ⊥, then E randomly selects s′ ∈ (NotF ixed(n) −
GoodQueries(n)), and randomly selects a permutation ρ̂n : {0, 1}`2(n)−n × NotF ixed(n) →
{0, 1}`2(n)−n × NotF ixed(n) such that ρ̂n(0`2(n)−n, s′) = α. Then, E defines function π̂ :

{0, 1}`2(n) → {0, 1}`2(n) as follows: for all y ∈ {0, 1}`2(n)−n and all x ∈ {0, 1}n, if x ∈
NotF ixed(n) then π̂n(y||x) = ρ̂n(y, x), and otherwise π̂n(y||x) = 0`2(n)−n||x. E simulates D(·,·,·)

on input (α, β) and with access to oracles f̂n : {0, 1}n → {0, 1}`2(n), Â1
n : {0, 1}`1(n)+(`2(n)−n)+1,

and Â2
n : {0, 1}`1(n)+(`2(n)−n)+1 defined as follows. Whenever D makes query x to its or-

acle f̂n, E provides response π̂n(0`2(n)−n||x) to D, and makes query x to fn. Whenever

D makes a query γ its oracle Â1
n, E provides response ⊥. Whenever D makes a query

γ to its oracle Â2
n, E checks if there exists x ∈ Good(n) and y ∈ {0, 1}`2(n)−n such that

g(x, π̂n(y||QG(x, 〈0〉)), . . . , π̂n(y||QG(x, 〈k − 1〉))) = γ; if so, E gives 1 to D as the response to

query γ, and otherwise E gives 0 to D as the response to query γ.

If the response to the first query made by E is not ⊥, then E proceeds as follows. Say

β = z1, . . . zσ, where σ = k − |Small|. E randomly selects w ∈ Good(n), and lets s′1, . . . s
′
σ

denote the members of {QG(w, 〈i〉) : i /∈ Small} in lexicographical order. Then, E randomly

selects a permutation ρ̂n : {0, 1}`2(n)−n×NotF ixed(n)→ {0, 1}`2(n)−n×NotF ixed(n) such that

ρ̂n(0`2(n)−n, s′i) = zi for 1 ≤ i ≤ σ. E defines function π̂ : {0, 1}`2(n) → {0, 1}`2(n) as follows:

for all y ∈ {0, 1}`2(n)−n and all x ∈ {0, 1}n, if x ∈ NotF ixed(n) then π̂n(y||x) = ρ̂n(y, x), and

otherwise π̂n(y||x) = 0`2(n)−n||x. E simulates D(·,·,·) on input (α, β) and with access to oracles

f̂n : {0, 1}n → {0, 1}`2(n), Â1
n : {0, 1}`1(n)+(`2(n)−n)+1, and Â2

n : {0, 1}`1(n)+(`2(n)−n)+1 whose

behaviour we now define.

Whenever D makes a query x to its oracle f̂n, E provides response π̂n(0`2(n)−n||x) to D.

If x /∈ GoodQueries(n), then E takes no further action for query x. Otherwise, E checks if

A1
n(ĝn(Q−1G,n(x), z1, . . . , zσ)) = 1: if E has previously made query γ = ĝn(Q−1G,n(x), z1, . . . , zσ) to

A1
n, it checks the response it received to that query; if E has previously received response 1 to

Chapter 4. Black-box impossibility results 142

a query to A1
n different from γ, then it “knows” that A1

n(γ) 6= 1 without needing to make any

query; otherwise, E makes query γ to A1
n. If A1

n(γ) = 1, E makes query x to its oracle fn.

Whenever D makes a query γ to its oracle Â1
n, E first checks if it has previously made query

γ to (its own oracle) A1
n. If so, E gives the (previously obtained) value A1

n(γ) to D as the

response to query γ. If not, E checks if any previous query (of its own) to A1
n had response 1;

if so, E gives 0 to D as the response to query γ. Otherwise, E makes query γ to A1
n, and then

gives A1
n(γ) to D as the response to query γ.

Whenever D makes a query γ to its oracle Â2
n, E checks if there exists x ∈ Good(n) and

y ∈ {0, 1}`2(n)−n such that α /∈ {π̂n(y||QG(x, 〈i〉)) : 0 ≤ i ≤ k − 1} and

g(x, π̂n(y||QG(x, 〈0〉)), . . . , π̂n(y||QG(x, 〈k − 1〉))) = γ;

if so, E gives 1 to D as the response to query γ, and otherwise E gives 0 to D as the response to

query γ. If there is a unique string x ∈ Good(n) such that α /∈ {π̂n(y||QG(x, 〈i〉)) : 0 ≤ i ≤ k−1}
and

g(x, π̂n(0`2(n)−n||QG(x, 〈0〉)), . . . , π̂n(0`2(n)−n||QG(x, 〈k − 1〉))) = γ,

E checks if A1
n(ĝn(x, z1, . . . , zσ)) = 1 (using the same approach it uses to evaluate A1

n when

answering queries to f̂n), and if so, E chooses j ∈ {0, . . . , k− 1}−Small arbitrarily and makes

query QG(x, 〈j〉) to fn.

Observe that when the response to E’s initial oracle query is ⊥, the total number of oracle

queries made by E is at most one more than the number of oracle queries made by simulation

of D, that is, at most m(n) + 1. Also, when the response to E’s initial oracle query is not ⊥,

then by exactly the reasoning given in the proof of Claim 4.3.7, the number of oracle queries

made by E (not counting the initial query) is at most one more than the number of oracle

queries made by the simulation of D; it follows that in this case, the total number of oracle

queries made by E is at most m(n) + 2.

Consider running E(·,·,·) according to Experiment 1′, and let s and α be as chosen in this

experiment. We claim that, as in the proof of Claim 4.3.7, E simulatesD(·,·,·) “almost according”

to Experiment 1′ with the same choice of α and s. Specifically, suppose E defined function π′n

to be the same as π̂n except for the following changes: in the case that the response to the

initial query is ⊥, the values of π̂n at points 0`2(n)−n||s and 0`2(n)−n||s′ are interchanged (so

π′n(0`2(n)−n||s) = π̂n(0`2(n)−n||s′) = α and π′n(0`2(n)−n||s′) = π̂n(0`2(n)−n||s)); in the case that

the response to the initial query is not ⊥, the values of π̂n at points 0`2(n)−n||si and 0`2(n)−n||s′i
are interchanged for all 1 ≤ i ≤ σ (so π′n(0`2(n)−n||si) = π̂n(0`2(n)−n||s′i) = zi for all 1 ≤ i ≤ σ,

and π′n(0`2(n)−n||s′i) = π̂n(0`2(n)−n||si) for all 1 ≤ i ≤ σ). Further, suppose E used π′n in place

of π̂n to answer the oracle queries of D. Then, when E is run according to Experiment 1′ it

would simulate D according to Experiment 1′ with the same choice of α and s. Of course, E is

Chapter 4. Black-box impossibility results 143

not given s, so it cannot actually construct π′n. However, since π′n and π̂n are identical except

at a small number of points, there are only a small number of possible queries made by D that

receive a different response from E when E answers using π̂n instead of π′n.

First consider the case that the first query made by E receives response ⊥, that is, the case

s ∈ NotF ixed(n)−GoodQueries(n).

This case occurs with probability exactly (2n − |Fixed(n)| − |GoodQueries(n)|)/2n. In

this case, we have Siblingsn(s) = {s}. By definition of E, we also have s′ /∈ NotF ixed(n) −
GoodQueries(n). But then it is easy to see by the way that E answers oracle queries in this case

that all queries made by D to Â1
n and Â2

n receive the same response whether E answers using

π′n or π̂n. This means that the only queries made by D that receive a different response from

E when E answers using π̂n instead of π′n are queries s and s′ to f̂n (of course, if it happens to

be the case that s = s′, then even these queries receive the same response whether E answers

using π′n and π̂n).

Now, it is easy to see that the probability that D makes query s′ when s 6= s′ (and hence s′

is uniformly distributed over (NotF ixed(n)−GoodQueries(n))− {s}) is at most m(n)/(2n −
|Fixed(n)| − |GoodQueries(n)| − 1). The probability that s′ 6= s is exactly (2n − |Fixed(n)| −
|GoodQueries(n)| − 1)/(2n− |Fixed(n)| − |GoodQueries(n)|). Then, the probability that both

s′ 6= s and D makes query s′ is at most m(n)/(2n − |Fixed(n)| − |GoodQueries(n)|).
Also, note that whenever D makes query s, so does E. But it is easy to see that the

probability that E makes query s is at most m(n)/(2n− |Fixed(n)| − |GoodQueries(n)|), since

the only information that E gets from oracle A1
n is that s ∈ NotF ixed(n) −GoodQueries(n),

E makes no queries to A2
n, and E makes at most m(n) queries to fn. This means that the

probability that D makes query s is at most m(n)/(2n − |Fixed(n)| − |GoodQueries(n)|).
Note that E simulates D according to Experiment 1′ until D makes query s or query

s′ 6= s. This means the probability that D makes query s in Experiment 1′ is at most the

probability that the simulation of D makes query s or query s′ 6= s. That is, conditioned on

s ∈ NotF ixed(n) − GoodQueries(n), the probability that D makes query s in Experiment 1′

is at most 2m(n)/(2n − |Fixed(n)| − |GoodQueries(n)|).
Now consider the case that the first query made by E receives a response different from ⊥,

that is, the case s ∈ GoodQueries(n).

This case occurs with probability exactly |GoodQueries(n)|/2n. In this case, there are at

most 2+2σ possible queries made by D that receive a different response from E when E answers

using π̂n instead of π′n (where we assume, for now, that w = Q−1G,n(s′1) 6= Q−1G,n(s1) and hence

si 6= s′i for all i):

1. Query si to f̂n, for 1 ≤ i ≤ σ. When E uses π̂n, it gives answer π̂n(0`2(n)−n||si) instead

of zi.

Chapter 4. Black-box impossibility results 144

2. Query s′i to f̂n, for 1 ≤ i ≤ σ. When E uses π̂n, it gives answer zi instead of

π̂n(0`2(n)−n||si).

3. Query

γs = ĝn(Q−1G,n(s), π̂n(0`2(n)−n||s1), . . . , π̂n(0`2(n)−n||sσ))

= ĝn(Q−1G,n(s), π′n(0`2(n)−n||s′1), . . . , π′n(0`2(n)−n||s′σ))

to Â2
n. When E uses π̂n, it gives answer 1. When E uses π′n, it gives answer 1 if and only

if there exists x ∈ Good(n) and y ∈ {0, 1}`2(n)−n such that α /∈ {π′n(y||QG(x, 〈i〉) : 0 ≤ i ≤
k− 1} (that is, y||x 6= 0`2(n)−n||Q−1G,n(s)) and g(x, π′n(y||QG(x, 〈0〉)), . . . , π′n(y||QG(x, 〈k−
1〉))) = γs.

4. Query

δw = ĝn(w, π̂n(0`2(n)−n||s1), . . . , π̂n(0`2(n)−n||sσ))

= ĝn(w, π′n(0`2(n)−n||s′1), . . . , π′n(0`2(n)−n||s′σ))

to Â2
n. When E uses π̂n, it gives answer 1 if and only if there exists x ∈ Good(n) and

y ∈ {0, 1}`2(n)−n such that α /∈ {π̂n(y||QG(x, 〈i〉) : 0 ≤ i ≤ k − 1} (that is, y||x 6=
(0`2(n)−n||w)) and g(x, π̂n(y||QG(x, 〈0〉)), . . . , π̂n(y||QG(x, 〈k − 1〉))) = δw. When E uses

π′n, it gives answer 1.

Staying consistent with the terminology from the proof of Claim 4.3.7, we will say that γs =

ĝn(Q−1G,n(s), π̂n(0`2(n)−n||s1), . . . , π̂n(0`2(n)−n||sσ)) is bad if there does not exist x ∈ Good(n) and

y ∈ {0, 1}`2(n)−n such that y||x 6= 0`2(n)−n||Q−1G,n(s) and

g(x, π′n(y||QG(x, 〈0〉)), . . . , π′n(y||QG(x, 〈k − 1〉))) = γs.

We will say that δw = ĝn(w, π′n(0`2(n)−n||s′1), . . . , π′n(0`2(n)−n||s′σ)) is bad if there does not exist

x ∈ Good(n) and y ∈ {0, 1}`2(n)−n such that y||x 6= 0`2(n)−n||w and

g(x, π̂n(y||QG(x, 〈0〉)), . . . , π̂n(y||QG(x, 〈k − 1〉))) = δw.

We will say that D makes a bad query if it makes one of the following queries: si to f̂n for

1 ≤ i ≤ σ, s′i to f̂n for 1 ≤ i ≤ σ, bad γs to Â2
n, or bad δw to Â2

n.

Observe that E simulates D according to Experiment 1′ until D makes a bad query. This

means that the probability that D makes a query from Siblingsn(s) in Experiment 1′ must be

at most the probability that the simulation of D makes a query from Siblingsn(s) or a bad

query, which is simply the probability that the simulation of D makes a bad query. We now

bound the probability that the simulation of D makes a bad query.

Chapter 4. Black-box impossibility results 145

We first claim that whenever the simulation of D makes a query from Siblingsn(s) to f̂n or

queries bad γs to Â2
n, E makes a query from Siblingsn(s) to fn. To see this, first suppose that the

simulation ofD makes a query x ∈ Siblingsn(s) to f̂n. Then, sinceA1
n(ĝn(Q−1G,n(x), z1, . . . , zσ)) =

1 for such x, E will make query x to fn. Now suppose the simulation of D queries bad γs to

Â2
n. Since γs is bad, there is no x ∈ Good(n) such that x 6= Q−1G,n(s) and

g(x, π′n(0`2(n)−n||QG(x, 〈0〉)), . . . , π′n(0`2(n)−n||QG(x, 〈k − 1〉))) = γs.

Then, since π′n and π̂n agree everywhere on the set

{0`2(n)−n||QG(v, 〈i〉) : v 6= Q−1G,n(s), v 6= Q−1G,n(s′1), 0 ≤ i ≤ k − 1},

there is no x ∈ Good(n) such that x 6= Q−1G,n(s), x 6= Q−1G,n(s′1) and

g(x, π̂n(0`2(n)−n||QG(x, 〈0〉)), . . . , π̂n(0`2(n)−n||QG(x, 〈k − 1〉))) = γs.

Also, recall that since s ∈ Siblingsn(s), we have α = zi for some i, and hence for some i we

have α = π̂n(0`2(n)−n||s′i) = π̂n(0`2(n)−n||QG(Q−1G,n(s′1), 〈i〉)). This means that there is a unique

string x ∈ Good(n) – in particular, x = Q−1G,n(s) – such that α /∈ {π̂n(0`2(n)−n||QG(x, 〈i〉)) : 0 ≤
i ≤ k − 1} and

g(x, π̂n(0`2(n)−n||QG(x, 〈0〉)), . . . , π̂n(0`2(n)−n||QG(x, 〈k − 1〉))) = γs.

Then, since A1
n(ĝn(Q−1G,n(s), z1, . . . , zσ)) = 1, we have by definition of E’s behaviour when

responding to queries to Â2
n that E will make query QG(Q−1G,n(s), 〈j〉) to fn for some j ∈

{0, . . . , k − 1} − Small; for such j, we have QG(Q−1G,n(s), 〈j〉) ∈ Siblingsn(s). It follows that

(still conditioning on s ∈ GoodQueries(n) and Q−1G,n(s′1) 6= Q−1G,n(s)), the probability that the

simulation of D makes a query from Siblingsn(s) to f̂n or queries bad γs to Â2
n is at most the

probability that E makes a query from Siblingsn(s) to fn.

Now, what is the probability that E makes a query from Siblingsn(s) to fn (again, still

conditioning on s ∈ GoodQueries(n) and Q−1G,n(s′1) 6= Q−1G,n(s))? Observe that E makes no

queries to its oracle A2
n, and uses its oracles A1

n and fn in the two-phase manner required in

the statement of Claim 4.3.22. Then, since E makes at most m(n) + 2 oracle queries, we have

by Claim 4.3.22 that the probability that E makes a query from Siblingsn(s), conditioned on

s ∈ GoodQueries(n) and Q−1G,n(s′1) 6= Q−1G,n(s), is at most (m(n))2+3m(n)+2
2|Good(n)|−2 .

We next upper-bound the probability that the simulation of D makes at least one bad query

and that the first such bad query is either s′i to f̂n for 1 ≤ i ≤ σ or bad δw to Â2
n. When upper-

bounding the probability of this event, we will assume that E answers oracle queries using π′n

rather than π̂n, since this only changes the answers to bad queries, and hence will not change

the probability that at least one bad query is made by the simulation of D, nor will it change

Chapter 4. Black-box impossibility results 146

the first bad query made by D. Under this assumption, observe that the response to each

oracle query made by the simulation of D is completely determined by π′n and α (recall that s

itself is completely determined by α and π′n since π′n(0`2(n)−n||s) = α; similarly, s1, . . . , sσ and

z1, . . . , zσ are completely determined by π′n and s, and hence by π′n and α).

Note that given π′n, α, and s, we have that w = Q−1G,n(s′1) is simply a random string in

Good(n) that is different from Q−1G,n(s). That is, given s along with the entire view of the simu-

lation of D, we have that w is a random string in Good(n) that is different from Q−1G,n(s). Now,

fix π′n and α (and hence s), and, conditioned on these values, consider the probability that the

simulation of D makes at least one bad query and that the first such bad query is either either s′i

to f̂n for 1 ≤ i ≤ σ or bad δw to Â2
n. Define Bad ⊆ Good(n)−{Q−1G,n(s′1)} to be the set of strings

v such that if w = v, then δw = g(w, π′n(0`2(n)−n||QG(w, 〈0〉)), . . . , π′n(0`2(n)−n||QG(w, 〈k− 1〉)))
is bad (note that fixing w also fixes π̂n, allowing us to determine if δw is bad).

We claim that for all distinct v1, v2 ∈ Bad, we have δv1 6= δv2 . Suppose not, that is, suppose

v1, v2 ∈ Bad are distinct strings such that δv1 = δv2 . Now, if w = v1, we have that for all 0 ≤
i ≤ k−1, π̂n(0`2(n)−n||QG(v2, 〈i〉)) = π′n(0`2(n)−n||QG(v2, 〈i〉)), since v2 is neither w nor Q−1G,n(s),

and hence we must have that g(v2, π̂n(0`2(n)−n||QG(v2, 〈0〉)), . . . , π̂n(0`2(n)−n||QG(v2, 〈k−1〉))) =

g(v2, π
′
n(0`2(n)−n||QG(v2, 〈0〉)), . . . , π′n(0`2(n)−n||QG(v2, 〈k − 1〉))) = δv2 = δv1 = δw. But this

means that δw is not bad, contradicting v1 ∈ Bad. Now, defining Badδ = {δv : v ∈ Bad}, we

have |Badδ| = |Bad|.
First condition on the case w /∈ Bad. Then, w is uniformly distributed over (Good(n) −

Bad)−{Q−1G,n(s)}. We will say that v ∈ (Good(n)−Bad)−{Q−1G,n(s)} is covered by the simulation

of D if D makes a query in {QG(v, 〈i〉) : 0 ≤ i ≤ k−1 and i /∈ Small} to f̂n. Observe that each

query made by D can cover at most one v ∈ (Good(n)−Bad)− {Q−1G,n(s)}. It follows that the

probability that w is covered is at most m(n)/(|Good(n)| − |Bad| − 1).

Now condition on the case w ∈ Bad. Then, w is uniformly distributed over Bad, and δw is

uniformly distributed over Badδ. We will say that v ∈ Bad is covered by the simulation of D

if D makes a query in {QG(v, 〈i〉) : 0 ≤ i ≤ k − 1 and i /∈ Small} to f̂n or D queries δv to Â2
n.

Observe that each query by D can cover at most one v ∈ Bad. It follows that the probability

that w is covered is at most m(n)/|Bad|.
Removing conditioning on w, π′n, and α, we have that the probability that the simulation

of D makes at least one bad query and that the first such query is either s′i to f̂n for 1 ≤ i ≤ σ
or bad δw to Â2

n is at most

|Good(n)| − |Bad| − 1

|Good(n)| − 1
· m(n)

|Good(n)| − |Bad| − 1
+

|Bad|
|Good(n)| − 1

· m(n)

|Bad|
=

2m(n)

|Good(n)| − 1
.

Putting everything together, and recalling that we analyzed the case s ∈ GoodQueries(n)

under the assumption that Q−1G,n(s′1) 6= Q−1G,n(s) (an event that fails to hold with probability

Chapter 4. Black-box impossibility results 147

1/|Good(n)|), we have that conditioned on s ∈ GoodQueries(n), the probability that D makes

a query from Siblingsn(s) in Experiment 1′ is at most

|Good(n)| − 1

|Good(n)|

(
(m(n))2 + 3m(n) + 2

2|Good(n)| − 2
+

2m(n)

|Good(n)| − 1

)
+

1

|Good(n)|
,

which is at most (m(n))2+7m(n)+4
2|Good(n)| .

Now, recalling that conditioned on s ∈ NotF ixed(n) − GoodQueries(n) we have that the

probability that D makes a query from Siblingsn(s) in Experiment 1′ is at most

2m(n)

2n − |Fixed(n)| − |GoodQueries(n)|
,

and noting that conditioned on s ∈ Fixed(n) we have no bound (other than the trivial bound

of 1) on the probability that D makes a query from Siblingsn(s) in Experiment 1′, we have

that q′D(n) is at most:

|GoodQueries(n)|
2n

· (m(n))2 + 7m(n) + 4

2|Good(n)|

+
2n − |Fixed(n)| − |GoodQueries(n)|

2n
· 2m(n)

2n − |Fixed(n)| − |GoodQueries(n)|

+
|Fixed(n)|

2n

=
|GoodQueries(n)|

2n
· (m(n))2 + 7m(n) + 4

2|Good(n)|
+

2m(n)

2n
+
|Fixed(n)|

2n

≤ k(m(n))2 + (7k)m(n) + 4k

2n+1
+

2m(n)

2n
+
|Fixed(n)|

2n

where the final inequality uses the fact that |GoodQueries(n)| ≤ k|Good(n)|.
This completes the proof of Claim 4.3.23. �

This completes the proof of Lemma 4.3.20.

�

This completes the proof of Theorem 4.3.1.

�

4.4 Constructions with long seeds

In Section 4.3, we saw that black-box constructions G(·) making constantly-many non-adaptive

oracle queries, where the seed length of G(·) is not too much longer than the length of each

oracle query, cannot achieve even a single bit more stretch than their oracle. In this section, we

consider constructions whose seed length is allowed to be much longer than the length of each

Chapter 4. Black-box impossibility results 148

oracle query, but where the oracle queries are collectively chosen in a manner that depends only

on a portion of the seed whose length is not more than O(log n) bits longer than the length

n of each oracle query. Recall that such constructions making even a single query to a given

pseudo-random generator can achieve stretch that is O(log n) bits longer than the stretch of

the given generator [GL89]. Further, recall that such constructions making k adaptive queries

can achieve stretch that is O(log n) bits longer than k times the stretch of the given generator.

We show that such constructions making constantly-many non-adaptive queries cannot achieve

stretch that is ω(log n) bits longer than the stretch of the given generator.

Theorem 4.4.1 Let k ∈ N, c ∈ R+, and m(n) ∈ ω(log n). Let `0(n), `1(n), and `2(n) be poly-

nomials such that `1(n) ≤ n+c log n. Let G(·) : {0, 1}`0(n)+`1(n) → {0, 1}`0(n)+`1(n)+(`2(n)−n)+m(n)

be a non-adaptive oracle construction of a number generator that makes k queries of length

n to a number generator mapping n bits to `2(n) bits, such that for all r ∈ {0, 1}`0(n) and

x ∈ {0, 1}`1(n), the queries made by G(·) on input (r||x) depend only on x. Then there is

no fully black-box reduction of the pseudo-randomness of G(·) to the pseudo-randomness of its

oracle.

As is the case for Theorem 4.3.1, the approach we use to prove Theorem 4.4.1 does not

seem to extend to the case of polynomially-many (or even ω(1)-many) queries. However, a

similar approach does work for polynomially-many queries when we place a restriction on the

many-oneness of the number generator’s querying function. We state this restriction in Section

4.5.

We give an overview of the proof of Theorem 4.4.1 in Section 4.4.1, and we give the proof

details in Section 4.4.2.

4.4.1 Proof overview for Theorem 4.4.1

As in the proof of Theorem 4.3.1, it suffices to define a joint distribution (F ,A) over pairs of

functions, such that with probability one over (f,A)← (F ,A), A breaks the pseudo-randomness

of Gf but f is pseudo-random even with respect to adversaries that have oracle access to f and

A. Unlike the previous proof, we actually define distributions F and A that are independent

– in fact, we define A to be a degenerate distribution that assigns all probability to a fixed

function A. We define a set Good(n) ⊆ {0, 1}`1(n) in a careful manner very similar to the proof

of Theorem 4.3.1, but taking into account the fact that the queries of G(·) depend only on the

rightmost `1(n) bits of its seed. The goal is to ensure that Good(n) is sufficiently large and

has the property that for every string x ∈ Good(n), every r ∈ {0, 1}`0(n), and every f ∈ F , A

accepts Gf (r||x). Simultaneously, we need to ensure that the total number of strings accepted

Chapter 4. Black-box impossibility results 149

by A is sufficiently smaller than 2`0(n)+`1(n)+(`2(n)−n)+m(n) and that f ← F is pseudo-random

with probability one even with respect to adversaries that have oracle access to f and A.

If we define F in a very straightforward way (e.g. as the uniform distribution over all 1-1

functions), the total number of strings that A will need to accept (in order to accept Gf (r||x)

for every f ∈ F , every r, and every x ∈ Good(n)) could be too large. The problem is that when

deciding whether to accept a given input, A is existentially quantifying over over a set that is

(much) larger than the set of its possible inputs. We need to minimize the number of different

f ∈ F (while, of course, still ensuring that f ← F is pseudo-random with probability one even

with respect to adversaries that have oracle access to f and A). At the same time, we need to

add some structure to the f ∈ F to, intuitively, reduce the amount of new information contained

in the responses to the oracle queries made by Gf when run on each r||x where x ∈ Good(n).

The idea is that rather than existentially quantifying over every r, every x ∈ Good(n), and

every f ∈ F when deciding whether to accept a particular input z, A will instead existentially

quantify over every r, every x ∈ Good(n), and every possible value for the (small amount

of) new information (that is, the information not already determined by x) contained in the

responses to oracle queries made by G(·) when run on input r||x.

Similarly to the proof of Theorem 4.3.1, our procedure for constructing the set Good(n)

ensures that for every distinct x, x′ ∈ Good(n), each query q made by G, when run on an input

whose rightmost bits are x, is either in some small set Fixed(n) or is distinct from every query

q′ made by G when run on every input whose rightmost bits are x′. This allows us to follow

a two-step approach to defining F . We first define a permutation h on {0, 1}n that, for each

x ∈ Good(n), maps the queries q /∈ Fixed(n) made by G, when run on an input whose rightmost

bits are x, to strings that differ in at most a small number of bits, and, in particular, have a

common (m(n)/2)-bit suffix. Roughly speaking, sampling f ← F proceeds as follows. We

randomly select a function f ′ : {0, 1}n ← {0, 1}`2(n) that is the identity on its first n−m(n)/2

input bits, and is 1-1 on its last m(n)/2 input bits, mapping them to `2(n)−n+m(n)/2 output

bits. We then define f = f ′ ◦ h. The actual definition of F that we use in the proof also

ensures that for every q ∈ Fixed(n), the value f(q) is independent of the choice f ← F (that

is, f1(q) = f2(q) for all f1, f2 ∈ F).

Intuitively, this approach ensures that f ← F has “just enough” randomness. At the same

time, this approach ensures that for every r and every x ∈ Good(n), the responses to oracle

queries made by Gf (r||x) collectively contain at most `2(n) − n + m(n)/2 bits of information

that depend on the choice f ← F .

We remark that it is crucial for this proof that 2m(n)/2 is super-polynomial. It is for this

reason that we cannot adapt the current proof in order to obtain a significantly simpler proof

of Theorem 4.3.1; in Theorem 4.3.1, the corresponding value of m(n) (the additional stretch

Chapter 4. Black-box impossibility results 150

achieved by G(·)) is exactly 1.

4.4.2 Proof of Theorem 4.4.1

We will describe distributions F = {Fn} and an adversary A = {An} such that when f is chosen

according to F , it is pseudo-random with high probability even with respect to adversaries that

are given oracle access to f and A, but A breaks Gf for all f ∈ F .

Let QG : {0, 1}`1(n) × {0, 1}log k → {0, 1}n be the `1(n)-restricted querying function of

G(·). We assume without loss of generality that G(·) always makes k distinct queries. We

also assume without loss of generality that QG encodes the queries of G(·) in lexicographical

order: specifically, we assume that for every x ∈ {0, 1}`1(n) and every 0 ≤ i < j < k, we

have QG(x, 〈i〉) < QG(x, 〈j〉). For all n > 0, define QG,n to be QG restricted to inputs of

length `1(n) + log k; that is, QG,n is the `1(n)-restricted querying function of G(·,·) for security

parameter n.

Also, for all n > 0, define g : {0, 1}`0(n)+`1(n) × {0, 1}k·`2(n) → {0, 1}`0(n)+`1(n)+(`2(n)−n)m(n)

to be a function that represents the computation of G(·) after it has made its oracle queries.

Specifically, for all r ∈ {0, 1}`0(n), x ∈ {0, 1}`1(n), and all O : {0, 1}n → {0, 1}`2(n), we have

GO(r||x) = g(r||x,O(QG(x, 〈0〉)), O(QG(x, 〈1〉)), . . . , O(QG(x, 〈k − 1〉)))

We now give a procedure that iteratively defines a sequence of sets Nk ⊆ Nk−1 · · · ⊆ N0 ⊆ N
and, at the same time, for each 0 ≤ i ≤ k and for each n ∈ Ni, defines a set Goodi(n) ⊆
{0, 1}`1(n). The procedure also defines a set Small ⊆ {0, . . . k − 1}, a sequence of polynomials

pi+1(n) for i /∈ Small. We need the following properties:

(i) For all 0 ≤ i ≤ k, Ni is of infinite size.

(ii) For all 0 ≤ i ≤ k, there exists a polynomial p(n) such that for all n ∈ Ni, |Goodi(n)| ≥
2`1(n)/p(n).

(iii) For all 0 ≤ i ≤ k, all n ∈ Ni, all x, x′ ∈ Goodi(n), all 0 ≤ j < i and all 0 ≤ j′ < k, if

x 6= x′ and j, j′ /∈ Small, then QG(x, 〈j〉) 6= QG(x′, 〈j′〉).

Initially, Small = ∅. We define N0 = N and Good0(n) = {0, 1}`1(n) for all n ∈ N. We then

proceed as follows:

For every 1 ≤ i ≤ k do:

1. For each n ∈ Ni−1, define Imagei−1(n) = {QG(x, 〈i− 1〉) : x ∈ Goodi−1(n)}.
2. If there exists a polynomial p(n) such that |Imagei−1(n)| ≥ 2n/p(n) for infinitely

many n ∈ Ni−1 then:

Chapter 4. Black-box impossibility results 151

2.1 Define pi(n) to be such a polynomial.

2.2 Define Ni to be the maximal subset of Ni−1 such that |Imagei−1(n)| ≥ 2n/pi(n)

for all n ∈ Ni.
2.3 For each n ∈ Ni do:

2.3.1 Define Image′i−1(n) = Imagei−1(n).

2.3.2 While Image′i−1(n) 6= ∅ do:

2.3.2.1 Let y ∈ Image′i−1(n) be lexicographically first.

2.3.2.2 Let x ∈ Goodi−1(n) be the lexicographically first string such that

QG(x, 〈i− 1〉) = y.

2.3.2.3 Add x to Goodi(n).

2.3.2.4 For every y ∈ {QG(x, 〈j〉) : i− 1 ≤ j < k} ∩ Image′i−1(n), remove y

from Image′i−1(n).

3. Else:

3.1 Define Ni = Ni−1.
3.2 Define Goodi(n) = Goodi−1(n).

3.3 Add i− 1 to Small.

Now, define N = Nk, and for all n ∈ N , define Good(n) as follows: if |Goodk(n)| < 2n−log k−1,

then Good(n) = Goodk(n); otherwise, Good(n) is the set of the lexicographically first 2n−log k−1

strings in Goodk(n).

We note that the set Good(n) is computable given input n ∈ N . It is not hard to see that

a Turing machine that has set Small and polynomials pi+1 for i ∈ ({0, . . . k − 1} − Small)

hardcoded can use the ideas from the above procedure to compute Good(n).

It is easy to see that property (i) is satisfied. The fact that property (iii) is satisfied can

be shown by induction on i, 0 ≤ i ≤ k, where we use the fact that QG encodes queries

in lexicographical order and the fact that step 2.3.2.1 in the procedure selects elements of

Image′i−1 in lexicographical order, and hence step 2.3.2.4 prevents any potential violations of

property (iii). We now show that property (ii) is satisfied.

Claim 4.4.2 For all 0 ≤ i ≤ k, there exists a polynomial p(n) such that for all n ∈ Ni,
|Goodi(n)| ≥ 2`1(n)/p(n).

Proof We will use induction on i. The base case is trivial since Good0(n) = {0, 1}`1(n). So fix

0 ≤ i < k, and suppose there exists a polynomial p(n) such that for all n ∈ Ni, |Goodi(n)| ≥
2`1(n)/p(n). If i ∈ Small, then Goodi+1(n) = Goodi(n) and Ni+1 = Ni so we are done. So

suppose i /∈ Small; then, by definition of Ni+1 and pi+1 we have |Imagei(n)| ≥ 2n/pi+1(n)

for all n ∈ Ni+1. Now, observe that by the procedure used to construct Goodi+1(n), we have

Chapter 4. Black-box impossibility results 152

|Goodi+1(n)| ≥ |Imagei(n)|/k for all n ∈ Ni+1. It follows that for all n ∈ Ni+1, we have

|Goodi+1(n)| ≥ 2n/(kpi+1(n)) = 2n+c logn/(kncpi+1(n)) ≥ 2`1(n)/(kncpi+1(n)).

�

Claim 4.4.3 There exists a polynomial p(n) such that for all n ∈ N , |Good(n)| ≥ 2`1(n)/p(n).

Proof Follows immediately from Claim 4.4.2 and from the definitions of Good(n) and N . �

Claim 4.4.4 For all n ∈ N , all x, x′ ∈ Good(n), and all 0 ≤ j, j′ < k, if x 6= x′ and j, j′ /∈
Small, then QG(x, 〈i〉) 6= QG(x′, 〈j〉).

Proof Follows immediately from property (iii) of the above procedure and from the definitions

of Good(n) and N . �

For all n ∈ N , define Fixed(n) = {QG(x, 〈i〉) : i ∈ Small and x ∈ Good(n)}. For all n /∈ N ,

define Fixed(n) = ∅.

Claim 4.4.5 |Fixed(n)| < 2n

nd
for all d and sufficiently large n.

Proof By the procedure within which Small is defined, we have |{QG(x, 〈i〉) : x ∈ Goodi(n)}| <
2n

nd
for all i ∈ Small, all d, and sufficiently large n ∈ N . Then, since Goodi(n) ⊆ Good(n) for

all 0 ≤ i ≤ k and all n ∈ N , and since |Small| ≤ k, we have

|Fixed(n)| =

∣∣∣∣∣ ⋃
i∈Small

{QG(x, 〈i〉) : x ∈ Good(n)}

∣∣∣∣∣ < 2n

nd

for all d and sufficiently large n ∈ N . To finish the proof, it suffices to note that for all n /∈ N ,

|Fixed(n)| = 0. �

We next define, for all n ∈ N , a permutation hn : {0, 1}n → {0, 1}n, used to rearrange the

image of QG,n. Fix n ∈ N . Then proceed as follows:

1. For 0 ≤ j < |Fixed(n)| do:

1.1 Let y be the lexicographically j-th string in Fixed(n).

Define hn(y) = 0n−log |Fixed(n)|〈j〉log |Fixed(n)|.
2. For 0 ≤ j < |Good(n)| do:

2.1 Let x be the lexicographically j-th string in Good(n).

2.2 For 0 ≤ i < k such that QG(x, 〈i〉) /∈ Fixed(n) do:

2.2.1 Define hn(QG(x, 〈i〉)) = 1〈i〉log k〈j〉n−log k−1.
3. For every y ∈ {0, 1}n on which hn is still undefined, define hn(y) arbitrarily

subject to the restriction that hn is 1-1.

Chapter 4. Black-box impossibility results 153

Using Claim 4.4.4, it is easy to see that for all n ∈ N , h is a well-defined permutation.

For every n /∈ N , define hn : {0, 1}n → {0, 1}n to be the identity function.

For all n ∈ N and all p ≥ n, define FixedImagep(n) to be the set of p-bit strings whose n-bit

prefix is in the set hn(Fixed(n)). For all n /∈ N and all p ≥ n, define FixedImagep(n) = ∅.
We now describe distribution F and adversary A = {An}.

Distribution F = {Fn}: In order to define distribution F , we first define distributions

F ′ = {F ′n}, F ′′ = {F ′′n}, and F ′′′ = {F ′′′n } as follows. For each n ≥ 0, define F ′′n to be the

uniform distribution over the set of 1-1 functions f ′′n : {0, 1}m(n)/2 → {0, 1}m(n)/2+(`2(n)−n). For

each n ≥ 1, define F ′′′n to be the uniform distribution over the set of 1-1 functions

f ′′′n :
(
{0}||{0, 1}n−1 − FixedImagen(n)

)
→
(
{0}||{0, 1}`2(n)−1 − FixedImage`2(n)(n)

)
.

That is, F ′′′n is the uniform distribution over 1-1 functions that map n-bit strings that start

with 0 but are not in hn(Fixed(n)) to `2(n)-bit strings that start with 0 but whose n-bit prefix

is not in hn(Fixed(n)). For each n ≥ 1, define F ′n to be the distribution over the set of 1-1

functions f ′n : {0, 1}n → {0, 1}`2(n) obtained by first sampling f ′′n ← F ′′n and f ′′′n ← F ′′′n , and

then defining f ′n as follows: for all x ∈ {0, 1}n−1 such that 0||x /∈ FixedImagen(n), f ′n(0||x) =

f ′′′n (0||x); for all x ∈ {0, 1}n−1 such that 0||x ∈ FixedImagen(n), f ′n(0||x) = 0||x||0`2(n)−n; for

all x1 ∈ {0, 1}n−m(n)/2−1 and x2 ∈ {0, 1}m(n)/2, f ′n(1||x1||x2) = 1||x1||f ′′n(x2). Also, for each

n ∈ N, define Fn to be the distribution over the set of 1-1 functions fn : {0, 1}n → {0, 1}`2(n)

obtained by first sampling f ′n ← F ′n and then defining fn as follows: fn = f ′n ◦ hn.

Adversary A = {An}: For each n ∈ N , define adversary An as follows. On input y ∈
{0, 1}`0(n)+`1(n)+(`2(n)−n)+m(n), An accepts if and only if there exists 0 ≤ j < |Good(n)|, r ∈
{0, 1}`0(n), and z ∈ {0, 1}m(n)/2+(`2(n)−n) such that, letting x be the lexicographically j-th

string in Good(n), defining v ∈ {0, 1}n−log k−m(n)/2−1, w ∈ {0, 1}m(n)/2 so that 〈j〉n−log k−1 =

vw, and, for 0 ≤ i < k, defining ui ∈ {0, 1}n so that if QG(x, 〈i〉) ∈ Fixed(n) then ui =

hn(QG(x, 〈i〉))||0`2(n)−n and otherwise ui = 1〈i〉vz, we have that g(r||x, u0, u1, . . . , uk−1) = y.

For each n /∈ N , define An to reject every input.

Claim 4.4.6 With probability 1 over f ← F , the adversary A = {An} breaks the pseudo-

randomness of Gf .

Proof Fix f ∈ F .

Chapter 4. Black-box impossibility results 154

Let p(n) be a polynomial such that for all n ∈ N , |Good(n)| > 2`1(n)/p(n); such a p(n)

exists by Claim 4.4.3.

Fix n ∈ N .

Observe than when r ∈ {0, 1}`0(n) and x ∈ {0, 1}`1(n) are randomly chosen, An accepts

Gf (r||x) if x ∈ Good(n). It follows that An accepts pseudo-randomly generated strings with

probability at least 2`1(n)

p(n) /2
`1(n) = 1

p(n) .

Consider the probability thatAn accepts randomly chosen y ∈ {0, 1}`0(n)+`1(n)+(`2(n)−n)+m(n).

Observe that An accepts at most |Good(n)| ·2`0(n)+m(n)/2+(`2(n)−n) strings. This means that An

accepts randomly chosen strings with probability at most |Good(n)|·2
`0(n)+m(n)/2+(`2(n)−n)

2`0(n)+`1(n)+(`2(n)−n)+m(n) ≤ 1
2m(n)/2 ,

since |Good(n)| ≤ 2`1(n). Then, since m(n) ∈ ω(log n), we have that An accepts randomly cho-

sen strings with probability at most 1/2ω(logn). �

To finish the proof, it remains to consider the pseudo-randomness of f chosen according to

F with respect to probabilistic polynomial-time adversaries that have oracle access to f and A.

While we only need to show that at least one f ∈ F is pseudo-random, we will actually show

that almost all f ∈ F are pseudo-random.

Claim 4.4.7 With probability 1 over f ← F , we have that for every PPT oracle machine D(·,·),∣∣∣∣∣ Pr
s←r{0,1}n

[
D(f,A) (f(s)) = 1

]
− Pr
z←r{0,1}`2(n)

[
D(f,A) (z) = 1

]∣∣∣∣∣ < 1

nd

for all d and sufficiently large n.

By Theorem 4.2.1, we have that in order to prove Claim 4.4.7, it suffices to prove the

following.

Claim 4.4.8 For every PPT oracle machine D(·,·), we have∣∣∣∣∣∣∣∣ Pr
f←F

s←r{0,1}n

[
D(f,A) (f(s)) = 1

]
− Pr

f←F
z←r{0,1}`2(n)

[
D(f,A) (z) = 1

]∣∣∣∣∣∣∣∣ <
1

nd

for all d and sufficiently large n.

To prove Claim 4.4.8, we will actually consider stronger probabilistic adversaries that are

computationally unbounded but make only polynomially-many queries to f . Giving such ad-

versaries oracle access to A is unnecessary, since a computationally unbounded adversary can

compute A for itself3.

3Note that in order for a computationally unbounded machine to compute A, it suffices to have the set Small
and the sequence of polynomials pi+1 for i /∈ Small hardcoded into the machine; these objects can be hardcoded
since they are of finite size.

Chapter 4. Black-box impossibility results 155

For all probabilistic oracle machines D(·) and all n ∈ N: define pD(n) to be the probability

that when f ← F and s ←r {0, 1}n, Df accepts f(s); define rD(n) to be the probability that

when f ← F and z ←r {0, 1}`2(n), Df accepts z; and define qD(n) to be the probability that

when f ← F , s ←r {0, 1}n, and Df is run on input f(s), either D makes oracle query s, or

the first bit of hn(s) is 1 and D makes an oracle query α ∈ {0, 1}n such that the (m(n)/2)-bit

suffix of hn(α) is identical to the (m(n)/2)-bit suffix of hn(s).

Claim 4.4.8 is immediate from the following two claims.

Claim 4.4.9 Let D(·) be a probabilistic oracle machine. Then |pD(n)− rD(n)| < qD(n) + 1/nd

for all d and sufficiently large n.

Claim 4.4.10 Let D(·) be a probabilistic oracle machine that makes at most polynomially-many

oracle queries. Then qD(n) < 1/nd for all d and sufficiently large n.

We first prove Claim 4.4.9.

Proof (Claim 4.4.9) Fix probabilistic oracle machine D(·). For each n ∈ N, consider the

following experiments.

Experiment 1

(a) Choose s←r {0, 1}n.

(b) Choose f ← F .

(c) Run Df on input f(s).

Observe that the probability that D accepts in the above experiment is pD(n), observe

that qD(n) is the probability that either D makes oracle query s, or the first bit of hn(s)

is 1 and D makes an oracle query α ∈ {0, 1}n such that the (m(n)/2)-bit suffix of hn(α)

is identical to the (m(n)/2)-bit suffix of hn(s).

Experiment 2

(a) Choose z1 ←r {0, 1}n.

(b) If z1 ∈ FixedImagen(n), let z2 = 0`2(n)−n; otherwise, choose z2 ←r {0, 1}`2(n)−n.

(c) Choose f ← F .

(d) If z1||z2 is in the image of f , let s ∈ {0, 1}n be the string such that f(s) = z1||z2
(since f is 1-1, there can be at most one such string s). Otherwise, if z1||z2 is not

in the image of f : if the leftmost bit of z1 is 0, randomly select t ∈ {0, 1}n−1 such

that 0||t /∈ FixedImagen(n), and let s = h−1n (0||t); if the leftmost bit of z1 is 1, let

Chapter 4. Black-box impossibility results 156

v ∈ {0, 1}n−m(n)/2−1 be such that 1||v is a prefix of z1, choose w ←r {0, 1}m(n)/2,

and let s = h−1n (1||v||w).

(e) Run Df on input z1||z2.

Define r′D(n) to be the probability that D accepts. Define qrD(n) to be the probability that

either D makes oracle query s, or the first bit of hn(s) is 1 and D makes an oracle query

α ∈ {0, 1}n such that the (m(n)/2)-bit suffix of hn(α) is identical to the (m(n)/2)-bit

suffix of hn(s).

Observe that in Experiment 2, we have that each string z ∈
(
{0, 1}`2(n) − FixedImage`2(n)(n)

)
has probability exactly 1/2`2(n) of being the input to D – that is, such strings are chosen

as the input to D with the same probability in Experiment 2 as in the experiment that

gives rise to rD(n). Furthermore, in both Experiment 2 and in the experiment that gives

rise to rD(n), the input to D is chosen independently of the choice f ← F . It follows that

|r′D(n) − rD(n)| ≤ |FixedImage`2(n)(n)|/2`2(n) = |hn(Fixed(n))|/2n = |Fixed(n)|/2n, where

the first equality is by definition of FixedImage`2(n)(n) and the second equality uses the fact

that hn is a permutation.

Then, we have that |pD(n) − rD(n)| ≤ |pD(n) − r′D(n)| + |Fixed(n)|/2n for all n ∈ N.

However, by Claim 4.4.5, we have that |Fixed(n)|/2n < 1/nd for all d and sufficiently large n.

This means that |pD(n) − rD(n)| < |pD(n) − r′D(n)| + 1/nd for all d and sufficiently large n.

Then, to complete the proof of Claim 4.4.9, it suffices to show that |pD(n) − r′D(n)| ≤ qD(n)

for all n.

Fix n ∈ N.

We claim that D’s view in Experiment 1 and D’s view in Experiment 2 are distributed

identically until either D makes oracle query s, or the first bit of hn(s) is 1 and D makes an

oracle query α ∈ {0, 1}n such that the (m(n)/2)-bit suffix of hn(α) is identical to the (m(n)/2)-

bit suffix of hn(s).

We begin by noting that the joint distribution of s and the input to D is identical in

the two experiments. To see this, first observe by definition of F and by step (b) in Ex-

periment 2 that in the two experiments, the input to D is chosen identically: each z ∈(
{0, 1}`2(n) − FixedImage`2(n)(n)

)
has probability exactly 1/2`2(n) of being the input to D;

each z ∈ FixedImage`2(n)(n) whose (`2(n) − n)-bit suffix is 0`2(n)−n has probability exactly

1/|Fixed(n)| of being to the input to D; and all other z have probability 0 of being the input to

D. Next observe that the distribution of hn(s) conditioned on the input z to D is identical in

both experiments: when z ∈ FixedImage`2(n)(n), hn(s) is the n-bit prefix of z; when the first

bit of z is 0 but z /∈ FixedImage`2(n)(n), hn(s) is a randomly chosen n-bit string x such that

the first bit of x is 0 and x /∈ FixedImagen(n); when the first bit of z is 1, hn(s) is a randomly

Chapter 4. Black-box impossibility results 157

chosen n-bit string whose (n−m(n)/2)-bit prefix is identical to the (n−m(n)/2)-bit prefix of

z. Now, since hn is a fixed permutation, we also have that the distribution of s conditioned on

the input z to D is identical in both experiments.

We next argue that distribution of query responses conditioned on s and on the input z

to D is identical in both experiments at least until either D makes oracle query s, or the first

bit of hn(s) is 1 and D makes an oracle query α ∈ {0, 1}n such that the (m(n)/2)-bit suffix of

hn(α) is identical to the (m(n)/2)-bit suffix of hn(s).

First note that when the input z is in FixedImage`2(n)(n), the distribution of query re-

sponses conditioned on s and on the input z to D is identical in the two experiments no matter

which queries are made by D (since in this case, the joint distribution of f , s, and z is identical

in the two experiments). That is, in this case, the joint distribution of s and the view of D is

identical in the two experiments.

Now consider the case when when the first bit of z is 0 but z /∈ FixedImage`2(n)(n). In

this case, until D makes query s, we have that in both experiments: each query α such that

hn(α) ∈ FixedImagen(n) receives response hn(α)||0`2(n)−n; each new query α such that the

leftmost bit of hn(α) is 0 and such that hn(α) /∈ FixedImagen(n) receives as a response a

randomly chosen `2(n)-bit string y such that y is different from every response seen so far,

y is different from z, the first bit of y is 0, and y /∈ FixedImage`2(n)(n); each query α such

that hn(α) = 1||v||w for some v ∈ {0, 1}n−m(n)/2−1 and w ∈ {0, 1}m(n)/2, and such that for no

previous query α′ is it the case that hn(α′) = 1||v′||w for some v′ ∈ {0, 1}n−m(n)/2−1, receives

as a response 1||v||u where u is a randomly chosen (`2(n) − n + m(n)/2)-bit string that is

different from the suffix of every previous response for queries α′ such that hn(α′) has leftmost

bit 1; and, finally, each query α such that hn(α) = 1||v||w for some v ∈ {0, 1}n−m(n)/2−1 and

w ∈ {0, 1}m(n)/2, and such that for some previous query α′ we have hn(α′) = 1||v′||w for some

v′ ∈ {0, 1}n−m(n)/2−1, receives response 1||v||u where u is identical to (`2(n) − n + m(n)/2)-

bit suffix of the response to query α′. That is, in this case, until D makes query s, the joint

distribution of s and the view of D is identical in the two experiments.

Finally, consider the case where the first bit of z is 1. Recall that in this case, the first bit

of hn(s) is 1. In this case, until D makes a query α such that the (m(n)/2)-bit suffix of hn(α)

is identical to the (m(n)/2)-bit suffix of hn(s), we have that in both experiments: each query α

such that hn(α) ∈ FixedImagen(n) receives response hn(α)||0`2(n)−n; each new query α such

that the leftmost bit of hn(α) is 0 and such that hn(α) /∈ FixedImagen(n) receives as a response

a randomly chosen `2(n)-bit string y such that y is different from every response seen so far, the

first bit of y is 0, and y /∈ FixedImage`2(n)(n); each query α such that hn(α) = 1||v||w for some

v ∈ {0, 1}n−m(n)/2−1 and w ∈ {0, 1}m(n)/2, and such that for no previous query α′ is it the case

that hn(α′) = 1||v′||w for some v′ ∈ {0, 1}n−m(n)/2−1, receives as a response 1||v||u where u is a

Chapter 4. Black-box impossibility results 158

randomly chosen (`2(n)− n+m(n)/2)-bit string that is different from the suffix of z and also

different from the suffix of every previous response for queries α′ such that hn(α′) has leftmost

bit 1; and, finally, each query α such that hn(α) = 1||v||w for some v ∈ {0, 1}n−m(n)/2−1 and

w ∈ {0, 1}m(n)/2, and such that for some previous query α′ we have hn(α′) = 1||v′||w for some

v′ ∈ {0, 1}n−m(n)/2−1, receives response 1||v||u where u is identical to (`2(n)− n+m(n)/2)-bit

suffix of the response to query α′. That is, in this case, the first bit of hn(s) is 1, and until

D makes a query α such that the (m(n)/2)-bit suffix of hn(α) is identical to the (m(n)/2)-bit

suffix of hn(s), the joint distribution of s and the view of D is identical in the two experiments.

We conclude that in Experiments 1 and 2, the joint distribution of s and the view of D is

identical until either D makes oracle query s, or the first bit of hn(s) is 1 and D makes an oracle

query α ∈ {0, 1}n such that the (m(n)/2)-bit suffix of hn(α) is identical to the (m(n)/2)-bit

suffix of hn(s). It follows that qrD(n) = qD(n). It also follows that whenever it is not the case

that either D makes oracle query s, or the first bit of hn(s) is 1 and D makes an oracle query

α ∈ {0, 1}n such that the (m(n)/2)-bit suffix of hn(α) is identical to the (m(n)/2)-bit suffix of

hn(s), then D has no information whatsoever to distinguish Experiment 1 from Experiment 2.

Then we must have |pD(n)− r′D(n)| ≤ qD(n).

�

We conclude by proving Claim 4.4.10.

Proof (Claim 4.4.10) We will use ideas from the proof of Impagliazzo and Rudich [IR89] that

randomly chosen functions are one-way with probability 1.

Fix probabilistic oracle machine D(·). Let p(n) be a polynomial that bounds the number of

queries made by D on inputs of length `2(n).

Fix n ∈ N and consider the probability that when f ← F , s ←r {0, 1}n, and Df is run on

input f(s), D makes an oracle query α such that the (m(n)/2)-bit suffix of hn(α) is identical

to the (m(n)/2)-bit suffix of hn(s).

Define T1 to be the set of strings t ∈ {0, 1}n such that the leftmost bit of hn(t) is 0 but

hn(t) /∈ FixedImagen(n). Define T2 to be the set of strings t ∈ {0, 1}n such that the leftmost bit

of hn(t) is 1. Define T3 to be the set of strings t ∈ {0, 1}n such that hn(t) ∈ FixedImagen(n).

First condition on the case that s ∈ T1. Note that in this case, the leftmost bit of hn(s)

is 0. Recall that by definition of F , we have that f on T1 is a randomly chosen 1-1 function

with range
(
{0}||{0, 1}`2(n)−1 − FixedImage`2(n)(n)

)
. Furthermore, the behaviour of f on T1

is chosen independently from its behaviour on strings not in T1. Then, the probability that D

makes an oracle query s is at most p(n)/(2n−1 − |Fixed(n)|).
Next condition on the case that s ∈ T2. Recall that by definition of F , we have that f on

strings t ∈ T2 first computes w = hn(t), uses the (n−m(n)/2)-bit prefix of w as the prefix of the

Chapter 4. Black-box impossibility results 159

output, and then applies randomly chosen 1-1 function f ′′n : {0, 1}m(n)/2 → {0, 1}m(n)/2+(`2(n)−n)

(chosen when the choice f ← F is made) to the (m(n)/2)-bit suffix of w to obtain the (`2(n)−n+

m(n)/2)-bit suffix of the output. Furthermore, the behaviour of f on T2 is chosen independently

from its behaviour on strings not in T2. Then, since hn is a fixed permutation, the probability

that D makes an oracle query α such that the (m(n)/2)-bit suffix of hn(α) is identical to the

(m(n)/2)-bit suffix of hn(s) is at most p(n)/(2m(n)/2).

Now, note that the probability that s ∈ T1 is at most (2n−1−|Fixed(n)|)/2n, the probability

that s ∈ T2 is exactly 1/2, and the probability that s ∈ T3 is exactly |Fixed(n)|/2n.

We then have qD(n) ≤ 2n−1−|Fixed(n)|
2n · p(n)

2n−1−|Fixed(n)| + 1
2 ·

p(n)

2m(n)/2 + |Fixed(n)|
2n . That is, we

have qD(n) ≤ p(n)
2n + p(n)

2m(n)/2+1 + |Fixed(n)|
2n ; by Claim 4.4.5 and since m(n) ∈ ω(log n), this is at

most 1/nd for all d and sufficiently large n.

�

4.5 Moving beyond constantly-many queries

In this section we consider extending Theorem 4.3.1 and Theorem 4.4.1 to the case of polynomially-

many queries. We are able to do this for a restricted class of constructions. We begin by defining

the restriction we need to place on the querying function of the construction.

Definition 19 (Many-oneness bounded almost everywhere) Let `(n) and q(n) be poly-

nomials, and let f : {0, 1}`(n) → {0, 1}n be a function. f has many-oneness bounded by q(n) al-

most everywhere if for all c and sufficiently large n, there are fewer than 2n/nc strings y ∈ {0, 1}n

such that |f−1(y)| > q(n).

Theorem 4.5.1 Let p(n), q(n), `1(n), and `2(n) be polynomials such that `1(n) ≤ n+O(log n)

and `2(n) > n. Let G(·) : {0, 1}`1(n) → {0, 1}`1(n)+(`2(n)−n)+1 be a non-adaptive oracle construc-

tion of a number generator, making p(n) queries of length n to an oracle mapping n bits to

`2(n) bits, such that the querying function of G(·) has many-oneness bounded by q(n) almost

everywhere. Then there is no fully black-box reduction of the pseudo-randomness of G(·) to the

pseudo-randomness of its oracle.

Theorem 4.5.2 Let c ∈ R+ and m(n) ∈ ω(log n). Let p(n), q(n), `0(n), `1(n), and `2(n) be

polynomials such that `1(n) ≤ n+c log n. Let G(·) : {0, 1}`0(n)+`1(n) → {0, 1}`0(n)+`1(n)+(`2(n)−n)+m(n)

be a non-adaptive oracle construction of a number generator that makes p(n) queries of length

n to a number generator mapping n bits to `2(n) bits, such that G(·) has an `1(n)-restricted

querying function whose many-oneness is bounded by q(n) almost everywhere. Then there is

no fully black-box reduction of the pseudo-randomness of G(·) to the pseudo-randomness of its

oracle.

Chapter 4. Black-box impossibility results 160

The proofs of Theorem 4.5.1 and Theorem 4.5.2 follow the same basic structure as the

proofs of Theorem 4.3.1 and Theorem 4.4.1, respectively, but the procedure used to define

the set Good(n) in each proof is simpler as a result of the restriction on the many-oneness of

the querying function. For both Theorem 4.5.1 and Theorem 4.5.2, the procedure begins by

defining Fixed(n) ⊆ {0, 1}n to be the set of strings in the image of the querying function QG

whose many-oneness is not bounded by q(n). Then, since the remaining strings in the image

of QG have bounded many-oneness, it is easy to define a large set Good(n) ⊆ {0, 1}`1(n) such

that for all distinct x, x′ ∈ Good(n) and all 0 ≤ i, j < p(n), either QG(x, 〈i〉) ∈ Fixed(n) or

QG(x, 〈i〉) 6= QG(x′, 〈j〉). The idea is to proceed as follows: initially, every x ∈ {0, 1}`1(n) is a

candidate for inclusion in Good(n); while there are candidates remaining, select an arbitrary

candidate x, add it to Good(n), and remove from consideration as candidates all x′ such that for

some 0 ≤ i, j < p(n), we have QG(x, 〈i〉) /∈ Fixed(n) and QG(x, 〈i〉) = QG(x′, 〈j〉). For every x

added to Good(n) by this procedure, at most p(n)(q(n) − 1) are removed from consideration,

and hence at the end of this procedure Good(n) has size at least 2`1(n)/(p(n)(q(n) − 1) + 1).

Further details about these proofs are omitted for the sake of conciseness.

4.6 Goldreich-Levin-like constructions

In this section, we consider constructions where the seed has a public portion that is always

included in the output, such that the oracle queries are chosen non-adaptively based only on

the non-public portion of the seed. We further require that the computation of each individual

output bit depends only on the seed and on the response to a single oracle query. We begin by

formalizing this class of constructions.

Definition 20 (Bitwise-nonadaptive construction) Let `0(n), `1(n), and `2(n) be polyno-

mials, and let G(·) : {0, 1}`0(n)+`1(n) → {0, 1}`0(n)+`2(n) be a non-adaptive oracle machine. We

say that G(·) is bitwise-nonadaptive if there exist uniformly-computable functions

QG =
{
QG,n : {0, 1}`1(n) × {0, 1}log `2(n) → {0, 1}n

}
and

B =
{
Bn : {0, 1}`0(n) × {0, 1}`1(n) × {0, 1}n × {0, 1}log `2(n) → {0, 1}

}
such that for all n, all r ∈ {0, 1}`0(n), all x ∈ {0, 1}`1(n), and all permutations π : {0, 1}n →
{0, 1}n, we have Gπ(r||x) = r||b0||b1|| . . . ||b`2(n)−1 where bi = Bn(r, x, 〈i〉, π(QG,n(x, 〈i〉))) for

0 ≤ i ≤ `2(n)− 1.

Observe that the Goldreich-Levin-based pseudo-random generator Gπ(r||x) = r||π(x)||〈r, x〉 is

bitwise-nonadaptive.

Chapter 4. Black-box impossibility results 161

We show that fully black-box bitwise-nonadaptive constructions G(·) making queries to a

one-way permutation, such that the non-public portion of the seed of G(·) is no more that

O(log n) bits longer than the length n of each oracle query, cannot achieve linear stretch.

Theorem 4.6.1 Let α > 1, and let `0(n), `1(n), and `2(n) be polynomials such that `1(n) <

n + O(log n) and `2(n) ≥ α · `1(n). Let G(·) : {0, 1}`0(n)+`1(n) → {0, 1}`0(n)+`2(n) be a bitwise-

nonadaptive number generator that makes queries to a permutation on {0, 1}n. Then there is

no fully black-box reduction of the pseudo-randomness of G(·) to the one-wayness of its oracle.

To prove Theorem 4.6.1, we proceed in a manner similar to the proof of Theorem 4.4.1,

building up a set Good′(n) whose purpose is similar to the set Good(n) in that proof. The

fact that each output bit of G depends only a single oracle query simplifies the construction of

Good′(n). Specifically, when constructing Good′(n), we can ignore some of the “more difficult

to deal with” queries made by G(·), since we can later define adversary A to also ignore these

queries simply by ignoring the corresponding output bits. This is what allows us to handle

linearly-many queries in the current setting, even though we could only handle constantly-

many queries in the proof of Theorem 4.4.1.

4.6.1 Proof of Theorem 4.6.1

Let α > 1, let `0(n), `1(n), and `2(n) be polynomials such that we have `1(n) < n + O(log n)

and `2(n) ≥ α · `1(n), and let G(·) : {0, 1}`0(n)+`1(n) → {0, 1}`0(n)+`2(n) be a bitwise-nonadaptive

number generator. For all n > 0, let QG,n : {0, 1}`1(n) × {0, 1}log(`2(n)) → {0, 1}n and Bn :

{0, 1}`0(n) × {0, 1}`1(n) × {0, 1}n × {0, 1}log(`2(n)) → {0, 1} be the functions whose existence is

guaranteed by the bitwise-nonadaptiveness of G(·). We will describe distributions Π = {Πn}
and an adversary A = {An} such that when π is chosen according to Π, it is one-way with high

probability with respect to adversaries that are given oracle access to A and π, but A breaks

Gπ for all π ∈ Π.

We will need the following definition.

Definition 21 Let f : {0, 1}m → {0, 1}n be a function.

1. The image of f , denoted Im(f), is the set {f(x) : x ∈ {0, 1}m}.

2. For all y ∈ {0, 1}n, the pre-image size of y, denoted sf (y), is the size of the set {x : f(x) =

y}.

3. For all x ∈ {0, 1}m, the range-pre-image size of x, denoted tf (x), is the pre-image size of

f(x) (that is, tf (x) = sf (f(x))).

Chapter 4. Black-box impossibility results 162

4. For all 0 ≤ p ≤ 1, the p-median range-pre-image size of f , denoted Medp(f), is the

smallest v ∈ N such that for at least p2m strings x ∈ {0, 1}m, we have tf (x) ≤ v.

Now, define k to be the smallest integer such that k > (2α
α−1)2. For all n > 0 and 0 ≤ i ≤ k−1,

define qi(n) = Medi/k(QG,n).

Define m to be the largest integer such that 0 ≤ m ≤ k − 1 and qm(n) ≤ nc for some c

and infinitely many n; note that such an m must exist, since q0(n) = 0 for all n. Fix c such

that qm(n) ≤ nc for infinitely many n, and define infinite set N to be the set of all n such that

qm(n) ≤ nc.
For each n ∈ N , define Small(n) = {x ∈ {0, 1}`1(n) × {0, 1}log(`2(n)) : tQG,n(x) ≤ qm(n)}.

By definition of qm(n), we have that |Small(n)| ≥ m
k 2`1(n)+log(`2(n)). If m < k − 1, then

for each n ∈ N , define Big(n) = {x ∈ {0, 1}`1(n) × {0, 1}log(`2(n)) : tQG,n(x) ≥ qm+1(n)};
if m = k − 1, then for each n ∈ N , define Big(n) = ∅. Observe that for all n ∈ N , we

have that |Big(n)| ≥ k−(m+1)
k 2`1(n)+log(`2(n)). It follows that for all n ∈ N , we have that

|Small(n) ∪Big(n)| ≥ k−1
k 2`1(n)+log(`2(n)).

For each n /∈ N , define Small(n) = Big(n) = ∅.

Claim 4.6.2 |QG,n(Big(n))| ≤ 2n

nd
for all d and sufficiently large n.

Proof If m = k−1 then Big(n) = ∅ for all n, which means the claim holds trivially. So assume

m < k− 1. Note that by definition of m, we have qm+1(n) > nc
′

for all c′ and sufficiently large

n.

Since we have by assumption that `1(n) < n+O(log n), let b be such that `1(n) < n+b log n

for sufficiently large n.

Suppose for the sake of contradiction that the claim is false, that is, suppose |QG,n(Big(n))| >
2n

nd
for some d and infinitely many n. SinceBig(n) = ∅ for n /∈ N , it follows that |QG,n(Big(n))| >

2n

nd
for some d and infinitely many n ∈ N . But for sufficiently large n, we have qm+1(n) > b·nd+1·

`2(n); for such n ∈ N , each y ∈ QG,n(Big(n)) is such that sQG,n(y) > qm+1(n) > b · nd+1`2(n);

it follows that for infinitely many n ∈ N , we have:

|Big(n)| ≥ b · nd+1 · `2(n)|QG,n(Big(n))|

> b · nd+1 · `2(n)
2n

nd

= b · n · `2(n) · 2n

= 2n+log b+log(`2(n))+logn

> 2`1(n)+log(`2(n))+logn

This contradicts Big(n) ⊆ {0, 1}`1(n) × {0, 1}log(`2(n)). �

Chapter 4. Black-box impossibility results 163

For each n ∈ N , define Good(n) to be the set of x ∈ {0, 1}`1(n) such that for at least 1− 1√
k

of the i ∈ {0, 1}log(`2(n)), we have (x, i) ∈ Small(n) ∪Big(n). By Markov’s inequality, we have

|Good(n)| ≥ (1 − 1√
k
)2`1(n) for all n ∈ N . Now, by definition of k, we have (1 − 1√

k
) > α+1

2α .

This means that for all n ∈ N , |Good(n)| > α+1
2α 2`1(n), and each x ∈ Good(n) is such that for

at least a α+1
2α fraction of the i ∈ {0, 1}log(`2(n)), we have that (x, i) ∈ Small(n)∪Big(n). That

is, each x ∈ Good(n) is such that for at least α+1
2α `2(n) strings i ∈ {0, 1}log(`2(n)), we have that

(x, i) ∈ Small(n) ∪Big(n). Then, since `2(n) ≥ α · `1(n), each x ∈ Good(n) is such that for at

least α+1
2 `1(n) strings i ∈ {0, 1}log(`2(n)), we have that (x, i) ∈ Small(n) ∪Big(n).

Now, we give a procedure that for each n ∈ N , defines a set Good′(n) ⊆ Good(n) and

functions hn : {0, 1}n → {0, 1}n and δn : {0, 1}`1(n)+log(`2(n)) → {0, 1}log(`2(n)) satisfying the

following properties:

(i) hn : {0, 1}n → {0, 1}n is a well-defined permutation.

(ii) For all x ∈ Good′(n), for the set I of the α+1
2 `1(n) lexicographically first i ∈ {0, 1}log(`2(n))

such that (x, i) ∈ Small(n) ∪Big(n), and for all i ∈ I, if (x, i) ∈ Small(n) then we have

hn(QG,n(x, i)) = 1||δn(x, i)||suffix(x), where suffix(x) is the `1(n)− log(`2(n))−1 bit suffix

of x.

(iii) Good′(n) is of size at least 2`1(n)/(α · `1(n) · nc + 4α
α+1`2(n)).

Fix n ∈ N and consider the following procedure. Initially, Good′(n) = ∅, Remainder(n) =

Good(n), and hn and δn are undefined everywhere. Then proceed as follows:

1. While Remainder(n) 6= ∅ do:

1.1 Select the lexicographically first x ∈ Remainder(n). Say x = vw, where

v ∈ {0, 1}log(`2(n))+1 and w ∈ {0, 1}`1(n)−log(`2(n))−1.
1.2 Define I to be the set of the α+1

2 `1(n) lexicographically first i ∈ {0, 1}log(`2(n)) such

that (x, i) ∈ Small(n) ∪Big(n). Let i0, i1, . . . , iα+1
2
`1(n)−1 denote the strings in I in

lexicographic order.

1.3 For 0 ≤ j ≤ α+1
2 `1(n)− 1 such that (x, ij) ∈ Small(n) do:

1.3.1 Define δn(x, ij) to be the lexicographically first i ∈ I such that

QG,n(x, i) = QG,n(x, ij).

1.3.2 If δn(x, ij) = ij then:

1.3.2.1 Define hn(QG,n(x, ij)) = 1||ij ||w.

1.3.2.2 For every x′ ∈ Remainder(n) such that there exists k ∈ {0, 1}log(`2(n))

for which (x′, k) ∈ Small(n) and QG,n(x′, k) = QG,n(x, ij), remove x′ from

Remainder(n).

1.4 For every x′ ∈ Remainder(n) such that x′ = v′w for some v′ ∈ {0, 1}log(`2(n))+1,

Chapter 4. Black-box impossibility results 164

remove x′ from Remainder(n).

1.5 Add x to Good′(n).

2. For 0 ≤ j ≤ |QG,n(Big(n))| − 1 do:

2.1 Let y be the lexicographically j-th string in QG,n(Big(n)).

Define hn(y) = 0n−log |QG,n(Big(n)||| 〈j〉.
3. For every y ∈ {0, 1}n on which hn is still undefined, define hn(y) arbitrarily subject

to the restriction that hn is 1-1.

For all n /∈ N , define hn : {0, 1}n → {0, 1}n to be the identity.

It is easy to see that for all n ∈ N , the above procedure constructs Good′, hn, and δn

satisfying properties (i) and (ii). We now show that property (iii) is also satisfied.

Claim 4.6.3 For all n ∈ N , when the above procedure terminates, Good′(n) is of size at least

2`1(n)/(α · `1(n) · nc + 4α
α+1`2(n)).

Proof Observe that on each iteration of the outer loop, exactly one element is added to

Good′(n). On the other hand, observe that on each iteration of the outer loop, at most α+1
2 `1(n)·

qm(n) + 2`2(n) ≤ α+1
2 `1(n) · nc + 2`2(n) elements are removed from Remainder(x). This

means that at least |Good(n)|/(α+1
2 `1(n) ·nc + 2`2(n)) ≥ (α+1

2α 2`1(n))/(α+1
2 `1(n) ·nc + 2`2(n)) =

2`1(n)/(α · `1(n) · nc + 4α
α+1`2(n)) iterations of the outer loop occur. �

We now describe distribution Π and adversary A = {An}.

Distribution Π = {Πn}: In order to define distribution Π, we first define distributions Π′ =

{Π′n}, Π′′ = {Π′′n}, and Π′′′ = {Π′′′n } as follows. For each n ≥ 0, define Π′′n to be the uniform

distribution over the set of permutations π′′n : {0, 1}n → {0, 1}n. For each n ≥ 0, define Π′′′n

to be the uniform distribution over the set of permutations π′′′n : {0, 1}n → {0, 1}n such that

π′′′n is the identity on strings y ∈ {0, 1}n that satisfy 0y ∈ hn+1(QG,n+1(Big(n+ 1))). For each

n ≥ 0, define Π′n to be the distribution over the set of permutations π′n : {0, 1}n → {0, 1}n

obtained by first sampling π′′
log2 n

∈ Π′′
log2 n

and π′′′n−1 ∈ Π′′′n−1, and then defining π′n as follows:

for all x ∈ {0, 1}n−1, π′n(0x) = 0π′′′n−1(x); for all x1 ∈ {0, 1}n−log
2 n−1 and x2 ∈ {0, 1}log

2 n,

π′n(1x1x2) = 1x1π
′′
log2

(x2). Also, for each n ∈ N, define Πn to be the distribution over the set of

permutations πn : {0, 1}n → {0, 1}n obtained by first sampling π′n ∈ Π′n and then defining πn

as follows: πn = π′n ◦ hn.

Adversary A = {An}: For every n ∈ N , we define adversary An as follows. On input

r, b0, b1, . . . , b`2(n)−1, where r ∈ {0, 1}`0(n) and each bi ∈ {0, 1}, An accepts if and only if

there exists x ∈ Good′(n) and z ∈ {0, 1}log2 n such that, defining u ∈ {0, 1}log(`2(n))+1, v ∈

Chapter 4. Black-box impossibility results 165

{0, 1}`1(n)−log(`2(n))−log2 n−1, w ∈ {0, 1}log2 n so that x = uvw, we have that the α+1
2 `1(n)

lexicographically first 〈i〉 ∈ {0, 1}log(`2(n)) for which (x, 〈i〉) ∈ Small(n) ∪ Big(n) are such that

if (x, 〈i〉) ∈ Small(n) then bi = Bn(r, x, 〈i〉, 1||δn(x, 〈i〉)||v||z) and if (x, 〈i〉) ∈ Big(n) then

bi = Bn(r, x, 〈i〉, hn(QG,n(x, 〈i〉))). For each n /∈ N , define An to reject every input.

Claim 4.6.4 With probability 1 over the choice of π ∈ Π, the adversary A = {An} breaks the

pseudo-randomness of Gπ.

Proof Fix π ∈ Π. Fix n ∈ N .

Observe than when r ∈ {0, 1}`0(n) and x ∈ {0, 1}`1(n) are randomly chosen, An accepts

Gπ(r, x) if x ∈ Good′(n). It follows that An accepts pseudo-randomly generated strings with

probability at least 1/(α · `1(n) · nc + 4α
α+1`2(n)).

Now consider the probability that An accepts randomly chosen r, b0, b1, . . . , b`2(n)−1, where

r ∈ {0, 1}`0(n) and each bi ∈ {0, 1}. Observe that for each r′ ∈ {0, 1}`0(n), each x ∈ Good′(n),

and each z ∈ {0, 1}log2 n, there are exactly 2`2(n)−
α+1
2
`1(n) strings b′0, b

′
1, . . . , b

′
`2(n)−1 such that,

defining u ∈ {0, 1}log(`2(n))+1, v ∈ {0, 1}`1(n)−log(`2(n))−log2 n−1, w ∈ {0, 1}log2 n so that x = uvw,

we have that the α+1
2 `1(n) lexicographically first 〈i〉 ∈ {0, 1}log(`2(n)) for which (x, 〈i〉) ∈

Small(n)∪Big(n) are such that if (x, 〈i〉) ∈ Small(n) then b′i = Bn(r′, x, 〈i〉, 1||δn(x, 〈i〉)||v||z)
and if (x, 〈i〉) ∈ Big(n) then b′i = Bn(r′, x, 〈i〉, hn(QG,n(x, 〈i〉))). This means that for each r′ ∈
{0, 1}n, there are at most |Good′(n)|2log2 n+`2(n)−

α+1
2
`1(n) strings b′0, b

′
1, . . . , b

′
`2(n)−1 such that An

accepts r′, b′0, b
′
1, . . . , b

′
`2(n)−1. But |Good′(n)|2log2 n+`2(n)−

α+1
2
`1(n) ≤ 2`1(n)2log

2 n+`2(n)−α+1
2
`1(n) =

2log
2 n+`2(n)−α−1

2
`1(n). It follows that An accepts a randomly chosen string with probability at

most 1/2
α−1
2
`1(n)−log2 n. Since α > 1 and since `1(n) is a polynomial, we have that for sufficiently

large n ∈ N , An accepts a randomly chosen string with probability less than 1/2
α−1
4
`1(n). �

To finish the proof, it remains to consider the one-wayness of π chosen according to Π with

respect to probabilistic polynomial-time adversaries that have oracle access to π and A. We

will actually consider stronger adversaries that are computationally unbounded but make only

polynomially-many queries to π. Giving such adversaries oracle access to A is unnecessary,

since a computationally unbounded adversary can compute A for itself4.

While we only need to show that at least one π ∈ Π is one-way, we will actually show that

almost all π ∈ Π are one-way. Our proof is based on the proof of Impagliazzo and Rudich [IR89]

that randomly chosen functions are one-way with probability 1.

Claim 4.6.5 Suppose π ← Π is randomly chosen. Then with probability 1, π is one-way

with respect to computationally unbounded Turing machines that make only polynomially-many

4Note that in order for a computationally unbounded machine to compute A, it suffices to have the constants
m and c, used in the definition of N , hardcoded into the machine.

Chapter 4. Black-box impossibility results 166

queries to π.

Proof For each π ∈ Π, define permutation Pπ : {0, 1}∗ → {0, 1}∗ as follows: for all n ∈ N and

x ∈ {0, 1}n, Pπ(x) = π(h−1n (x)).

We claim that for each π ∈ Π, if Pπ is one-way with respect to computationally unbounded

Turing machines that make only polynomially-many oracle queries, then so is π. To see this,

fix π ∈ Π and suppose M is an oracle Turing machine that makes polynomially-many queries

to its oracle and breaks the one-wayness of π. Using the fact that h = {hn} is a uniformly

computable function, we define oracle Turing machine M ′ as follows. Given an oracle for Pπ

and an input y ∈ {0, 1}∗, M ′ simulates M on input y. For each oracle query z made by M ,

M ′ uses Pπ(h|z|(z)) as the response to the query (note that this means the response to each

query z is π(z)). Eventually M outputs a string x. Then, M ′ outputs hn(x). Observe that M ′

outputs P−1π (y) if and only if the simulation of M outputs π−1(y), and hence M ′ breaks the

one-wayness of Pπ.

Then, by the definitions of Π and Π′, it follows that in order to show π ← Π is one-way

with probability 1, it suffices to show that π′ ← Π′ is one-way with probability 1.

Consider how well an adversary can invert randomly chosen π′ ← Π′. Let M be an or-

acle Turing machine that makes polynomially-many queries to its oracle; let p(n) be a poly-

nomial that bounds the number of queries made by M on inputs of length n. For each n,

consider the probability that when π′ ∈ Π′ and x ∈ {0, 1}n are randomly chosen, Mπ′(π′(x))

outputs x. Note that M is not given any pre-computation on π′, and hence advice-based

techniques for inverting permutations (such as the techniques of [DTT10]) are not relevant

in this setting. Without loss of generality, say that the string that M outputs is one of the

oracle queries it makes. Then it suffices to consider the probability that on input π′(x), M

queries x. Now, recall that by the definition of Π′, we have that π′ is a randomly chosen

permutation on the set {0y ∈ {0, 1}n : 0y /∈ hn(QG,n(Big(n)))}, π′ is the identity on the set

{0y ∈ {0, 1}n : 0y ∈ hn(QG,n(Big(n)))}, and π′ on inputs of length n with leftmost bit 1 is

the identity on its leftmost n − log2 n input bits and is a randomly chosen permutation on its

rightmost log2 n input bits. Then conditioned on the case that the leftmost bit of x is 0 but

x /∈ hn(QG,n(Big(n))), the probability that M queries x is at most p(n)
2n−1−|QG,n(Big(n))| . It follows

that conditioned on the case that the leftmost bit of x is 1, the probability that M queries x is

at most p(n)
2n−1 +

|QG,n(Big(n))|
2n−1 . We also have that conditioned on the case that the leftmost bit of

x is 1, the probability that M queries x is at most p(n)

2log2 n
. Then, without conditioning on x, the

probability that Mπ′(π′(x)) outputs x is at most p(n)
2n + p(n)

2log2 n+1
+
|QG,n(Big(n))|

2n ; by Claim 4.6.2,

this is at most 1/nd for all d and sufficiently large n. It follows that for all d and sufficiently

Chapter 4. Black-box impossibility results 167

large n, the measure of π′ ∈ Π′ such that

Pr
x∈{0,1}n

[
Mπ′(π′(x)) = x

]
≥ 1/nd

is less than 1/n2. Then, for all d, we have by the Borel-Cantelli lemma that the measure of

π′ ∈ Π′ such that

Pr
x∈{0,1}n

[
Mπ′(π′(x)) = x

]
≥ 1/nd

for infinitely many n is 0. That is, the measure of π′ ∈ Π′ such that M breaks the one-wayness

of π′ is 0.

Since there are only countably many Turing machines, the measure of π′ ∈ Π′ such that

there exists a Turing machine that makes only polynomially-many oracle queries and breaks

the one-wayness of π′ is 0.

�

4.7 Open problems

It remains to consider more general classes of constructions.

Queries chosen based on a long seed Our results for constructions whose seed is signif-

icantly longer than the length of each oracle query (Theorems 4.4.1 and 4.5.2) are restricted

to constructions whose queries depend only a portion of the seed whose length is close to to

the length of each query. Can we remove this restriction? Of course, such unrestricted con-

structions can obtain stretch that is significantly longer than the stretch of the given oracle,

simply by dividing their seed into portions whose length is equal to the length of each oracle

query, and then querying the oracle on each such portion. The goal is to show that the stretch

obtained by following this approach is the best that can be achieved by non-adaptive black-box

constructions.

Constructions making polynomially-many queries For our results about constructions

making polynomially-many queries (Theorems 4.5.1 and 4.5.2), can we remove the restriction

on the many-oneness of the querying function? Such a restriction does not seem necessary –

indeed, it is hard to imagine how a construction would benefit by violating this restriction.

Nevertheless, removing this restriction has turned out to be a difficult problem so far. One

possible explanation for this difficulty is that our proofs never use the fact that the constructions

G(·) that we are interested in are efficiently computable (and, in particular, have efficiently

computable querying functions). It would be interesting to show that, in fact, there exists an

inefficient non-adaptive black-box construction that has a complicated and inefficient querying

Chapter 4. Black-box impossibility results 168

function violating the many-oneness restriction and obtains more stretch than the bounds given

in Theorem 4.5.1 or Theorem 4.5.2.

Weakening the black-box requirement All of our impossibility results are for fully black-

box constructions. Can we extend these results to weaker versions of black-box constructions,

such as semi-black-box and mildly black-box constructions?

Definition 22 (Semi-black-box reduction [IR89, RTV04]) LetG(·) : {0, 1}`1(n) → {0, 1}`2(n)

be a number generator whose construction has access to an oracle for a length-increasing func-

tion mapping `′1(n) bits to `′2(n) bits. There is a semi-black-box reduction of the pseudo-

randomness of G(·) to the pseudo-randomness of its oracle if for every function f : {0, 1}`′1(n) →
{0, 1}`′2(n) and every probabilistic polytime oracle Turing machine A(·) : {0, 1}`2(n) → {0, 1}, if

Af breaks the pseudo-randomness of Gf then there exists a probabilistic polytime oracle Turing

machine M (·) such that Mf breaks the pseudo-randomness of f .

Definition 23 (Mildly black-box reduction [RTV04]) Let G(·) : {0, 1}`1(n) → {0, 1}`2(n)

be a number generator whose construction has access to an oracle for a length-increasing func-

tion mapping `′1(n) bits to `′2(n) bits. There is a mildly black-box reduction of the pseudo-

randomness of G(·) to the pseudo-randomness of its oracle if for every function f : {0, 1}`′1(n) →
{0, 1}`′2(n) and every probabilistic polytime Turing machine A : {0, 1}`2(n) → {0, 1}, if A breaks

the pseudo-randomness of Gf then there exists a probabilistic polytime oracle Turing machine

M (·) such that Mf breaks the pseudo-randomness of f .

We believe that in order to extend our results to the case of semi-black-box constructions, it

may suffice to adapt our existing proofs. Extending our results to the case of mildly black-box

constructions seems much more difficult.

Slightly-adaptive constructions Existing constructions that obtain the best increase in

stretch use their oracle in a highly adaptive manner. Roughly speaking, these existing construc-

tions query their oracle on inputs formed entirely of previous query response bits; furthermore,

such response bits are never used to form more than a single query. Can our impossibility

results be extended to constructions that use a much more restricted form of adaptivity?

For example, consider constructions that have a small number of rounds (e.g., two rounds)

of adaptivity, where the construction queries non-adaptively within each round and receives

responses to these queries at the end of each round. This kind of “slight” adaptivity has been

considered by Naor and Reingold [NR99] in the context of constructing pseudo-random function

generators. They define an object called a pseudo-random synthesizer (which can be thought

of as a strong version of a pseudo-random number generator) and show how to construct a

Chapter 4. Black-box impossibility results 169

pseudo-random function generator from a pseudo-random synthesizer using O(log n) rounds of

adaptivity.

Also, consider constructions that are computed in small space (e.g., logspace), which implic-

itly restricts adaptivity since the construction cannot “remember” more than a few response

bits from previous queries. Formally, we can model such constructions as logspace Turing ma-

chines with a special write-only query tape and a special read-only query response tape, where

the special tapes are erased between queries.

Fully-adaptive constructions Can we show that existing adaptive black-box constructions

are optimal, in the sense that they achieve the maximum possible stretch relative to the number

of queries they make? For example, the work of Bronson [Bro08] was motivated by the prob-

lem of showing that black-box constructions of pseudo-random function generators (which can

be viewed as pseudo-random number generators of exponential stretch) from pseudo-random

number generators must make super-logarithmically-many oracle queries, which would match

the best known upper bound.

Constructions from one-way permutations Theorems 4.3.1, 4.4.1, 4.5.1 and 4.5.2 show

that in certain settings, non-adaptive black-box constructions of pseudo-random number gener-

ators from pseudo-random number generators of smaller stretch cannot obtain as much stretch

as adaptive black-box constructions. Does the same distinction between adaptivity and non-

adaptivity hold in these settings for black-box constructions of pseudo-random number genera-

tors from one-way permutations? Theorems 4.3.1, 4.4.1, 4.5.1 and 4.5.2 can indeed be extended

to non-adaptive black-box constructions of pseudo-random number generators from one-way

permutations. However, the one-way permutation analogues of Theorems 4.3.1, 4.4.1, and 4.5.1

are not sufficient for getting a distinction between adaptive and non-adaptive constructions,

since the adaptive versions of these analogues are not known to be false.

Bibliography

[ADW09] Joel Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage resilient public-key cryp-

tography in the bounded retrieval model. In Advances in Cryptology — CRYPTO

2009, pages 36–54, Berlin, Heidelberg, 2009. Springer.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore

bits and cryptography against memory attacks. In TCC ’09: Proceedings of the

6th Theory of Cryptography Conference, pages 474–495, Berlin, Heidelberg, 2009.

Springer.

[BB03] David Brumley and Dan Boneh. Remote timing attacks are practical. In SSYM’03:

Proceedings of the 12th conference on USENIX Security Symposium, Berkeley, CA,

USA, 2003. USENIX Association.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf, April 2005. Revised version of earlier

2004-11 version.

[BJP11] Josh Bronson, Ali Juma, and Periklis Papakonstantinou. Limits on the stretch of

non-adaptive constructions of pseudo-random generators. In TCC ’11: Proceed-

ings of the 8th Theory of Cryptography Conference, 2011.

[BKKV10] Zvika Brakerski, Yael Kalai, Jonathan Katz, and Vinod Vaikuntanathan. Over-

coming the hole in the bucket: Public-key cryptography resilient to continual

memory leakage. In FOCS ’10: Proceedings of the 51st Annual IEEE Sympo-

sium on Foundations of Computer Science, Washington, DC, USA, 2010. IEEE

Computer Society.

[Bro08] Josh Bronson. Constructing pseudorandom function generators. Master’s thesis,

University of Toronto, 2008.

170

Bibliography 171

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod

Vaikuntanathan. Public-key encryption schemes with auxiliary inputs. In TCC,

pages 361–381, 2010.

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Lopez-Alt, and Daniel Wichs.

Cryptography against continuous memory attacks. In FOCS ’10: Proceedings of

the 51st Annual IEEE Symposium on Foundations of Computer Science, Wash-

ington, DC, USA, 2010. IEEE Computer Society.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with

auxiliary input. In STOC ’09: Proceedings of the 41st annual ACM symposium

on Theory of computing, pages 621–630, New York, NY, USA, 2009. ACM.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In

FOCS ’08: Proceedings of the 49th Annual IEEE Symposium on Foundations of

Computer Science, pages 293–302, Washington, DC, USA, 2008. IEEE Computer

Society.

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks

against one-way functions and prgs. In Tal Rabin, editor, Advances in Cryptology

– CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 649–

665. Springer Berlin / Heidelberg, 2010.

[FKPR10] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-

resilient signatures. In TCC 2010, pages 343–360, 2010.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikun-

tanathan. Protecting against computationally bounded and noisy leakage. In

EUROCRYPT 2010, 2010.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09:

Proceedings of the 41st annual ACM symposium on Theory of computing, pages

169–178, New York, NY, USA, 2009. ACM.

[GGKT05] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of

generic cryptographic constructions. SIAM J. Comput, 35(1):217–246, 2005.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.

In Advances in Cryptology — CRYPTO 2008, pages 39–56, Berlin, Heidelberg,

2008. Springer.

Bibliography 172

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In

STOC’89, pages 25–32, Berlin, 1989. ACM.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on

oblivious rams. J. ACM, 43(3):431–473, 1996.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University

Press, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2: Basic Applications.

Cambridge University Press, 2004.

[GR10] Shafi Goldwasser and Guy Rothblum. Securing computation against continuous

leakage. These proceedings, 2010.

[HRV10] Iftach Haitner, Omer Reingold, and Salil Vadhan. Efficiency improvements in

constructing pseudorandom generators from one-way functions. In STOC ’10,

pages 437–446, New York, NY, USA, 2010. ACM.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way

permutations. In STOC ’89, 1989.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware

against probing attacks. In Advances in Cryptology — CRYPTO 2003, pages

463–481, Berlin, Heidelberg, 2003. Springer.

[JV10] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual

leakage. In Advances in Cryptology – CRYPTO 2010, pages 41–58. Springer Berlin

/ Heidelberg, 2010.

[JV11] Ali Juma and Yevgeniy Vahlis. Leakage-resilient authentication. In progress, 2011.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chap-

man & Hall/Crc Cryptography and Network Security Series). Chapman &

Hall/CRC, 2007.

[Kuh03] Markus G. Kuhn. Compromising emanations: eavesdropping risks of computer

displays. Technical Report UCAM-CL-TR-577, University of Cambridge, 2003.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leak-

age resilience. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT

2009. Proceedings, volume 5912 of Lecture Notes in Computer Science, pages 703–

720. Springer, 2009.

Bibliography 173

[Lu06] Chi-Jen Lu. On the complexity of parallel hardness amplification for one-way

functions. In TCC ’06, LNCS, pages 462–481, 2006.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In TCC

’04: Proceedings of the 1st Theory of Cryptography Conference, pages 278–296,

Berlin, Heidelberg, 2004. Springer.

[MTVY11] Tal Malkin, Isamu Teranishiy, Yevgeniy Vahlis, and Moti Yung. Signatures re-

silient to continual leakage on memory and computation. In TCC ’11: Proceedings

of the 8th Theory of Cryptography Conference, 2011.

[MV11] Eric Miles and Emanuele Viola. On the complexity of increasing the stretch of

pseudorandom generators. In TCC ’11: Proceedings of the 8th Theory of Cryp-

tography Conference, 2011.

[NR99] Moni Naor and Omer Reingold. Synthesizers and their application to the par-

allel construction of pseudo-random functions. Journal of Computer and System

Sciences, 58(2):336 – 375, 1999.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In

Advances in Cryptology — CRYPTO 2009, pages 18–35, Berlin, Heidelberg, 2009.

Springer.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-

sures: The case of AES. In Topics in Cryptology - CT-RSA 2006, pages 1–20,

Berlin, Heidelberg, 2006. Springer.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Advances in Cryp-

tology – EUROCRYPT 2009, pages 462–482, Berlin, Heidelberg, 2009. Springer-

Verlag.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema):

Measures and counter-measures for smart cards. In E-SMART ’01: Proceedings of

the International Conference on Research in Smart Cards, pages 200–210, London,

UK, 2001. Springer-Verlag.

[RTV04] O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between crypto-

graphic primitives. In TCC ’04, LNCS, pages 1–20, 2004.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully

homomorphic encryption over the integers. In EUROCRYPT 2010, 2010.

Bibliography 174

[Vio05] E. Viola. On constructing parallel pseudorandom generators from one-way func-

tions. In CCC ’05, pages 183–197. IEEE Computer Society, 2005.

