
Fall 2008 Prolog: Negation

The current topic: Prolog

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Python GUI programming (Tkinter)

! Types and values

• Logic programming: Prolog

! Introduction

!Rules, unification, resolution, backtracking, lists.

!More lists, math, structures.

!More structures, trees, cut.

– Next up: Negation.

• Syntax and semantics

• Exceptions

1 Fall 2008 Prolog: Negation

Announcements

• Term Test 2 has been marked.

– Handed back at the end of class today.

– The deadline for submitting a re-mark request is the end of class, Friday

November 28th. Make sure you understand the posted solutions before

submitting a re-mark request.

– Average: 68.4%

2

Fall 2008 Prolog: Negation

Using not instead of cut to avoid wrong answers

• Prolog has a not operator, but its behaviour is more subtle than in other

languages.

• Example: Replacing a cut with not:

– With cut:

A :- B, !, C.

A :- D.

– With not:

A :- B, C.

A :- not(B), D.

• Observe that not can be more cumbersome than cut.

– repetitive if-then-else

3 Fall 2008 Prolog: Negation

Using not for inequality

• Example:

crispy(snap).

crispy(crackle).

crispy(pop).

breakfast(A,B,C) :- crispy(A), crispy(B), crispy(C).

?- breakfast(A,B,C).

A = snap

B = snap

C = snap ;

A = snap

B = snap

C = crackle ;

...

• But we really want A, B, and C to be different from each other.

4

Fall 2008 Prolog: Negation

Using not for inequality

crispy(snap).

crispy(crackle).

crispy(pop).

breakfast(A,B,C) :- crispy(A), crispy(B), crispy(C), not(A=B),

 not(A=C), not(B=C).

?- breakfast(A,B,C).

A = snap

B = crackle

C = pop ;

A = snap

B = pop

C = crackle ;

...

5 Fall 2008 Prolog: Negation

Negation in Prolog

• not(B) can also be written as \+ B.

– And not(X=Y) can also be written as X \= Y.

• The goal \+ X succeeds iff X fails.

• Examples:

?- \+ member(b, [a,b,c]).

No

?- \+ member(x, [a,b,c]).

Yes

?- \+ member(X, [a,b,c]).

No

6

Fall 2008 Prolog: Negation

Negation in Prolog

?- \+ member(X, [a,b,c]).

No

• It might look like this query is asking "Does there exist an X for which

member(X, [a,b,c]) does not succeed?".

– We know there are lots of values of X for which member(X, [a,b,c]) does not

succeed.

– But that's not what negation means in Prolog.

– There exists X for which member(X, [a,b,c]) succeeds.

– So then \+ member(X, [a,b,c]) fails.

7 Fall 2008 Prolog: Negation

Negation as failure

• Prolog assumes that if it can't prove an assertion, then the assertion is

false.

– And Prolog assumes that if it can prove an assertion, then the assertion is true.

• This is the "closed world assumption": in the universe of facts Prolog

knows about, failure to prove is proof of failure.

– But if we know something Prolog doesn't, this can lead to surprises: things that

Prolog thinks are false when we know they're true, and the opposite.

– Example:

university(uoft).

?- university(york).
No
?- \+ university(york).
Yes

8

Fall 2008 Prolog: Negation

?- sad(michael).

No

?- sad(jim).

Yes

?- sad(Someone).

No

• Isn't anyone sad?

• No, that just means that it's

not true we can't find anyone

happy.

– In other words, there exists

someone who is happy.

Be careful with negation

sad(X) :- \+ happy(X).

happy(X) :- beautiful(X), rich(X).

rich(bill).

beautiful(michael).

rich(michael).

beautiful(cinderella).

?- sad(bill).

Yes

?- sad(cinderella).

Yes

9 Fall 2008 Prolog: Negation

Tracing negation

• Let's look at how Prolog answers sad(Someone).:

?- sad(Someone).

 Call: (7) sad(_G283) ? creep

 Call: (8) happy(_G283) ? creep

 Call: (9) beautiful(_G283) ? creep

 Exit: (9) beautiful(michael) ? creep

 Call: (9) rich(michael) ? creep

 Exit: (9) rich(michael) ? creep

 Exit: (8) happy(michael) ? creep

 Fail: (7) sad(_G283) ? creep

No

10

Fall 2008 Prolog: Negation

Set overlap

• Write a predicate overlap(S1, S2) that succeeds if lists S1 and S2

have a common element. Then write a predicate disjoint(S1, S2)

that succeeds if S1 and S2 have no common element.

overlap(S1, S2) :- member(X, S1), member(X, S2).

disjoint(S1, S2) :- \+ overlap(S1, S2).

?- overlap([a,b,c], [c,d,e]).

Yes

?- disjoint([a,b,c], [c,d,e]).

No

?- overlap([a,b,c], [d,e,f]).

No

?- disjoint([a,b,c], [d,e,f]).

Yes

?- disjoint([a,b,d], S).

No

11 Fall 2008 Prolog: Negation

What does that mean?

?- disjoint([a,b,d], S).

No

• The query should mean "can you find a list S that is disjoint from the list

[a,b,d] (and if so what is it)?".

• Obviously there are many such sets, so why "No"?

• Answer: because Prolog succeeded in finding a set that did overlap with

S, so it announced failure of the original query.

?- overlap([a,b,d], S).

S = [a|_G226] ;

S = [_G225, a|_G229] ;

S = [_G225, _G228, a|_G232] ;

...

12

Fall 2008 Prolog: Negation

Safe use of negation

• The goal not(G) is safe if either:

– G is fully instantiated when not(G) is processed, or

– G has uninstantiated variables, but they don't appear anywhere else in the clause.

• Safe example:

childlessMan(X) :- male(X), \+ parent(X,Y).

– X is instantiated in male(X), and Y isn't used elsewhere.

• Unsafe example:

childlessMan(X) :- \+ parent(X,Y), male(X).

– X is not instantiated before the negation, and is used elsewhere.

• If necessary, add a precondition to warn the programmer.

– recall that +Var means that Var must be instantiated.

% disjoint(+S1, +S2) succeeds if...

disjoint(S1, S2) :- \+ overlap(S1, S2).

– When the precondition is satisfied, this negation is safe.

13 Fall 2008 Prolog: Negation

Double-negation doesn't "cancel out"

• In other languages, not(not(<expression>)) is equivalent to

<expression>.

– But not in Prolog.

?- member(X,[a,b,c]).

X = a ;

X = b ;

X = c ;

No

?- not(not(member(X,[a,b,c]))).

X = _G166 ;

No

14

Fall 2008 Prolog: Negation

Double-negation doesn't "cancel out"

?- not(not(member(X,[a,b,c]))).

X = _G166 ;

No

• Why is X uninstantiated in this example?

– Since member(X, [a,b,c]) succeeds (by instantiating X to, say, a),

not(member(X, [a,b,c])) fails.

– When a goal fails, the variables it instantiated get uninstantiated. So X gets

uninstantiated.

– But since not(member(X, [a,b,c])) fails, not(not(member(X,
[a,b,c]))) succeeds.

15 Fall 2008 Prolog: Negation

fail

• The fail predicate fails immediately. Example:

p(X) :- fail.

?- p(csc326).

No

• We can use fail to state that something is false.

16

Fall 2008 Prolog: Negation

fail

• Example: We want to represent "Colbert does not like bears (regardless

of whatever else he likes)."

– One solution: Add "not(bear(X))" to every rule describing what Colbert likes.

For example:

likes(colbert, X) :- animal(X), not(bear(X)).

likes(colbert, X) :- toy(X), not(bear(X)).

likes(colbert, X) :- livesInArctic(X), not(bear(X)).

...

– Let's try to use fail instead.

– First attempt:

bear(yogi).

animal(yogi).

likes(colbert, X) :- bear(X), fail.

likes(colbert, X) :- animal(X).

?- likes(colbert, yogi).

Yes

17 Fall 2008 Prolog: Negation

fail

• We need to add a cut to prevent other rules from being tried after the

first rule reaches fail.

– Second attempt:

bear(yogi).

cat(tom).

animal(yogi).

animal(tom).

likes(colbert, X) :- bear(X), !, fail.

likes(colbert, X) :- animal(X).

?- likes(colbert, yogi).

No

?- likes(colbert, tom).

Yes

?- likes(colbert, X).

No

– Downside: This solution only works when X is instantiated.

18

Fall 2008 Prolog: Negation

fail

• Another example: Define a predicate different(X, Y) that succeeds

if X and Y don't unify.

different(X, Y) :- X=Y, !, fail.

different(_, _).

?- different(a, b).

Yes

?- different(a, a).

No

• Notice that the above definition is equivalent to:

different(X, Y) :- not(X=Y).

19 Fall 2008 Prolog: Negation

Defining "not" using cut and fail

• We can define the not predicate as follows:

not(X) :- X, !, fail.

not(_).

• (To test this out, use a name other than "not", since Prolog won't let

you redefine the built-in "not").

20

Fall 2008 Prolog: Negation

fail

• Recall the original version of bstmem(Tree, X):

bstmem(node(X, _, _), X).

bstmem(node(K, L, _), X) :- X < K, bstmem(L, X).

bstmem(node(K, _, R), X) :- X > K, bstmem(R, X).

• Recall that this version was inefficient.

21 Fall 2008 Prolog: Negation

Inefficiency in bstmem

[trace] ?- bstmem(node(5, node(3,empty,empty), emtpy), 1).

 Call: (8) bstmem(node(5, node(3, empty, empty), emtpy), 1) ?
creep

^ Call: (9) 1<5 ? creep

^ Exit: (9) 1<5 ? creep

 Call: (9) bstmem(node(3, empty, empty), 1) ? creep

^ Call: (10) 1<3 ? creep

^ Exit: (10) 1<3 ? creep

 Call: (10) bstmem(empty, 1) ? creep

 Fail: (10) bstmem(empty, 1) ? creep

 Redo: (9) bstmem(node(3, empty, empty), 1) ? creep

^ Call: (10) 1>3 ? creep

^ Fail: (10) 1>3 ? creep

 Redo: (8) bstmem(node(5, node(3, empty, empty), emtpy), 1) ?
creep

^ Call: (9) 1>5 ? creep

^ Fail: (9) 1>5 ? creep

No

22

Fall 2008 Prolog: Negation

fail

• We solved the inefficiency illustrated on the previous slide as follows:

bstmem(node(X, _, _), X).

bstmem(node(K, L, _), X) :- X < K, !, bstmem(L, X).

bstmem(node(K, _, R), X) :- X > K, bstmem(R, X).

• What if we try to instead solve this inefficiency by using fail:

bstmem(empty,_) :- !, fail.

bstmem(node(X, _, _), X).

bstmem(node(K, L, _), X) :- X < K, bstmem(L, X).

bstmem(node(K, _, R), X) :- X > K, bstmem(R, X).

23 Fall 2008 Prolog: Negation

Tracing the new bstmem

[trace] ?- bstmem(node(5, node(3,empty,empty), emtpy), 1).

 Call: (8) bstmem(node(5, node(3, empty, empty), emtpy), 1) ? creep

^ Call: (9) 1<5 ? creep

^ Exit: (9) 1<5 ? creep

 Call: (9) bstmem(node(3, empty, empty), 1) ? creep

^ Call: (10) 1<3 ? creep

^ Exit: (10) 1<3 ? creep

 Call: (10) bstmem(empty, 1) ? creep

 Call: (11) fail ? creep

 Fail: (11) fail ? creep

 Fail: (10) bstmem(empty, 1) ? creep

 Redo: (9) bstmem(node(3, empty, empty), 1) ? creep

^ Call: (10) 1>3 ? creep

^ Fail: (10) 1>3 ? creep

 Redo: (8) bstmem(node(5, node(3, empty, empty), emtpy), 1) ? creep

^ Call: (9) 1>5 ? creep

^ Fail: (9) 1>5 ? creep

No

24

Fall 2008 Prolog: Negation

fail

• What went wrong?

– fail only affects the present goal (bstmem(empty, 1) in the example).

– It does not directly cause the failure of a previous goal (so, in the example, Prolog

still looks for other rules for the goal bstmem(node(3,empty,empty), 1)).

25 Fall 2008 Prolog: Negation

Advice on writing Prolog

To minimize bugs, especially with cut and not:

• Use cut and not as necessary to avoid wrong answers.

• Follow the rules for safe use of not.

• Follow the rules for doing arithmetic.

• Always use ";" when testing to check all possible answers.

– It's easy to get first answer right and rest wrong if "else" misused.

• Test with variables in every combination of positions.

• Use preconditions to state where variables are disallowed.

• Use cut to avoid duplicate answers.

• Use cut where possible for efficiency.

• Use _ where possible for efficiency.

26

Fall 2008 Prolog: Negation

Summary: logic programming and Prolog

• Logic programming:

– Unification, resolution, backtracking.

– Specify kind of result wanted (what you want), not how to get it.

• Prolog:

– The major logic programming language.

– Efficiency can be a worry:

• cut

• ordering the predicates

27 Fall 2008 Prolog: Negation

Bubble sort

• Write a predicate bsort(+Before, ?After) that succeeds if After is

a sorted version of Before. bsort should use bubble sort to sort the list.

bsort(Before, After) :- bsortaux(Before, [], After).

• Helper predicate bsortaux(+Prelower, +Preupper, ?Sorted)

succeeds if Sorted is a list that consists of a sorted version of

Prelower followed by (an unchanged) Preupper.

bsortaux([], Preupper, Preupper) :- !.

bsortaux(Prelower, Preupper, Sorted) :-

 bubble(Prelower, Preupper, Postlower, Postupper),

 bsortaux(Postlower, Postupper, Sorted).

28

Fall 2008 Prolog: Negation

Bubble sort

• Helper predicate bubble(+Prelower, +Preupper, ?Postlower, ?Postupper)

succeeds if performing one round of bubble sort on unsorted portion

Prelower and sorted portion Preupper results in unsorted portion

Postlower and sorted portion Postupper.

bubble([X, Y | Rest], Preupper, [X | Bubbled], Postupper) :-

 X =< Y, % No swap needed.

 !,

 bubble([Y | Rest], Preupper, Bubbled, Postupper).

bubble([X, Y | Rest], Preupper, [Y | Bubbled], Postupper) :-

 bubble([X | Rest], Preupper, Bubbled, Postupper).

bubble([X], Preupper, [], [X|Preupper]) :- !.

bubble([], Preupper, [], Preupper). % not needed, we hope

29 Fall 2008 Prolog: Negation

Tracing bsort

[trace] ?- bsort([2,1], S).

 Call: (7) bsort([2, 1], _G290) ? creep

 Call: (8) bsortaux([2, 1], [], _G290) ? creep

 Call: (9) bubble([2, 1], [], _L206, _L207) ? creep

^ Call: (10) 2=<1 ? creep

^ Fail: (10) 2=<1 ? creep

 Redo: (9) bubble([2, 1], [], _L206, _L207) ? creep

 Call: (10) bubble([2], [], _G346, _L207) ? creep

 Exit: (10) bubble([2], [], [], [2]) ? creep

 Exit: (9) bubble([2, 1], [], [1], [2]) ? creep

 Call: (9) bsortaux([1], [2], _G290) ? creep

 Call: (10) bubble([1], [2], _L245, _L246) ? creep

 Exit: (10) bubble([1], [2], [], [1, 2]) ? creep

 Call: (10) bsortaux([], [1, 2], _G290) ? creep

 Exit: (10) bsortaux([], [1, 2], [1, 2]) ? creep

 Exit: (9) bsortaux([1], [2], [1, 2]) ? creep

 Exit: (8) bsortaux([2, 1], [], [1, 2]) ? creep

 Exit: (7) bsort([2, 1], [1, 2]) ? creep

S = [1, 2]

30

Fall 2008 Prolog: Negation

Tracing bsort

[trace] ?- bsort([3,2,1], S).

 Call: (7) bsort([3, 2, 1], _G293) ? creep

 Call: (8) bsortaux([3, 2, 1], [], _G293) ? creep

 Call: (9) bubble([3, 2, 1], [], _L206, _L207) ? creep

^ Call: (10) 3=<2 ? creep

^ Fail: (10) 3=<2 ? creep

 Redo: (9) bubble([3, 2, 1], [], _L206, _L207) ? creep

 Call: (10) bubble([3, 1], [], _G352, _L207) ? creep

^ Call: (11) 3=<1 ? creep

^ Fail: (11) 3=<1 ? creep

 Redo: (10) bubble([3, 1], [], _G352, _L207) ? creep

 Call: (11) bubble([3], [], _G358, _L207) ? creep

 Exit: (11) bubble([3], [], [], [3]) ? creep

 Exit: (10) bubble([3, 1], [], [1], [3]) ? creep

 Exit: (9) bubble([3, 2, 1], [], [2, 1], [3]) ? creep

31 Fall 2008 Prolog: Negation

Tracing bsort

 Call: (9) bsortaux([2, 1], [3], _G293) ? creep

 Call: (10) bubble([2, 1], [3], _L266, _L267) ? creep

^ Call: (11) 2=<1 ? creep

^ Fail: (11) 2=<1 ? creep

 Redo: (10) bubble([2, 1], [3], _L266, _L267) ? creep

 Call: (11) bubble([2], [3], _G367, _L267) ? creep

 Exit: (11) bubble([2], [3], [], [2, 3]) ? creep

 Exit: (10) bubble([2, 1], [3], [1], [2, 3]) ? creep

 Call: (10) bsortaux([1], [2, 3], _G293) ? creep

 Call: (11) bubble([1], [2, 3], _L305, _L306) ? creep

 Exit: (11) bubble([1], [2, 3], [], [1, 2, 3]) ? creep

 Call: (11) bsortaux([], [1, 2, 3], _G293) ? creep

 Exit: (11) bsortaux([], [1, 2, 3], [1, 2, 3]) ? creep

 Exit: (10) bsortaux([1], [2, 3], [1, 2, 3]) ? creep

 Exit: (9) bsortaux([2, 1], [3], [1, 2, 3]) ? creep

 Exit: (8) bsortaux([3, 2, 1], [], [1, 2, 3]) ? creep

 Exit: (7) bsort([3, 2, 1], [1, 2, 3]) ? creep

S = [1, 2, 3]

32

Fall 2008 Prolog: Negation

Exercises

• Fix the sibling predicate (that we previously defined) so that it doesn't

consider a person to be there own sibling. Then make sure that this fix

has eliminated any unusual behaviour in the aunt, uncle, nephew, and

niece predicates that you defined in a previous set of exercises.

• Trace bsort on more interesting (and larger) examples. For example,

trace the call:

bsort([1,5,2,6,3,4], S).

• Challenge: Recall that the efficiency of bubble sort can be improved by

halting after the first iteration during which no swaps are performed (we

can halt at that point since if no swaps are performed, the list must be

already sorted). Modify bsort by adding this improvement.

33

