
Fall 2008 Syntax and semantics

The current topic: Syntax and semantics

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Python GUI programming (Tkinter)

! Types and values

! Logic programming: Prolog

! Introduction

!Rules, unification, resolution, backtracking, lists.

!More lists, math, structures.

!More structures, trees, cut.

!Negation.

• Syntax and semantics

• Exceptions

1 Fall 2008 Syntax and semantics

Announcements

• Reminder: The deadline for submitting a re-mark request for Term Test 2
is the end of class on Friday. Make sure you understand the posted
solutions before submitting a re-mark request.

• Reminder: Lab 3 is due on Monday (December 1st) at 10:30 am.

2

Fall 2008 Syntax and semantics

Syntax and semantics

• Goals and definitions

• Parsing

• Translation

• Reference: Sebesta, chapters 3 and 4.

3 Fall 2008 Syntax and semantics

What's a language?

• A language is a subset of the set of all strings over some alphabet.
– string: a sequence of symbols

– alphabet: a set of symbols

Example:

• alphabet: { a, b, c }

• language 1: all two-character strings from the alphabet

– { aa, ab, ac, ba, bb, bc, ca, cb, cc }

• language 2: all three-character strings that start and end with c

– { cac, cbc, ccc }

4

Fall 2008 Syntax and semantics

What do you need to know about a language?

Two things:

• What can you say?

• What does it mean?

• "What can you say?" is syntax.

– e.g. In Python, a for loop must be written as...

• "What does it mean?" is semantics.

– e.g. In Python, a for loop means that the following will happen...

5 Fall 2008 Syntax and semantics

Programming-language semantics

• It's hard to specify the meaning of a statement in a programming
language.

• Choices:

– Operational semantics

• defines effect of program in terms of program execution on a lower-level machine.

• i.e. the meaning of a statement is the sequence of assembler statements it translates
to, or the value of the expression it calculates.

• similar to our usual explanations of meaning.

• we've been using (something like) this definition.

– Axiomatic semantics

• used in program verification (in proofs of correctness).

• defines effect of program in terms of preconditions and postconditions of individual
statements.

– Denotational semantics

• gives meaning in terms of mappings (functions) from statements to changes of
system state, where changes of system state are represented mathematically (using
recursion).

• References: Sebesta, sections 3.4 and 3.5.

6

Fall 2008 Syntax and semantics

Programming-language syntax

• Recall that there are standard ways to specify the form of a statement in
a programming language.

– Backus-Naur Form (BNF)

– Extended BNF (EBNF)

• adds alternatives and repetition to BNF

• Basic idea: A program consists of parts, each of which consists of
subparts, and so on.

• The parts are of various kinds (functions, expressions, literal values, …).

• The structure expands into a tree -- the parse tree.

• At the leaves of the tree are the actual statements and expressions of a
particular program.

– That is: every program has its own parse tree.

7 Fall 2008 Syntax and semantics

Backus-Naur form (BNF)

• On the left, the form being described.

• Then, the ::= (or !) symbol.

• Then, the components allowed in the form, with pipes used to separate
multiple allowed definitions of the same form.

• Components that must be exactly as shown are put in quotation marks:
e.g. '='.

• The names of the form and of components that are forms themselves
are put in angle brackets <…> or distinguished by a special typeface.

• In other words, BNF is like this:

 <BNF description> ::= <form> '::=' <components>

8

Fall 2008 Syntax and semantics

Extended BNF

• Repetition: use curly brackets, which mean "zero or more" of their
contents.
 <comma expr> ::= <expr> { ',' <expr> }
– A comma expression consists of one or more expressions, separated by

commas.

• Optional parts: use square brackets, which mean "zero or one" of their
contents.
 <if stmt> ::= 'if' '(' <expr> ')' <stmt> ['else' <stmt>]
– An "if" statement has at most one "else" clause.

• Alternatives: use brackets and pipes, which mean "choose exactly one"
 <expr> ::= <vbl> ('+' | '-' | '*' | '\') <vbl>
– An expression consists of a variable followed by exactly one symbol followed by

another variable.

• BNF and Extended BNF are equivalent in what they can describe, but
Extended BNF improves readability.

9 Fall 2008 Syntax and semantics

3

expr

term

2 * factor

expr
()

+ 4

A standard example, and its parse tree

• 2 * (3 + 4)

• Parse tree:

10

Fall 2008 Syntax and semantics

EBNF for the grammar of the standard example

• An expression is the addition and/or subtraction of a sequence of terms:

<expr> ::= <term> { ('+' | '-') <term> }

• A term is the multiplication and/or division of a sequence of factors:

<term> ::= <factor> { ('*' | '/') <factor> }

• A factor is an explicit constant, or a parenthesized expression:

<factor> ::= <literal> | '(' <expr> ')'

• Note the quotation marks around the parentheses: the parentheses are part of the
language being described.

• A literal is a sequence of digits:

<literal> ::= '0' .. '9' { '0' .. '9' }

11 Fall 2008 Syntax and semantics

Productions

We now continue describing how to specify syntax.

• A rule such as this is a production:

<expr> ::= <term> { ('+' | '-') <term> }

• The left-hand side of a production is a nonterminal.

• The right-hand side consists of a mixture of terminals and nonterminals.

• The production says that, when you're trying to see how a program can
be understood in terms of the language's syntax, it's legal to replace the
left-hand nonterminal by the string on the right.

– That is, you can expand the LHS by replacing it with the RHS.

12

Fall 2008 Syntax and semantics

Terminals and nonterminals

• Terminals are things that can be actually present in the program text:

– e.g. '(', '3'

• Nonterminals are categories that have to be detailed further before you
reach terminals.

– internal nodes in the syntax tree (a syntax tree is a more detailed version of a
parse tree)

– e.g <expr>, <factor>, <if statement>

13 Fall 2008 Syntax and semantics

Grammars

• A grammar consists of:

– a set of terminals -- the alphabet

– a set of nonterminals

– a particular nonterminal called the start symbol

• In our example, the start symbol is <expr>.

– a set of productions

• A grammar defines what you can say in a language -- that is, it specifies
the syntax.

14

Fall 2008 Syntax and semantics

An example grammar

• alphabet: { a }

• nonterminals: { <S> }

• start symbol: <S>

• productions: <S> ::= " | a<S>

– (" is the empty string)

• The language is { an | n ! 0 }

– that is: ", a, aa, aaa, aaaa, …

15 Fall 2008 Syntax and semantics

Another example grammar

• Productions:

– <sentence> :: = <subject> <verb> <object>'.'

– <subject> ::= <article> <noun>

– <verb> ::= 'walks' | 'bites'

– <object> ::= <article> <noun>

– <article> ::= 'a' | 'the'

– <noun> ::= 'man' | 'dog'

• Some legal statements in this language:

– the man walks the dog.

– a dog walks the man.

– the dog walks a dog.

– the dog bites a man.

16

Fall 2008 Syntax and semantics

Parsing

• To parse a statement is to show how it can be derived from the
language's grammar.

• The steps in parsing a statement are derivations. At each derivation, one
production is applied to advance the parsing process.

• The complete set of derivations is a derivation sequence.

• This material is covered in much more detail in CSC467 (Compilers and
interpreters).

17 Fall 2008 Syntax and semantics

Our example again

• The "statement" to be parsed:

2*(3+4)

• The grammar we'll use:

<expr> ::= <term> { ('+' | '-') <term> }

<term> ::= <factor> { ('*' | '/') <factor> }

<factor> ::= <literal> | '(' <expr> ')'

<literal> ::= '0' .. '9' { '0' .. '9' }

18

Fall 2008 Syntax and semantics

A derivation sequence for the example

• 2 * (3 + 4)

expr ! term

term ! factor * factor

factor ! literal

literal ! 2

factor ! (expr)

expr ! term + term

term ! factor

factor ! literal

literal ! 3

factor ! literal

literal ! 4

• the state so far:

expr

term

factor * factor

literal * factor

2 * factor

2 * (expr)

2 * (term + term)

2 * (factor + factor)

2 * (literal + factor)

2 * (3 + factor)

2 * (3 + literal)

2 * (3 + 4)

19 Fall 2008 Syntax and semantics

A derivation sequence for the example

• The derivation we carried out was a leftmost derivation.

• At each step, the leftmost nonterminal was replaced by using an
appropriate production.

• At each step, we could tell from the input (from the next "unexplained"
terminal(s)) which production to choose.

– What about the expr ! term and term ! factor choices?

20

• With all intermediate steps included, the parse tree may be called the
"syntax tree":

Fall 2008 Syntax and semantics

literal

term
2

expr

term

factor * factor

expr()

+ term

factor

literal

3

factor

literal

4

The parse tree for the example

21 Fall 2008 Syntax and semantics

Semantics from the syntax

• The operator precedence (multiplication/division performed before
addition/subtraction) is implied by the syntax:

<expr> ::= <term> { ('+' | '-') <term> }

<term> ::= <factor> { ('*' | '/') <factor> }

• This makes it easier to generate code that corresponds to the
semantics, without having to provide rules that state the semantics
explicitly.

22

Fall 2008 Syntax and semantics

An ambiguous (and an unusable?) grammar

• E ::= E '+' E | E '*' E | '(' E ')' | number

• Why is it ambiguous?

– Because a given expression may have more than one parse tree.

• See next slide.

• F ::= F { ('+' | '-') F }

• Why might it be unusable?

– Because, for example, if we represent productions by functions, then the first
step in the function F() will be to call F().

• We avoided both problems because of the way we wrote the grammar in
our previous example.

– We used different nonterminals for operations of different precedence.

23 Fall 2008 Syntax and semantics

E
2

E

E * E

+ E

3 4

E

4

E

E + E

* E

2 3

Ambiguity: two parse trees for 2 * 3 + 4

24

Fall 2008 Syntax and semantics

Operational semantics

• We're using "operational semantics": the meaning of a statement is
what it does when you run it.

– That is, if we translate the statement to machine or assembly language, then we
have given its meaning.

• Given the parse tree of a statement, we can do a tree-traversal to get
the corresponding code.

25 Fall 2008 Syntax and semantics

Code for 2*(3+4) in terms of stack operations

• A postorder traversal of the parse tree:

– "Postorder": Visit a node's children before visiting the node itself.

– At operand leaves, emit code to push the operand.

– At operator leaves, do nothing.

– At internal nodes that have an operator as a child, emit code to call the operator.

– At other internal nodes and at parentheses, do nothing.

• Code:

push 2

push 3

push 4

+

*

3

expr

term

2 * factor

expr
()

+ 4

26

Fall 2008 Syntax and semantics

Code for 2*(3+4) in assembly language

• A postorder traversal of the parse tree:

– At operand leaves, emit code to load the operand into an available register.

– At operator leaves, do nothing.

– An internal nodes that have an operator as a child, emit code to call the operator
on the appropriate registers.

– At other internal nodes and at parentheses, do nothing.

• Code:

ldi #2, r1

ldi #3, r2

ldi #4, r3

add r3, r2

mul r2, r1

3

expr

term

2 * factor

expr
()

+ 4

27 Fall 2008 Syntax and semantics

Points glossed over

• Register management: the set of registers is smaller than the number of
values and subexpressions in a program, and is different in different
computers.

– How do we decide which values to move to main memory while making best use
of the registers in the CPU?

• We assumed we had an explicit parse tree. More likely, if we analyze the
expression recursively, with a function for every nonterminal, we can
generate code as the parser runs instead of building the entire tree data
structure.

• We'll ignore register management, but spend some time on recursive-
descent parsing.

28

Fall 2008 Syntax and semantics

Recursive-descent parsing

• The productions of the grammar:

<expr> ::= <term> { ('+' | '-') <term> }

<term> ::= <factor> { ('*' | '/') <factor> }

<factor> ::= <literal> | '(' <expr> ')'

<literal> ::= '0' .. '9' { '0' .. '9' }

– Every nonterminal is represented by a function: expr(), term(), and so on.

• The start symbol: <expr>

– So the parsing process begins with a call of expr().

• The productions for <expr> are <term> { ('+' | '-') <term> }, so expr()

begins something like this:

term();

while (true) {

 token = getNextToken();

 if (token == '+') { emit("add ..."); term(); }

 else if (token == '-') { emit ("sub ..."); term(); }

 else return;

}
29 Fall 2008 Syntax and semantics

What term() and factor() do

• A <term> starts with a <factor>, so term() looks like expr().

– calls factor() to do most of its work.

• A <factor> can begin in several ways:

<factor> ::= <literal> | '(' <expr> ')'

• What should factor() begin by doing?

– It depends on what's next in the expression being parsed.

– That is, again you have to read the next input token.

• If the next token is '(', call expr() and then look for ')'.

• If that fails, try calling literal(), which if it succeeds will take the

appropriate action:

– For example, emit "ldi <literal>, rn" to the object file.

• Reference: Sebesta section 4.4

30

Fall 2008 Syntax and semantics

"Recursive-descent"

• This process is recursive: the program structure works by function calls
related in the same way as the parse tree relates the parts of the
expression.

• It is also literally top-down: it proceeds downward from the root of the
parse tree to find all the leaves.

31

