
Fall 2008 Syntax and semantics

The current topic: Syntax and semantics

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Python GUI programming (Tkinter)

! Types and values

! Logic programming: Prolog 

! Introduction

!Rules, unification, resolution, backtracking, lists.

!More lists, math, structures.

!More structures, trees, cut.

!Negation.

• Syntax and semantics

• Exceptions
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Announcements

• Reminder: The deadline for submitting a re-mark request for Term Test 2 
is the end of class on Friday. Make sure you understand the posted 
solutions before submitting a re-mark request.

• Reminder: Lab 3 is due on Monday (December 1st) at 10:30 am.
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Syntax and semantics 

• Goals and definitions

• Parsing

• Translation

• Reference: Sebesta, chapters 3 and 4.
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What's a language?

• A language is a subset of the set of all strings over some alphabet.
– string: a sequence of symbols

– alphabet: a set of symbols

Example:

• alphabet: { a, b, c }

• language 1: all two-character strings from the alphabet

– { aa, ab, ac, ba, bb, bc, ca, cb, cc }

• language 2: all three-character strings that start and end with c

– { cac, cbc, ccc }

4



Fall 2008 Syntax and semantics

What do you need to know about a language?

Two things:

• What can you say?

• What does it mean?

• "What can you say?" is syntax.

– e.g. In Python, a for loop must be written as...

• "What does it mean?" is semantics.

– e.g. In Python, a for loop means that the following will happen...

5 Fall 2008 Syntax and semantics

Programming-language semantics

• It's hard to specify the meaning of a statement in a programming 
language.

• Choices:

– Operational semantics

• defines effect of program in terms of program execution on a lower-level machine.

• i.e. the meaning of a statement is the sequence of assembler statements it translates 
to, or the value of the expression it calculates.

• similar to our usual explanations of meaning.

• we've been using (something like) this definition.

– Axiomatic semantics

• used in program verification (in proofs of correctness).

• defines effect of program in terms of preconditions and postconditions of individual 
statements.

– Denotational semantics

• gives meaning in terms of mappings (functions) from statements to changes of 
system state, where changes of system state are represented mathematically (using 
recursion).

• References: Sebesta, sections 3.4 and 3.5.
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Programming-language syntax

• Recall that there are standard ways to specify the form of a statement in 
a programming language.

– Backus-Naur Form (BNF)

– Extended BNF (EBNF)

• adds alternatives and repetition to BNF

• Basic idea: A program consists of parts, each of which consists of 
subparts, and so on.

• The parts are of various kinds (functions, expressions, literal values, …).

• The structure expands into a tree -- the parse tree.

• At the leaves of the tree are the actual statements and expressions of a 
particular program.

– That is: every program has its own parse tree.
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Backus-Naur form (BNF)

• On the left, the form being described.

• Then, the ::= (or !) symbol.

• Then, the components allowed in the form, with pipes used to separate 
multiple allowed definitions of the same form.

• Components that must be exactly as shown are put in quotation marks: 
e.g. '='.

• The names of the form and of components that are forms themselves 
are put in angle brackets <…> or distinguished by a special typeface.

• In other words, BNF is like this:

      <BNF description> ::= <form> '::=' <components>
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Extended BNF

• Repetition: use curly brackets, which mean "zero or more" of their 
contents.
 <comma expr> ::= <expr> { ',' <expr> } 
– A comma expression consists of one or more expressions, separated by 

commas.

• Optional parts: use square brackets, which mean "zero or one" of their 
contents.
 <if stmt> ::= 'if' '(' <expr> ')' <stmt> [ 'else' <stmt> ]
– An "if" statement has at most one "else" clause.   

• Alternatives: use brackets and pipes, which mean "choose exactly one"
 <expr> ::= <vbl> ('+' | '-' | '*' | '\') <vbl>
– An expression consists of a variable followed by exactly one symbol followed by 

another variable.

• BNF and Extended BNF are equivalent in what they can describe, but 
Extended BNF improves readability.
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3

expr

term

2 * factor

expr
( )

+ 4

A standard example, and its parse tree

• 2 * (3 + 4)

• Parse tree:
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EBNF for the grammar of the standard example

• An expression is the addition and/or subtraction of a sequence of terms:

<expr> ::= <term> { ( '+' | '-' ) <term> }

• A term is the multiplication and/or division of a sequence of factors:

<term> ::= <factor> { ( '*' | '/' ) <factor> }

• A factor is an explicit constant, or a parenthesized expression:

<factor> ::= <literal> | '(' <expr> ')'

• Note the quotation marks around the parentheses: the parentheses are part of the 
language being described.

• A literal is a sequence of digits:

<literal> ::= '0' .. '9' { '0' .. '9' }
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Productions

We now continue describing how to specify syntax.

• A rule such as this is a production:

<expr> ::= <term> { ( '+' | '-' ) <term> }

• The left-hand side of a production is a nonterminal.

• The right-hand side consists of a mixture of terminals and nonterminals.

• The production says that, when you're trying to see how a program can 
be understood in terms of the language's syntax, it's legal to replace the 
left-hand nonterminal by the string on the right.

– That is, you can expand the LHS by replacing it with the RHS.
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Terminals and nonterminals

• Terminals are things that can be actually present in the program text:

– e.g. '(', '3'

• Nonterminals are categories that have to be detailed further before you 
reach terminals.

– internal nodes in the syntax tree (a syntax tree is a more detailed version of a 
parse tree)

– e.g <expr>, <factor>, <if statement>
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Grammars

• A grammar consists of:

– a set of terminals -- the alphabet

– a set of nonterminals

– a particular nonterminal called the start symbol

• In our example, the start symbol is <expr>.

– a set of productions

• A grammar defines what you can say in a language -- that is, it specifies 
the syntax.
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An example grammar

• alphabet: { a }

• nonterminals: { <S> }

• start symbol: <S>

• productions: <S> ::= " | a<S>

– (" is the empty string)

• The language is { an | n ! 0 }

– that is: ", a, aa, aaa, aaaa, …
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Another example grammar

• Productions:

– <sentence> :: = <subject> <verb> <object>'.'

– <subject> ::= <article> <noun>

– <verb> ::= 'walks' | 'bites'

– <object> ::= <article> <noun>

– <article> ::= 'a' | 'the'

– <noun> ::= 'man' | 'dog'

• Some legal statements in this language:

– the man walks the dog.

– a dog walks the man.

– the dog walks a dog.

– the dog bites a man.
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Parsing

• To parse a statement is to show how it can be derived from the 
language's grammar.

• The steps in parsing a statement are derivations. At each derivation, one 
production is applied to advance the parsing process.

• The complete set of derivations is a derivation sequence.

• This material is covered in much more detail in CSC467 (Compilers and 
interpreters).
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Our example again

• The "statement" to be parsed:

2*(3+4)

• The grammar we'll use:

<expr> ::= <term> { ( '+' | '-' ) <term> }

<term> ::= <factor> { ( '*' | '/' ) <factor> }

<factor> ::= <literal> | '(' <expr> ')'

<literal> ::= '0' .. '9' { '0' .. '9' }
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A derivation sequence for the example

• 2 * (3 + 4)

expr ! term

term ! factor * factor

factor  ! literal

literal  ! 2

factor ! ( expr )

expr ! term + term

term ! factor

factor  ! literal

literal  ! 3

factor  ! literal

literal  ! 4

• the state so far:

expr

term

factor * factor

literal * factor

2 * factor

2 * ( expr )

2 * ( term + term )

2 * ( factor + factor )

2 * ( literal + factor )

2 * ( 3 + factor )

2 * ( 3 + literal )

2 * ( 3 + 4 )
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A derivation sequence for the example

• The derivation we carried out was a leftmost derivation.

• At each step, the leftmost nonterminal was replaced by using an 
appropriate production.

• At each step, we could tell from the input (from the next "unexplained" 
terminal(s)) which production to choose.

– What about the expr ! term and term ! factor choices?
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• With all intermediate steps included, the parse tree may be called the 
"syntax tree":
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literal

term
2

expr

term

factor * factor

expr( )

+ term

factor

literal

3

factor

literal

4

The parse tree for the example
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Semantics from the syntax

• The operator precedence (multiplication/division performed before 
addition/subtraction) is implied by the syntax:

<expr> ::= <term> { ( '+' | '-' ) <term> }

<term> ::= <factor> { ( '*' | '/' ) <factor> }

• This makes it easier to generate code that corresponds to the 
semantics, without having to provide rules that state the semantics 
explicitly.
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An ambiguous (and an unusable?) grammar

• E ::= E '+' E | E '*' E | '(' E ')' | number

• Why is it ambiguous?

– Because a given expression may have more than one parse tree.

• See next slide.

• F ::= F { ( '+' | '-' ) F }

• Why might it be unusable?

– Because, for example, if we represent productions by functions, then the first 
step in the function F( ) will be to call F( ).

• We avoided both problems because of the way we wrote the grammar in 
our previous example.

– We used different nonterminals for operations of different precedence.
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E
2

E

E * E

+ E

3 4

E

4

E

E + E

* E

2 3

Ambiguity: two parse trees for 2 * 3 + 4
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Operational semantics

• We're using "operational semantics": the meaning of a statement is 
what it does when you run it.

– That is, if we translate the statement to machine or assembly language, then we 
have given its meaning.

• Given the parse tree of a statement, we can do a tree-traversal to get 
the corresponding code.
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Code for 2*(3+4) in terms of stack operations

• A postorder traversal of the parse tree:

– "Postorder": Visit a node's children before visiting the node itself.

– At operand leaves, emit code to push the operand.

– At operator leaves, do nothing.

– At internal nodes that have an operator as a child, emit code to call the operator.

– At other internal nodes and at parentheses, do nothing.

• Code:

push 2

push 3

push 4

+

*

3

expr

term

2 * factor

expr
( )

+ 4
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Code for 2*(3+4) in assembly language

• A postorder traversal of the parse tree:

– At operand leaves, emit code to load the operand into an available register.

– At operator leaves, do nothing.

– An internal nodes that have an operator as a child, emit code to call the operator 
on the appropriate registers.

– At other internal nodes and at parentheses, do nothing.

• Code:

ldi #2, r1

ldi #3, r2

ldi #4, r3

add r3, r2

mul r2, r1

3

expr

term

2 * factor

expr
( )

+ 4
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Points glossed over

• Register management: the set of registers is smaller than the number of 
values and subexpressions in a program, and is different in different 
computers.

– How do we decide which values to move to main memory while making best use 
of the registers in the CPU?

• We assumed we had an explicit parse tree. More likely, if we analyze the 
expression recursively, with a function for every nonterminal, we can 
generate code as the parser runs instead of building the entire tree data 
structure.

• We'll ignore register management, but spend some time on recursive-
descent parsing.
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Recursive-descent parsing

• The productions of the grammar:

<expr> ::= <term> { ( '+' | '-' ) <term> }

<term> ::= <factor> { ( '*' | '/' ) <factor> }

<factor> ::= <literal> | '(' <expr> ')'

<literal> ::= '0' .. '9' { '0' .. '9' }

– Every nonterminal is represented by a function: expr(), term(), and so on.

• The start symbol: <expr>

– So the parsing process begins with a call of expr().

• The productions for <expr> are <term> { ( '+' | '-' ) <term> }, so expr() 

begins something like this:

term();

while (true) {

  token = getNextToken();

  if (token == '+') { emit("add ..."); term(); }

  else if (token == '-') { emit ("sub ..."); term(); }

  else return;

}
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What term( ) and factor( ) do

• A <term> starts with a <factor>, so term() looks like expr().

– calls factor() to do most of its work.

• A <factor> can begin in several ways:

<factor> ::= <literal> | '(' <expr> ')'

• What should factor() begin by doing?

– It depends on what's next in the expression being parsed.

– That is, again you have to read the next input token.

• If the next token is '(', call expr() and then look for ')'.

• If that fails, try calling literal(), which if it succeeds will take the 

appropriate action:

– For example, emit "ldi <literal>, rn" to the object file.

• Reference: Sebesta section 4.4
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"Recursive-descent"

• This process is recursive: the program structure works by function calls 
related in the same way as the parse tree relates the parts of the 
expression.

• It is also literally top-down: it proceeds downward from the root of the 
parse tree to find all the leaves.
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