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Abstract. The standard approach for constructing a large-stretch pseudo-
random generator given a one-way permutation or given a smaller-stretch
pseudo-random generator involves repeatedly composing the given prim-
itive with itself. In this paper, we consider whether this approach is nec-
essary, that is, whether there are constructions that do not involve com-
position. More formally, we consider black-box constructions of pseudo-
random generators from pseudo-random generators of smaller stretch
or from one-way permutations, where the constructions make only non-
adaptive queries to the given object. We consider three classes of such
constructions, and for each class, we give a black-box impossibility result
that demonstrates a contrast between the stretch that can be achieved
by adaptive and non-adaptive black-box constructions.
We first consider constructions that make constantly-many non-adaptive
queries to a given pseudo-random generator, where the seed length of the
construction is at most O(log n) bits longer than the length n of each
oracle query. We show that such constructions cannot achieve stretch
that is even a single bit greater than the stretch of the given pseudo-
random generator.
We then consider constructions with arbitrarily long seeds, but where
oracle queries are collectively chosen in a manner that depends only
on a portion of the seed whose length is at most O(log n) bits longer
than the length n of each query. We show that such constructions mak-
ing constantly-many non-adaptive queries cannot achieve stretch that is
ω(log n) bits greater than the stretch of the given pseudo-random gener-
ator.
Finally, we consider a class of constructions motivated by streaming com-
putation. Specifically, we consider constructions where the computation
of each individual output bit depends only on the seed and on the re-
sponse to a single query to a one-way permutation. We allow the seed
to have a public portion that is arbitrarily long but must always be in-
cluded in the output, and a non-public portion that is at most O(log n)
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bits longer than the length n of each oracle query. We show that such
constructions whose queries are chosen non-adaptively based only on the
non-public portion of the seed cannot achieve linear stretch.

1 Introduction

It is well known that if there exist pseudo-random generators obtaining even
one bit of stretch, then for every polynomial p(n), there exist pseudo-random
generators obtaining p(n) bits of stretch. The usual approach for constructing
a pseudo-random generator of large stretch from a pseudo-random generator
of smaller stretch involves composing the smaller-stretch generator with itself
repeatedly. Similarly, the usual approach for constructing a pseudo-random gen-
erators of large stretch from a one-way permutation involves composing the
one-way permutation with itself repeatedly.

In this paper, we consider whether there exist such constructions that do
not involve composition. To formalize this requirement about composition, we
consider constructions that only have oracle access to the given object (a smaller-
stretch pseudo-random generator or a one-way permutation) and query this ora-
cle non-adaptively. We refer to such constructions as non-adaptive (oracle) con-

structions.

Given oracle access to a pseudo-random generator or a one-way per-

mutation is it possible to construct, via non-adaptive oracle queries, a

pseudo-random generator of large stretch?

We give a number of black-box impossibility results for non-adaptive oracle
constructions of pseudo-random generators. Some of these arguments are rather
technically involved. Roughly speaking, we answer in the negative whether we
can obtain, with only a constant number of queries to a pseudo-random genera-
tor, a pseudo-random generator of much larger stretch, where answers to these

non-adaptive queries are combined arbitrarily. The challenge is to deal with this
arbitrary computation phase.

Non-adaptive constructions are conceptually related to streaming cryptogra-

phy ; that is, computing private-key primitives with a device that uses small space
and accesses the seed a small number of times. One of the three non-adaptive
settings we consider in this paper is motivated by questions in streaming cryp-
tography.

Our results. Observe that if pseudo-random generators exist, then there exist
trivial non-adaptive oracle constructions of large-stretch pseudo-random gener-
ators: such constructions can simply ignore their oracle and directly compute
a large-stretch pseudo-random generator. Since we are interested in construc-
tions that use their oracle in a non-trivial way, we focus on constructions whose
pseudo-randomness is proven using a black-box reduction [8] to the the security
(pseudo-randomness or one-wayness) of their oracle.



We consider three classes of such constructions, and give bounds on the
stretch that can be obtained by each class. For each class, our results demon-
strate a contrast between the stretch that can be achieved by adaptive and
non-adaptive constructions. We show that, in some sense, whatever was already
known regarding algorithms for non-adaptive constructions is the best we can
hope for. While we are primarily interested in constructions that are polynomial-
time computable, our bounds hold even for computationally-unbounded con-
structions (where the number of oracle queries is still bounded).

– Class 1: Constructions with short seeds

Suppose we have a pseudo-random generator f : {0, 1}n → {0, 1}n+s(n) and
we wish to obtain a pseudo-random generator with larger stretch, say stretch
2·s(n). We can easily define such a generator Gf : {0, 1}n → {0, 1}n+2·s(n) as
follows: on input x ∈ {0, 1}n, Gf computes y0||y1 = f(x) (where |y0| = s(n)
and |y1| = n), and outputs y0||f(y1). Gf can be formalized as a fully black-
box construction making two adaptive oracle queries, each of the same length
as G’s seed x, to an oracle mapping n bits to n + s(n) bits. This idea can
easily be extended to obtain, for every k ∈ N, a fully black-box construction
making k adaptive oracle queries and achieving stretch k · s(n).

We show that fully black-box constructions making constantly-many queries,
each of the same length as their seed length n, must make adaptive queries
even to achieve stretch s(n) + 1, that is, even to achieve a one-bit increase
in stretch. We show that this also holds for constructions whose seed length
is at most O(log n) bits longer than the length n of each oracle query.

– Class 2: Constructions with long seeds

What about constructions whose seed length is significantly longer than the
length of each oracle query? Can we also show that such constructions must
make adaptive oracle queries in order to achieve greater stretch than their
oracle? In fact, a very simple way for such a construction to make non-
adaptive oracle queries, yet achieve greater stretch than its oracle, involves
splitting up its seed into two or more portions, and using each portion as
an oracle query. For example, if f : {0, 1}n → {0, 1}n+1 is pseudo-random,
then the generator Gf : {0, 1}2n → {0, 1}2n+2 defined for all x1, x2 ∈ {0, 1}n
as Gf (x1||x2) = f(x1)||f(x2) is also pseudo-random. Observe that when
this construction is given an input chosen uniformly at random, the oracle
queries x1 and x2 are chosen independently (and uniformly at random); this
property is crucial for the construction’s security.

What about constructions where oracle queries cannot be chosen indepen-
dently and uniformly at random? Specifically, what if we consider construc-
tions where we place no restriction on the seed length, but insist that or-
acle queries are collectively chosen in a manner that depends only on a
portion of the seed that is not too much longer than the length of each
oracle query (making it impossible to simply split up the seed into multi-
ple queries)? While this setting may seem unnatural at first, it is possible



in this setting to obtain a construction that makes constantly-many non-
adaptive oracle queries to a pseudo-random generator and achieves more
stretch than its oracle; indeed, even a single query suffices. For example, if
f : {0, 1}n → {0, 1}n+s(n) is pseudo-random, then by the Goldreich-Levin
theorem [6] we have that for all functions m(n) ∈ O(log n), the number
generator Gf : {0, 1}n·m(n)+n → {0, 1}n·m(n)+n+s(n)+m(n) defined for all
r1, r2, . . . , rm(n), x ∈ {0, 1}n as

G
f
�
r1||r2|| . . . ||rm(n)||x

�
= r1||r2|| . . . ||rm(n)||f(x)||�r1, x�||�r2, x�|| . . . ||�rm(n), x�

is pseudo-random; the stretch of Gf is m(n) bits greater than the stretch of
f . Also observe that the query made by G(·) depends only on a portion of the
seed of G(·) whose length is the same as the length of the query (indeed, the
query is identical to this portion of the seed). Using this Goldreich-Levin-
based approach, it is easy to see that adaptive black-box constructions whose
input length is much longer than the length n of each oracle query can obtain
stretch k · s(n) + O(log n) by making k queries to an oracle of stretch s(n),
even when the portion of the seed that is used to choose oracle queries has
length n.

We show that fully black-box constructions G(·) making constantly-many
queries of length n to a pseudo-random generator f : {0, 1}n → {0, 1}n+s(n),
such that only the rightmost n+O(log n) bits of the seed of G(·) are used to
choose oracle queries, must make adaptive queries in order to achieve stretch
s(n) + ω(log n). That is, such constructions making constantly-many non-
adaptive queries cannot achieve greater stretch than the stretch provided by
Goldreich-Levin with just a single query. This holds no matter how long a
seed is used by the construction G(·).

– Class 3: Goldreich-Levin-like constructions

The final class of constructions we consider is motivated by the streaming
computation of pseudo-random generators. What is the relationship between
non-adaptivity and streaming? In what sense could one prove a black-box
lower bound that rules out streaming constructions of pseudo-random gener-
ator G of linear stretch using a one-way permutation π? A black-box lower-
bound stated for a streaming device has to reference the many details of
the model. We wish to state a similar thing in a setting that abstracts out
a common property of streaming algorithms extended to have oracle access
to a one-way permutation. Can a streaming algorithm be adaptive (even
when we do not account for the space occupied by the oracle tape), in the
sense that a query depends on many bits of previous queries? Given that
a random input is incompressible, and the fact that we lack space (so as
to store) and passes over the input (so as to recompute), it is plausible to
consider non-adaptivity as a clean setting for studying black-box streaming
constructions.

We consider a class of constructions where the seed has a public portion
that is always included in the output, the choice of each oracle query does



not depend on the public portion of the seed, and the computation of each
individual output bit depends only on the seed and on the response to a sin-

gle oracle query. We refer to such constructions making non-adaptive oracle
queries as bitwise-nonadaptive constructions. It is not hard to see that such
constructions making polynomially-many adaptive queries to a one-way per-
mutation π : {0, 1}n → {0, 1}n can achieve arbitrary polynomial stretch; the
idea is to repeatedly compose π with itself, outputting a hardcore bit of π on
each composition. For example, using the Goldreich-Levin hardcore bit [6],
a standard way of constructing a pseudo-random generator G of polynomial
stretch p(n) is the following: On input r, x ∈ {0, 1}n,

G
π(r||x) = r||�r, x�||�r,π(x)�||�r,π2(x)�|| . . . ||�r,πp(n)+n(x)�

where πi := π ◦ π ◦ . . . ◦ π� �� �
i times

, and �α,β� denotes the standard inner product

of α and β. Observe that the leftmost n bits of the seed of G are public
in the sense that they are included in the output. Also observe that each
of the remaining output bits of G is computed using only a single output
of π along with the input bits of G. Finally, observe that the queries made
to π do not depend on the public input bits of G, and the number of non-
public input bits is no greater than the length n of each oracle query. It
is natural to ask whether the adaptive use of π in a construction of this
form is necessary. This is particularly interesting if we wish to compute G

in a streaming setting where we have small workspace, we are allowed to
produce the output bit-by-bit, and we are allowed to re-read the input once
per output bit.
We show that fully black-box bitwise-nonadaptive constructions G(·) mak-
ing queries of length n to a one-way permutation, such that the non-public
portion of the seed of G(·) is of length at most n+O(log n), cannot achieve
linear stretch. This holds no matter the length of the public portion of the
seed of G(·).

We conclude this paper with some remarks and observations about streaming
models for cryptography. Our treatment of streaming models mostly serves the
purpose of proposing some new research directions.

Related work. Black-box reductions were formalized by Impagliazzo and Rudich
[8], who observed that most proofs of security in cryptography are of this form.
Impagliazzo and Rudich also gave the first black-box impossibility results. In
their most general form, such results show that for particular security properties
P1 and P2, it is impossible to give a black-box construction of P1 from P2. The
same approach can also be applied to particular classes of black-box construc-
tions, such as those making some restricted number of oracle queries or those
that query their oracle non-adaptively. A large number of impossibility results
have been given using this framework. The results most closely related to the
problem we are considering are those of Gennaro et al [5], Viola [13], Lu [10],
and Miles and Viola [11].



Gennnaro et al [5] consider black-box constructions of pseudo-random gen-
erators from one-way permutations. They show that such constructions cannot
achieve ω(log n) bits of stretch per oracle query of length n, even when queries
are chosen adaptively. Their result can be extended in a straightforward way to
show that for the second class of constructions we consider (and also for a more
general class where queries are allowed to depend on the entire seed), for every
k ∈ N, constructions making k oracle queries to a pseudo-random generator of
stretch s(n) cannot achieve stretch k ·s(n)+ω(log n), even when these queries are
chosen adaptively. By contrast, recall that we show that for this class of construc-
tions, for every k ∈ N, constructions making k non-adaptive oracle queries to a
pseudo-random generator of stretch s(n) cannot achieve stretch s(n) +ω(log n).

Viola [13] considers black-box constructions of pseudo-random generators
from one-way functions where oracle queries are non-adaptive but chosen in a
computationally unbounded way, while the output of the construction is com-
puted from the query responses by an AC0 (polynomial-size and constant-depth)
circuit. He shows that such constructions cannot achieve linear stretch. The class
of constructions considered by Viola is, in general, incomparable to the classes
we consider. His class is more general in terms of the numbers of queries allowed
and the way that queries are chosen: he places no bounds on the number of
queries, allows the queries to be chosen arbitrarily based on the seed (while we
require queries to be chosen in a computable manner), and places no restrictions
on the length of the queries relative to the length of the seed. On the other
hand, his class is more restrictive in terms of the computational power allowed
after the query responses are received: he only allows AC0 computation, while
we allow unbounded computation.

Lu [10] considers the same class of constructions as Viola, except that Lu
allows the output to be computed from the query responses by a subexponential-
size constant-depth circuit (rather than an AC0 circuit). He shows that such
constructions cannot achieve linear stretch.

Miles and Viola [11] consider black-box constructions of pseudo-random gen-
erators from pseudo-random generators of 1-bit stretch, where the oracle queries
are non-adaptive but chosen in a computationally unbounded way, while the
output of the construction consists simply of query response bits; that is, these
constructions are not allowed to perform any computation on query responses.
They show that such constructions cannot achieve linear stretch. Like the con-
structions considered by Viola [13] and Lu [10], the class of constructions consid-
ered by Miles and Viola is, in general, incomparable to the classes we consider:
the constructions they consider are more general in the manner in which queries
are chosen (they place no restrictions on the length of queries relative to the
length of the seed), but much more restrictive in terms of the computational
power allowed after query responses are received.

In the positive direction, Haitner et al [7] give the first non-adaptive black-
box construction of a pseudo-random generator from a one-way function. Their
construction achieves sublinear stretch. They also give a non-adaptive black-box
construction achieving linear stretch, but this requires an exponentially-hard one-



way function. In both of these constructions, the oracle queries are collectively
chosen based on a portion of the seed that is significantly longer than the length
of each oracle query. By contrast, recall that all of our impossibility results are
for constructions where the oracle queries are collectively chosen based on a
portion of the seed that is no more than logarithmically-many bits longer than
the length of each oracle query.

Organization. Section 2 contains definitions and preliminaries. The impossibility
results for constructions with short seeds and long seeds are discussed in Sections
3 and 4 respectively. In Section 5, we state a restriction on the way that con-
structions choose oracle queries, and under this restriction we extend the results
of Sections 3 and 4 to constructions making polynomially-many queries. The
impossibility result for Goldreich-Levin-like constructions is found in Section 6.
Section 7 contains our remarks on streaming models in cryptography.

2 Preliminaries

Notation. We use “PPT” to denote “probabilistic polynomial time”. We denote
by �a�n the n-bit binary string representation of a ∈ N, padded with leading zeros
when necessary. If the desired representation length is clear from the context,
we write �a� instead of �a�n. If a ≥ 2n, then �a�n denotes the n least significant
bits of the binary representation of a. We denote by x||y the concatenation of
strings x and y.

2.1 Pseudo-random generators and one-way functions

A length-increasing function G : {0, 1}�1(n) → {0, 1}�2(n) is a pseudo-random

generator if for every PPT adversary M , we have
���� Pr
x←{0,1}�1(n)

[M (G (x)) = 1]− Pr
z←{0,1}�2(n)

[M (z) = 1]

���� ≤ 1/nc

for all c and sufficiently large n.
A function f : {0, 1}�1(n) → {0, 1}�2(n) is one-way if for every PPT adversary

M , we have Pr
x←�1(n)

[f (M (f (x))) = f (x)] ≤ 1/nc for all c and sufficiently large

n.

2.2 Non-adaptive constructions

Our impossibility results are for constructions that use their oracle in a non-
adaptive manner.

Definition 1. (Non-adaptive oracle machine) Let M (·) be a deterministic

oracle Turing machine. We say that M (·) is a non-adaptive oracle machine if

the oracle queries made by M (·) are determined by only the input to M (·), and,
in particular, do not depend on the responses to previous queries.



We will sometimes need to refer to the querying function of a non-adaptive
oracle machine.

Definition 2. (Querying function) Let �1(n), �2(n), and p(n) be polynomials,

and let M (·) : {0, 1}�1(n) → {0, 1}�2(n) be a non-adaptive oracle machine that

makes p(n) oracle queries, each of length n. The querying function of M (·),
denoted QM , is the function QM : {0, 1}�1(n) × {0, 1}log p(n) → {0, 1}n such that

for all x ∈ {0, 1}�1(n) and 0 ≤ i < p(n), the i-th oracle query made by M (·)(x)
is QM (x, �i�). When p(n) ≡ 1, the second argument to QM is omitted.

If there exists a polynomial r(n) such that the queries made by M (·) depend

only on the rightmost r(n) bits of the input of M (·), then the r(n)-restricted

querying function of M (·), denoted Q
r(n)
M

, is the function Q
r(n)
M

: {0, 1}r(n) ×
{0, 1}log p(n) → {0, 1}n such that for all v ∈ {0, 1}�1(n)−r(n), w ∈ {0, 1}r(n), and
0 ≤ i < p(n), the i-th oracle query made by M (·)(v||w) is Q

r(n)
M

(w, �i�).

2.3 Black-box reductions

Reingold, Trevisan, and Vadhan [12] give a classification of black-box security
reductions. Our impossibility results apply to what Reingold et al call fully-black
box reductions. We avoid defining such reductions in their full generality and
instead focus on security reductions for constructions of pseudo-random number
generators from pseudo-random generators of smaller stretch.

Definition 3. (Fully black-box reduction [8]) Let G(·) : {0, 1}�1(n) → {0, 1}�2(n)
be a number generator whose construction has access to an oracle for a length-

increasing function mapping ��1(n) bits to ��2(n) bits. There is a fully black-box
reduction of the pseudo-randomness of G(·) to the pseudo-randomness of its or-

acle if there exists a PPT oracle machine M (·,·) such that for every function

f : {0, 1}��1(n) → {0, 1}��2(n) and every function A : {0, 1}�2(n) → {0, 1}, if A

breaks the pseudo-randomness of Gf then M (f,A) breaks the pseudo-randomness

of f .

Definition 3 can be modified in a straightforward way for constructions of pseudo-
random number generators from other primitives, such as from one-way permu-
tations.

An oracle construction whose security is proven using a black-box reduction
is called a black-box construction.

3 Constructions with short seeds

In this section, we consider constructions whose seed length is not more than
O(log n) bits longer than the length n of each oracle query. Recall that such
constructions making k adaptive queries to a given pseudo-random generator
can achieve stretch that is k times the stretch of the given generator. We show
that such constructions making constantly-many non-adaptive queries cannot
achieve stretch that is even a single bit longer than the stretch of the given
generator.



Theorem 1. Let k ∈ N, and let �1(n) and �2(n) be polynomials such that

�1(n) ≤ n+O(log n) and �2(n) > n. Let G(·) : {0, 1}�1(n) → {0, 1}�1(n)+(�2(n)−n)+1

be a non-adaptive oracle construction of a number generator, making k queries

of length n to an oracle mapping n bits to �2(n) bits. Then there is no fully

black-box reduction of the pseudo-randomness of G(·) to the pseudo-randomness

of its oracle.

The approach we use to prove Theorem 1 does not seem to extend to the
case of polynomially-many (or even ω(1)-many) queries. However, a similar ap-
proach does work for polynomially-many queries when we place a restriction on
the many-oneness of the number generator’s querying function. We state this
restriction in Section 5.

We give an overview of the proof of Theorem 1 in Section 3.1, and we give
the proof details in the full version of this paper.

3.1 Proof overview for Theorem 1

A simpler case We first consider the simpler case of constructions making just
a single query, where the query made is required to be the same as the construc-
tion’s input. That is, we consider constructions G(·) : {0, 1}n → {0, 1}�2(n)+1

such that on every input x ∈ {0, 1}n, G makes query x to an oracle mapping n

bits to �2(n) bits. Fix such a construction G(·). We need to show the existence
of functions f : {0, 1}n → {0, 1}�2(n) and A : {0, 1}�2(n) → {0, 1} such that A

breaks the pseudo-randomness of Gf but f is pseudo-random even with respect
to adversaries that have oracle access to f and A. Following the approach for
proving black-box impossibility results initiated by Impagliazzo and Rudich [8],
we actually define a joint distribution (F ,A) over pairs of functions, such that
with probability one over (f,A) ← (F ,A), A breaks the pseudo-randomness of
Gf but f is pseudo-random even with respect to adversaries that have oracle
access to f and A.

Consider how we might define such a joint distribution (F ,A). The most
obvious approach is to let (F ,A) be the distribution defined by the following
procedure for sampling a tuple (f,A) ← (F ,A): randomly select f from the
(infinite) set of all functions that, for each n ∈ N, map n bits to �2(n) bits; let
A be the function such that for every z ∈ {0, 1}�2(n)+1, A(z) = 1 if and only
if there exists an s ∈ {0, 1}n such that Gf (s) = z. Following this approach,
we have that with probability one over (f,A) ← (F ,A), A breaks the pseudo-
randomness of Gf but f is pseudo-random with respect to adversaries that have
oracle access to f alone. However, it is not necessarily the case that f is pseudo-
random with respect to adversaries that have oracle access to f and A. For
example, suppose construction G is such that for every x ∈ {0, 1}n−1 and every
b ∈ {0, 1}, Gf (x||b) = f(x||b)||b. In this case, it is easy to use A to break f : on
input y ∈ {0, 1}�2(n), output 1 if and only if either A(y||0) = 1 or A(y||1) = 1.

To overcome this problem, we add some “noise” to A. We need to be careful
that we add enough noise to A so that it is no longer useful for breaking f , but
we do not add so much noise that A no longer breaks Gf . Our basic aproach is



to modify A so that instead of only accepting Gf (s) for all s ∈ {0, 1}n, A accepts
Gfi(s) for all s, all i, and some appropriate collection of functions {f0, f1, f2, . . . }
where f0 = f . How should this collection of functions be defined? Since we want
to make sure that A still breaks Gf , and since we have that A accepts Gf (s)
with probability 1 over s ← {0, 1}n, we need to ensure that A accepts randomly
chosen strings with probability non-negligibly less than 1. For this, it suffices
to ensure that (# of n-bit strings s)*(# of functions fi) is at most, say, half
the number of strings of length �2(n) + 1. At the same time, to prevent A from
helping to break f , we would like it to be the case that, intuitively, A treats
strings that are not in the image of f on an equal footing with strings that are
in the image of f . One way to accomplish these objectives, which we follow, is
to randomly select a permutation π on {0, 1}�2(n), define f(x) = π(0�2(n)−n||x)
for all x ∈ {0, 1}n, and define A to accept Gπ(y||·)(s) for every y ∈ {0, 1}�2(n)−n

and every s ∈ {0, 1}n. We formalize this as a joint distribution (F ,A,Π) over
tuples (f,A,π) that are sampled in the manner just described.

It is easy to show that with probability one over (f,A,π) ← (F ,A,Π), A does
indeed break Gf . It is much more difficult to show that with probability one over
(f,A,π) ← (F ,A,Π), f is pseudo-random ever with respect to PPT adversaries
that have oracle access to f and A. We argue that it suffices to show that for
every PPT oracle machine D(·,·), the probability over (f,A,π) ← (F ,A,Π) and
s ← {0, 1}n that D(f,A)(f(s)) makes oracle query s to f is negligible. Now,
instead of only showing this for every PPT oracle machine D(·,·), we find it
more convenient to show this for every computationally unbounded probabilistic
oracle machine D(·,·) that makes at most polynomially-many oracle queries. How
might we do so? We would like to argue that A does not help D to find s since
a computationally unbounded D can try to compute A by itself. More formally,
we would like to show that given D, we can build a D� that, given input f(s)
and given oracle access only to f , simulates D on input f(s), answers f -queries
of D using the given oracle, and “makes up” answers to the A-queries of D

in a manner that ensures that the probability that the simulation of D makes
query s is very close to the probability that D(f,A)(f(s)) makes oracle query s.
Of course, D� does not “know” π, so it is not immediately clear how it should
answer the A-queries of the simulation of D. If D� simply randomly chooses its
own permutation π� and answers A-queries using π� in place of the unknown
π, the simulation of D may “notice” this sleight of hand. For example, since D

is given f(s) as input, it might (depending on the definition of G) be able to
compute the value of Gf (s), and hence make query Gf (s) to A; if this query does
not produce response 1, D will “know” that queries are not being responded to
properly.

We address this by showing that D� can still compute “most” of A on its own,
and that the “rest” of A is not helpful for finding s. Specifically, we split A into
two functions, A1 and A2, that together can be used to compute A. Function A1

outputs 1 only on input Gf (s). For every (�2(n) + 1)-bit string z, A2(z) = 1 if
and only if z �= Gf (s) and A(z) = 1. We then argue that querying A1 provides
very little help for finding s. Let X be the set of all strings x ∈ {0, 1}n such that



Gf (x) = Gf (s). Roughly speaking, if X is large, then A1 gives no information
about s beyond the fact that s ∈ X. On the other hand, if X is small, then we
argue it is unlikely that an adversary making polynomially-many queries to A1

will receive a non-zero response to any of its queries (in other words, it is unlikely
that query Gf (s) will be made). It remains to argue that D� can compute A2 on
its own. We show that if D� randomly selects a permutation π�, computes an A�

2

based on π� (rather than π), uses this A�
2 along with the given A1 to answer the

A-queries of the simulation of D, and answers the f -queries of the simulation
of D based on π�(0�2(n)−n||·) (rather than using the given oracle f), then it is
unlikely that the simulation of D will make a query that “exposes” the fact that
its oracle queries are not being answered by f and A.

The general case We extend the above argument to constructions G(·) :
{0, 1}�1(n) → {0, 1}�1(n)+(�2(n)−n)+1 making constantly-many non-adaptive queries,
where the length �1(n) of the construction’s input is allowed to be O(log n) bits
longer than the length n of each oracle query. The high-level idea is the same:
we define a joint distribution (F ,A,Π) by specifying a procedure for sampling
a tuple (f,A,π) ← (F ,A,Π), and the way we sample π and f is (almost) the
same as before. But now we change the way A behaves. Our goal is to follow
the same style of argument as before. To accomplish this, we would still like
it to be the case that when we “split up” A into functions A1 and A2, there
is still at most one string accepted by A1 (this helps us ensure that A1 does
not provide too much information about s). Recall that before, when D� was
run on an input f(s), the unique string accepted by A1 was Gf (s). This made
sense because in the previous setting, the only input on which G(·) made oracle
query s was s itself. But in the current setting, for each s ∈ {0, 1}n, there may
be many inputs x ∈ {0, 1}�1(n) on which G(·) makes oracle query s. We would
like to modify the definition of A so that rather than accepting Gπ(y||·)(x) for
every y ∈ {0, 1}�2(n)−n and every x ∈ {0, 1}�1(n), A accepts Gπ(y||·)(x) for every
y ∈ {0, 1}�2(n)−n and x in some subset Good(n) ⊆ {0, 1}�1(n) such that for every
s ∈ {0, 1}n, there is at most one x ∈ Good(n) such that G(·) on input x makes
query s. But we cannot do exactly this (and still have that A breaks Gf ), since,
for example, there might be some string t that G(·) queries no matter what its
input is.

Instead, we need to proceed very carefully, partitioning the set of strings t

of length n into those that are queried by G(·) for “many” of its inputs x ∈
{0, 1}�1(n), and those queried by G(·) for “at most a few” of its inputs x ∈
{0, 1}�1(n). We call the former set Fixed(n) and the latter set NotF ixed(n). We
then define a set Good(n) ⊆ {0, 1}�1(n) of inputs to G(·) such that for no pair of
distinct inputs from Good(n) does G(·) make the same query t ∈ NotF ixed(n).
That is, each t ∈ NotF ixed(n) is queried by G(·) for at most one of its inputs
x ∈ Good(n). The challenge, of course, is ensuring that that the set Good(n)
defined this way is “large enough”.

We define A to accept Gπ(y||·)(x) for every y ∈ {0, 1}�2(n)−n and every x ∈
Good(n). Now we can “split up” A into A1 and A2 in a manner similar to what



we did before: on input f(s) to D�, where s ∈ NotF ixed(n), if there exists a
string x ∈ Good(n) such that G(·)(x) makes query s (note that there can be at
most one such string x by definition of Good(n)), then A1 only accepts Gf (x),
and if there is no such string x then A1 does not accept any strings; as before,
we define A2 to accept the remaining strings accepted by A. We then argue as
before about the (lack of) usefulness of A1 and A2 for helping to find s. Finally,
we argue that our definition of Fixed(n) ensures that this set will be of negligible
size, and hence it does not hurt to ignore the case s ∈ Fixed(n) (since this case
will occur with negligible probability).

4 Constructions with long seeds

In Section 3, we saw that black-box constructions G(·) making constantly-many
non-adaptive oracle queries, where the seed length of G(·) is not too much longer
than the length of each oracle query, cannot achieve even a single bit more
stretch than their oracle. In this section, we consider constructions whose seed
length is allowed to be much longer than the length of each oracle query, but
where the oracle queries are collectively chosen in a manner that depends only
on a portion of the seed whose length is not more than O(log n) bits longer than
the length n of each oracle query. Recall that such constructions making even
a single query to a given pseudo-random generator can achieve stretch that is
O(log n) bits longer than the stretch of the given generator [6]. Further, recall
that such constructions making k adaptive queries can achieve stretch that is
O(log n) bits longer than k times the stretch of the given generator. We show that
such constructions making constantly-many non-adaptive queries cannot achieve
stretch that is ω(log n) bits longer than the stretch of the given generator.

Theorem 2. Let k ∈ N, c ∈ R+, and m(n) ∈ ω(log n). Let �0(n), �1(n), and
�2(n) be polynomials such that �1(n) ≤ n+ c log n. Let G(·) : {0, 1}�0(n)+�1(n) →
{0, 1}�0(n)+�1(n)+(�2(n)−n)+m(n) be a non-adaptive oracle construction of a num-

ber generator that makes k queries of length n to a number generator mapping

n bits to �2(n) bits, such that for all r ∈ {0, 1}�0(n) and x ∈ {0, 1}�1(n), the

queries made by G(·) on input (r||x) depend only on x. Then there is no fully

black-box reduction of the pseudo-randomness of G(·) to the pseudo-randomness

of its oracle.

As is the case for Theorem 1, the approach we use to prove Theorem 2
does not seem to extend to the case of polynomially-many (or even ω(1)-many)
queries. However, a similar approach does work for polynomially-many queries
when we place a restriction on the many-oneness of the number generator’s
querying function. We state this restriction in Section 5.

We give an overview of the proof of Theorem 2 in Section 4.1, and we give
the proof details in the full version of this paper.



4.1 Proof overview for Theorem 2

As in the proof of Theorem 1, it suffices to define a joint distribution (F ,A)
over pairs of functions, such that with probability one over (f,A) ← (F ,A), A
breaks the pseudo-randomness of Gf but f is pseudo-random even with respect
to adversaries that have oracle access to f and A. Unlike the previous proof,
we actually define distributions F and A that are independent – in fact, we
define A to be a degenerate distribution that assigns all probability to a fixed
function A. We define a set Good(n) ⊆ {0, 1}�1(n) in a careful manner very
similar to the proof of Theorem 1, but taking into account the fact that the
queries of G(·) depend only on the rightmost �1(n) bits of its seed. The goal is
to ensure that Good(n) is sufficiently large and has the property that for every
string x ∈ Good(n), every r ∈ {0, 1}�0(n), and every f ∈ F , A accepts Gf (r||x).
Simultaneously, we need to ensure that the total number of strings accepted
by A is sufficiently smaller than 2�0(n)+�1(n)+(�2(n)−n)+m(n) and that f ← F is
pseudo-random with probability one even with respect to adversaries that have
oracle access to f and A.

If we define F in a very straightforward way (e.g. as the uniform distribution
over all 1-1 functions), the total number of strings that A will need to accept
(in order to accept Gf (r||x) for every f ∈ F , every r, and every x ∈ Good(n))
could be too large. The problem is that when deciding whether to accept a given
input, A is existentially quantifying over over a set that is (much) larger than
the set of its possible inputs. We need to minimize the number of different f ∈ F
(while, of course, still ensuring that f ← F is pseudo-random with probability
one even with respect to adversaries that have oracle access to f and A). At the
same time, we need to add some structure to the f ∈ F to, intuitively, reduce
the amount of new information contained in the responses to the oracle queries
made by Gf when run on each r||x where x ∈ Good(n). The idea is that rather
than existentially quantifying over every r, every x ∈ Good(n), and every f ∈ F
when deciding whether to accept a particular input z, A will instead existentially
quantify over every r, every x ∈ Good(n), and every possible value for the (small
amount of) new information (that is, the information not already determined by
x) contained in the responses to oracle queries made by G(·) when run on input
r||x.

Similarly to the proof of Theorem 1, our procedure for constructing the set
Good(n) ensures that for every distinct x, x� ∈ Good(n), each query q made by
G, when run on an input whose rightmost bits are x, is either in some small
set Fixed(n) or is distinct from every query q� made by G when run on every
input whose rightmost bits are x�. This allows us to follow a two-step approach
to defining F . We first define a permutation h on {0, 1}n that, for each x ∈
Good(n), maps the queries q /∈ Fixed(n) made byG, when run on an input whose
rightmost bits are x, to strings that differ in at most a small number of bits, and,
in particular, have a common (m(n)/2)-bit suffix. Roughly speaking, sampling
f ← F proceeds as follows. We randomly select a function f � : {0, 1}n ←
{0, 1}�2(n) that is the identity on its first n − m(n)/2 input bits, and is 1-1 on
its last m(n)/2 input bits, mapping them to �2(n)−n+m(n)/2 output bits. We



then define f = f � ◦ h. The actual definition of F that we use in the proof also
ensures that for every q ∈ Fixed(n), the value f(q) is independent of the choice
f ← F (that is, f1(q) = f2(q) for all f1, f2 ∈ F).

Intuitively, this approach ensures that f ← F has “just enough” randomness.
At the same time, this approach ensures that for every r and every x ∈ Good(n),
the responses to oracle queries made by Gf (r||x) collectively contain at most
�2(n)− n+m(n)/2 bits of information that depend on the choice f ← F .

We remark that it is crucial for this proof that 2m(n)/2 is super-polynomial.
It is for this reason that we cannot adapt the current proof in order to obtain a
significantly simpler proof of Theorem 1; in Theorem 1, the corresponding value
of m(n) (the additional stretch achieved by G(·)) is exactly 1.

5 Moving beyond constantly-many queries

In this section we consider extending Theorem 1 and Theorem 2 to the case
of polynomially-many queries. We are able to do this for a restricted class of
constructions. We begin by defining the restriction we need to place on the
querying function of the construction.

Definition 4. (Many-oneness bounded almost everywhere) Let �(n) and
q(n) be polynomials, and let f : {0, 1}�(n) → {0, 1}n be a function. f has many-
oneness bounded by q(n) almost everywhere if for all c and sufficiently large n,

there are fewer than 2n/nc strings y ∈ {0, 1}n such that |f−1(y)| > q(n).

Theorem 3. Let p(n), q(n), �1(n), and �2(n) be polynomials such that �1(n) ≤
n + O(log n) and �2(n) > n. Let G(·) : {0, 1}�1(n) → {0, 1}�1(n)+(�2(n)−n)+1 be

a non-adaptive oracle construction of a number generator, making p(n) queries

of length n to an oracle mapping n bits to �2(n) bits, such that the querying

function of G(·) has many-oneness bounded by q(n) almost everywhere. Then

there is no fully black-box reduction of the pseudo-randomness of G(·) to the

pseudo-randomness of its oracle.

Theorem 4. Let c ∈ R+ and m(n) ∈ ω(log n). Let p(n), q(n), �0(n), �1(n), and
�2(n) be polynomials such that �1(n) ≤ n+ c log n. Let G(·) : {0, 1}�0(n)+�1(n) →
{0, 1}�0(n)+�1(n)+(�2(n)−n)+m(n) be a non-adaptive oracle construction of a num-

ber generator that makes p(n) queries of length n to a number generator mapping

n bits to �2(n) bits, such that G(·) has an �1(n)-restricted querying function whose

many-oneness is bounded by q(n) almost everywhere. Then there is no fully black-

box reduction of the pseudo-randomness of G(·) to the pseudo-randomness of its

oracle.

The proofs of Theorem 3 and Theorem 4 follow the same basic structure as
the proofs of Theorem 1 and Theorem 2, respectively, but the procedure used to
define the set Good(n) in each proof is simpler as a result of the restriction on
the many-oneness of the querying function. For both Theorem 3 and Theorem
4, the procedure begins by defining Fixed(n) ⊆ {0, 1}n to be the set of strings



in the image of the querying function QG whose many-oneness is not bounded
by q(n). Then, since the remaining strings in the image of QG have bounded
many-oneness, it is easy to define a large set Good(n) ⊆ {0, 1}�1(n) such that
for all distinct x, x� ∈ Good(n) and all 0 ≤ i, j < p(n), either QG(x, �i�) ∈
Fixed(n) or QG(x, �i�) �= QG(x�, �j�). The idea is to proceed as follows: initially,
every x ∈ {0, 1}�1(n) is a candidate for inclusion in Good(n); while there are
candidates remaining, select an arbitrary candidate x, add it to Good(n), and
remove from consideration as candidates all x� such that for some 0 ≤ i, j <

p(n), we have QG(x, �i�) /∈ Fixed(n) and QG(x, �i�) = QG(x�, �j�). For every x

added to Good(n) by this procedure, at most p(n)(q(n) − 1) are removed from
consideration, and hence at the end of this procedure Good(n) has size at least
2�1(n)/(p(n)(q(n) − 1) + 1). Further details about these proofs are omitted for
the sake of conciseness.

6 Goldreich-Levin-like constructions

In this section, we consider constructions where the seed has a public portion
that is always included in the output, such that the oracle queries are chosen
non-adaptively based only on the non-public portion of the seed. We further
require that the computation of each individual output bit depends only on the
seed and on the response to a single oracle query. We begin by formalizing this
class of constructions.

Definition 5. (Bitwise-nonadaptive construction) Let �0(n), �1(n), and

�2(n) be polynomials, and let G(·) : {0, 1}�0(n)+�1(n) → {0, 1}�0(n)+�2(n) be a non-

adaptive oracle machine. We say that G(·) is bitwise-nonadaptive if there exist

uniformly-computable functions

QG =
�
QG,n : {0, 1}�1(n) × {0, 1}log �2(n) → {0, 1}n

�

and

B =
�
Bn : {0, 1}�0(n) × {0, 1}�1(n) × {0, 1}n × {0, 1}log �2(n) → {0, 1}

�

such that for all n, all r ∈ {0, 1}�0(n), all x ∈ {0, 1}�1(n), and all permutations

π : {0, 1}n → {0, 1}n, we have Gπ(r||x) = r||b0||b1|| . . . ||b�2(n)−1 where bi =
Bn(r, x, �i�,π(QG,n(x, �i�))) for 0 ≤ i ≤ �2(n)− 1.

Observe that the Goldreich-Levin-based pseudo-random generator Gπ(r||x) =
r||π(x)||�r, x� is bitwise-nonadaptive.

We show that fully black-box bitwise-nonadaptive constructions G(·) making
queries to a one-way permutation, such that the non-public portion of the seed
of G(·) is no more that O(log n) bits longer than the length n of each oracle
query, cannot achieve linear stretch.



Theorem 5. Let α > 1, and let �0(n), �1(n), and �2(n) be polynomials such

that �1(n) < n + O(log n) and �2(n) ≥ α · �1(n). Let G(·) : {0, 1}�0(n)+�1(n) →
{0, 1}�0(n)+�2(n) be a bitwise-nonadaptive number generator that makes queries

to a permutation on {0, 1}n. Then there is no fully black-box reduction of the

pseudo-randomness of G(·) to the one-wayness of its oracle.

To prove Theorem 5, we proceed in a manner similar to the proof of Theorem
2, building up a set Good�(n) whose purpose is similar to the set Good(n) in
that proof. The fact that each output bit of G depends only a single oracle
query simplifies the construction of Good�(n). Specifically, when constructing
Good�(n), we can ignore some of the “more difficult to deal with” queries made
by G(·), since we can later define adversary A to also ignore these queries simply
by ignoring the corresponding output bits. This is what allows us to handle
linearly-many queries in the current setting, even though we could only handle
constantly-many queries in the proof of Theorem 2.

Proof details are deferred to the full version of this paper.

7 Some remarks on Streaming Cryptography

The study of non-adaptivity in Goldreich-Levin-like constructions (Theorem 5)
is motivated by questions related to Streaming Models for Cryptography. In
some sense, impossibility results for non-adaptive black-box-constructions in-
dicate the impossibility of certain type of black-box streaming constructions.
We ask whether there is anything positive that can be said in the streaming
setting, perhaps using non-black-box techniques. In this section, we put forward
the main questions in streaming models for cryptography. Here is the main mo-
tivating question:

Starting from generic assumptions, is it possible to construct a one-way

function or a pseudo-random generator using O(log n) space and a small

(1, 2, . . . , constant, polylog) number of passes over the seed?

Why logarithmic space? Observe that assuming the existence of 2n
�
-hard one-

way functions (resp. one-way permutations), we can easily construct a one-way
function (resp. pseudo-random generator) that uses poly-logarithmic space and
reads its input once. By “2n

�
-hard”, we mean functions that are hard to invert

with probability ≥ 1/2n
�
in time ≤ 2n

�
. Computing such functions in logarithmic

space without the ability to recompute (by revisiting the input) seems counter-
intuitive. In fact, one can show that unconditionally this cannot be done with
any constant number of passes (see the full version of this paper). Are super-
constantly-many passes sufficient?

Motivation and related work. Streaming cryptography is motivated both from a
theoretical and a practical viewpoint. The practical impact is in settings where
on-line or streaming computation of a cryptographic primitive is needed. The-
oretical motivation comes from the general theme of computing cryptographic



primitives using rudimentary resources. Most relevant to streaming cryptogra-
phy is the seminal work of Applebaum, Ishai, and Kushilevitz [2, 1, 4, 3], which
builds upon the work of Randomizing Polynomials (e.g. [9]), and shows the pos-
sibility of Cryptography in NC0: given a “cryptographic function” f , construct
a randomized encoding of f , which is a distribution {f̂} that (i) preserves the
security of f , and (ii) is much simpler to compute than f . This amazing technical
achievement brings the combinatorics of cryptographic functions to a simplified
setting, and opens the possibility of better understanding cryptographic primi-
tives and non-black-box techniques.

Goals and observations. We wish to be able to state a theorem of the form:
if one-way functions exist then one-way functions computable in a streaming
manner exist. We believe that this is a difficult thing to show. A potentially
more feasible goal would be to show: if 2n

�
-hard one-way functions exist then

log-space streaming cryptography exists. In fact, by relying on [1, 7], one can
easily obtain a non-black-box construction of a one-way function computable in
O(log n) space with logO(1)

n passes over the input, assuming that both (i) 2n
�
-

hard one-way functions exist, and (ii) log-space computable one-way functions
exist; see the full version of this paper for the details. The latter assumption refers
to functions that are just super-polynomially hard, computable with nO(1) many
passes. It seems challenging to do the construction relying only on the existence
of 2n

�
-hard one-way functions. One can take this further to conjecture that it is

possible to prove the following statement in some constructive way:

2n
�
-hard one-way functions exist ⇐⇒ O(log n) streaming one-way func-

tions exist ⇐⇒ one-way functions computable in NC0
exist

This is a rather ambitious research direction. In particular, the right-to-
left implication is a hardness amplification of some sort. Our intuition is that
streaming computation of functions, functions computable by NC0 circuits of
some restricted form (e.g. of bounded treewidth), and 2n

�
-hard one-way functions

seem to be related.
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