
Due date: December 1st, 10:30am

This lab is a sequence of exercises in Prolog. Each exercise requires you to write a
program in a file called exN.pl, where N is the number of the exercise.

General advice and rules:

• Efficiency is not a major worry (within reason); we're exploring what you can do, not
how to get the very best solution.

• Don't worry about detecting input errors; assume the input is correct. That implies that
both the value and the type of the data supplied are correct.

• Make sure all programs run on pl on the ECF workstations.

• Make sure you exactly follow the specifications for each question.

• The specifications below are meant to be precise, unlike real-world requirements.
However, there are bound to be places where clarity has not been achieved. If you find
yourself confused, please ask.

• A Prolog query can be asked to backtrack after success. For example, in an interactive
session you may press the ';' key to see if there is another answer. Your rules should
produce every correct answer, and your rules should (of course) never produce an
incorrect answer. Some exercises may also require that every correct answer is
produced exactly once. You should always check to see what happens when your rule
is asked to backtrack.

• Some exercises look ahead to topics not covered at the time when the lab is handed
out.

• These exercises are short, but you should still follow the usual style rules, which are
just as relevant for all three programming languages used in this course as for any other
languages you have used. For example, you should choose helpful names for variables
and predicates. Comments are valuable in all languages; even a very short code
segment may be worth commenting, if you had to think hard to write it.

Academic offenses:
The standard rule is in effect: don't share your work with anyone else. Complete this lab by
yourself.

Submission:
Submit your work using the command submitcsc326f. Set the first argument – the
"assignment#" – to 3.

CSC326H1F	 Lab 3 	 Fall 2008

Exercise 1 [5 marks]

Write a predicate called rmlast(X,Y) that succeeds if X and Y are lists, and Y is the
same as X except that X's last element is not present in Y. Neither X nor Y is required to be
instantiated. When backtracking after success, you should produce every correct answer
exactly once. (Under what circumstances can there be more than one correct answer?)

Your submitted file must be named ex1.pl.

Examples:

 ?- rmlast(X, [a,b,c]).
 X = [a, b, c, _G234] ;
 No

 ?- rmlast([a,b,c], Y).
 Y = [a, b] ;
 No

Exercise 2 [10 marks]

Write a predicate called secondlargest(List,Val) that succeeds if List is a list of
integers and Val is equal to the second-largest element of List. If there is a tie for first
place, the second-largest number is the same as the largest. If List has fewer than two
elements, the second-largest number is defined to be 0. Note that the definition of second-
largest number is not the same as the definition used for Nth-smallest number in Lab 1 and
Lab 2.

You may require List to be instantiated. Even if more than one entry in List has the
second-largest value, you should nevertheless produce the correct answer exactly once.

Your submitted file must be named ex2.pl.

Examples:

 ?- secondlargest([5], Val).
 Val = 0 ;
 No

 ?- secondlargest([1,-5,3,2,2,0], Val).
 Val = 2 ;
 No

 ?- secondlargest([3,3,2,1,0,-1,-2], Val).
 Val = 3 ;
 No

CSC326H1F, Lab 3

 Page 2 of 5

Exercise 3 [10 marks]

Here are some tables representing what we know about various products sold by the
Acme Equipment Company, and about Acme's customer orders.

One step in this exercise is to represent this information as a Prolog knowledge base;
during that process, you should change all upper-case letters to lower case, combine
multiple words into one, and omit punctuation. For example, "Stick of dynamite" will
become stickofdynamite, and "E. Fudd" will become efudd.

part-name part-number price
--
Anvil 423 10.99
Stick of dynamite 567 1.97
Shotgun 128 99.99
Broccoli 256 0.99
Carrot stick 511 0.47

part-number quantity

423 36
567 200
128 5
256 93
511 4892

customer-name part-number quantity

W. Coyote 423 300
E. Fudd 567 1
B. Bunny 511 94
B. Bunny 256 9723
W. Coyote 128 12

Here are your tasks for this exercise:
a) Represent the tables above as Prolog facts. Use predicate names part, inventory,

and order.
b) Write a predicate called bigorder(Cust) that succeeds if Cust is the name of a

customer who has ordered more than 100 of any item in a single order.
c) Write a predicate called notenough(Cust, Part) that succeeds if Cust is the name

of a customer, Part is the name of a part, and Cust has ordered more of Part than
Acme has in stock. Again, you only need to consider one order at a time, rather than
summing the quantities over multiple orders.

None of the arguments for the predicates bigorder and notenough should have to be
instantiated, and backtracking should produce all the correct answers. The rules for

CSC326H1F, Lab 3

 Page 3 of 5

bigorder and notenough should work for any data, not just the data in the above tables
(in other words, you should not hard-code answers based on the above data).

Your submitted file must be named ex3.pl.

Examples:

 ?- bigorder(Cust).
 Cust = wcoyote ;
 Cust = bbunny ;
 No

 ?- notenough(Cust, Part).
 Cust = wcoyote
 Part = anvil ;

 Cust = bbunny
 Part = broccoli ;

 Cust = wcoyote
 Part = shotgun ;
 No

Exercise 4 [10 marks]

A heap is a binary tree in which every element is greater than or equal to both its children, if
these children exist. Note that a heap is not a binary search tree, and that it is unrelated to
the kind of heap used in dynamic memory allocation. (Heaps are used in heap sort, a fast
sorting algorithm.)

Write a predicate heap(Tree) that succeeds if Tree is a heap. Tree must be
instantiated, and the data contained in Tree must be integers. If these conditions are
violated, any behaviour is acceptable.

For this exercise, use the same tree representation as in the lecture slides: node(K,L,R)
is a tree with key K (an integer), left subtree L and right subtree R. The atom empty
represents an empty binary tree.

Your submitted file must be named ex4.pl.

Examples:

 ?- heap(node(5, empty, node(-2, empty, empty))).
 Yes
 ?- heap(empty).
 Yes

CSC326H1F, Lab 3

 Page 4 of 5

Exercise 5 [12 marks]

Repeat Exercise 4, but with a different tree representation: a list.

A complete binary tree is a binary tree in which every level is full except possibly the
bottom level, where there are only leaves. If the bottom level is not full, the missing nodes
must be to the right of the leaves that are present.

A complete binary tree can be represented as an array, or in Prolog as a list. In this list, the
first element (at index 1) is the root, and the children of element N are in the nodes at
indices 2N and 2N + 1.

Note that the preceding paragraph uses indices starting at 1, not 0, because it's easier to
describe the tree representation that way.

Your heap(Tree) predicate can assume that Tree is a valid complete binary tree
containing integer data. With the list representation, that just means you can assume Tree
is a list of integers. For example, the list [5, 4, 3, 2] is the complete binary tree shown
below. This tree is, in fact, also a heap.

You cannot assume there is any special integer that represents a missing node: you know
you're at a leaf when both children would be past the end of the list.

Your submitted file must be named ex5.pl.

Examples:

 ?- heap([5, 4, 3, 2]).
 Yes
 ?- heap([7, 6, -1, -3, 5]).
 Yes
 ?- heap([]).
 Yes

CSC326H1F, Lab 3

 Page 5 of 5

5

4 3

2

