
Fall 2008 Prolog: Introduction

The current topic: Prolog

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Python GUI programming (Tkinter)

! Types and values

• Logic programming: Prolog

– Next up: Introduction

• Syntax and semantics

• Exceptions

1 Fall 2008 Prolog: Introduction

Announcements

• Lab 2 has been marked.

– A marking report has been sent to your ECF email address.

– The deadline for re-mark requests is next Friday (November 14th).

– If you lost marks for exercise 3:

For exercise 3 (replace), the handout stated that replace takes two symbols

and a nested list, and implied that the nested list contained symbols but not

numbers. However, the automarking test cases passed numbers as the first two

parameters, and included numbers in the nested list. If you lost marks because of

this (that is, your code works according to the specifications given in the

handout, but failed the test cases because they included numbers), send me an

email (a re-mark request form is not required for this).

• Reminder: The project is due on November 17th.

2

Fall 2008 Prolog: Introduction

Logic programming

• A program consists of facts and rules -- a knowledge base.

• Running a program means asking queries.

• The language tries to find one or more ways to prove that the query is

true.

– You don't have to figure out how to do it.

• So you say what you want, rather than how to find it.

– For example, consider writing code for sorting a list. In logic programming, you

describe the properties of a sorted list, rather than giving the steps that need to

be followed to sort a list.

• "newL is a sorted version of L if newL has the same elements as L and for every pair

x, y of adjacent elements in newL, we have x ! y."

– Another example: SQL queries. (But note that SQL is not considered a logic

programming language.)

3 Fall 2008 Prolog: Introduction

Logic programming

In a Prolog program you tell the computer:

• Here are some argument values.

– For example, here is a list myList.

• Here's a statement involving the values given and some other unknown

values.

– For example, sorted(myList, L), asserting that L is a sorted version of

myList.

• Tell me what the unknowns have to be to make the statement true.

– For example, tell me a value (or values) of L that makes sorted(myList, L)

true.

4

Fall 2008 Prolog: Introduction

Logic programming and Prolog

• Prolog is the only major logic programming language.

– Developed in the early 1970s by Alain Colmerauer, Phillippe Roussel, and Robert

Kowalski.

– Prolog = "Programmation en logique" ("Programming in logic")

• Prolog is often said to be unsuited to expressing algorithms, but this

misrepresents the language.

– It's about logic and algorithms.

– Algorithms are expressed in a recursive style that is different from Scheme.

– But we'll concentrate on the logic side of Prolog, with only a glance at the

algorithmic side.

• Reference: Sebesta, chapter 16.

5 Fall 2008 Prolog: Introduction

The Prolog we'll use

• Prolog flavours vary less than Scheme flavours.

• We'll use SWI Prolog.

– http://www.swi-prolog.org/

– On ECF, use the command: pl

– Version 5.2.10 is installed on ECF.

– This version does not appear to be available on the SWI Prolog website. If you

download the current version (5.6.x), make sure you test your code using the

version on ECF before submitting. Also, note the current version has a slightly

different user interface that the version on ECF.

• There are various Prolog IDEs available.

– But for this course it will be enough to use a text editor along with pl.

6

Fall 2008 Prolog: Introduction

The SWI pl interface

• All commands end with a period.

• To quit: halt.

– With a period!

– Alternative: Use ctrl-d.

• The prompt: ?-

– If you forget the period:

?- parent(albert,X)

| .

• To retry a query: ;

• You can't have a blank between the functor (the relation name, e.g.

parent) and the left parenthesis.

7 Fall 2008 Prolog: Introduction

Prolog statements

• There are three kinds of statements.

– Facts.

– Rules.

– Queries.

• Facts simply state information we can assume. For example:

university(uoft).
campus(uoft, stgeorge).
campus(uoft, utm).
course(csc326).
offered(stgeorge, csc326).
– We (users, not Prolog itself) might interpret these statements to mean that uoft is

a university, stgeorge and utm are campuses of uoft, csc326 is a course, and the

course csc326 is offered on the stgeorge campus. There isn't any single "correct"

interpretation, and the interpretation is irrelevant to Prolog.

• Rules allow Prolog to derive new facts from existing facts.

8

Fall 2008 Prolog: Introduction

Prolog statements

• Queries (or goals) state questions that Prolog answers using only the

facts and rules it has been given. For example, using the facts from the

previous slide:

?- university(uoft).
Yes
?- university(york).
No
?- university(X).
X = uoft ;
No
?- campus(uoft, C).
C = stgeorge ;
C = utm ;
No
?- course(C), offered(stgeorge, C).
C = csc326 ;
No

9 Fall 2008 Prolog: Introduction

Another example

• Suppose we assert these facts:

male(albert).

female(alice).

male(edward).

female(victoria).

parent(albert,edward).

parent(victoria,edward).

parent(albert,alice).

parent(victoria,alice).

• Then let's ask some questions:

?- male(albert).

Yes

?- male(victoria).

No

• albert, alice, edward and

victoria are atoms.

• male, female and parent are

predicates.

• We say we are "performing a query" or

"consulting the program or knowledge

base".

10

Fall 2008 Prolog: Introduction

Variables

?- female(Person).

Person = alice ;

Person = victoria ;

No

?- parent(Person, edward).

Person = albert ;

Person = victoria ;

No

?- parent(Person, edward), female(Person).

Person = victoria ;

No

• Observe that variable names are capitalized.

• Variables in a query are implicitly "quantified existentially": Is there any

Person such that the Person is edward's parent and is female?

Prolog finds an instantiation of Person that makes the query true, and

tells us about it.

11 Fall 2008 Prolog: Introduction

Reading facts or rules from a file

?- [facts].

Warning: (/u/prof/ajuma/prolog/facts.pl:3):

 Clauses of male/1 are not together in the source-file

Warning: (/u/prof/ajuma/prolog/facts.pl:4):

 Clauses of female/1 are not together in the source-file

% facts compiled 0.00 sec, 1,536 bytes

Yes

• The actual file name is "facts.pl".

• Comments in your file must start with % (for single-line comments) or be

enclosed by /* and */ (for multi-line comments).

12

Fall 2008 Prolog: Introduction

Typing facts interactively

?- likes(bob, candy).

ERROR: Undefined procedure: likes/2

?- [user].

|: likes(bob, candy).

|: % user://1 compiled 0.02 sec, 216 bytes

Yes

?- likes(bob,X).

X = candy

Yes

• Using user in place of a file name causes Prolog to enter a mode where

facts and rules can be entered by the user. To exit this mode, use ctrl-D.

13 Fall 2008 Prolog: Introduction

Logic review: symbols

• We'll use the following symbols:

! or

" and

¬ not

implies

$ if and only if, or "is equivalent to"

% for all

& there exists

14

Fall 2008 Prolog: Introduction

Logic review: implication

• "P # Q" often causes trouble.

– You can read it as "P implies Q" or "if P then Q".

– But it does not mean "P causes Q":

• e.g., The implication

"We are indoors" # "Wheels are round"

is true but there's no causation involved.

– And it does not mean "Q is true".

• e.g., The implication

"Today is Sunday" # "Wheels are square"

is true even though wheels aren't square.

• Implication can be expressed using "or" and "not":

P # Q $ ¬P ! Q

15 Fall 2008 Prolog: Introduction

Logic review: quantifiers

• %x [P(x)] : For every single x, P(x) is true.

– % is the universal quantifier.

• &x [P(x)] : For at least one x, P(x) is true.

– & is the existential quantifier.

• It's a good idea to use brackets for clarity, especially if there are nested

quantifiers.

• In logic programming, the central question is existential: "Does there

exist a set of values such that …?"

16

Fall 2008 Prolog: Introduction

A logic example

• The universe: a, b, c, d, e

• Facts:

– P is true of a, b, d

• That is: P(a), P(b), P(d)

– R is true of (a, c), (d, d), (b, e)

• That is: R(a,c), R(d,d), R(b,e)

• Then we know that:

– %x [[&y R(x, y)] # P(x)]

– %x [%y [R(x, y) # P(x)]]

17 Fall 2008 Prolog: Introduction

Another logic example

• The universe: students in this class.

• Predicates:

– passexam(X): X passes the CSC326 exam.

– prolog(X): X understands Prolog.

– python(X): X understands Python.

– functional(X): X understands functional programming.

• Everyone who understands functional programming, Python, and Prolog

passes the exam:
%x [[functional(X) " python(X) " prolog(X)] # passexam(x)]

• If someone who doesn't understand Prolog passes the exam, then

everyone passes the exam:
[&x (¬prolog(X) " passexam(X))] # %x passexam(x)

18

Fall 2008 Prolog: Introduction

Another logic example

• If someone doesn't understand Python, no one passes the exam.
[&x ¬python(X)] # %x ¬passexam(x)

or, equivalently:

[&x ¬python(X)] # ¬&x passexam(x)

• No one who doesn't understand functional programming understands

Prolog.
%x [¬functional(X) # ¬prolog(X)]

or, equivalently:

%x [prolog(X) # functional(X)]

or, equivalently:

¬&x [¬functional(X) " prolog(X)]

19 Fall 2008 Prolog: Introduction

Prolog rules

• We can state rules of our own:

sibling(X,Y) :-

 parent(P,X),

 parent(P,Y).

• And then we can make queries:

?- sibling(albert,victoria).

No

?- sibling(edward,alice).

Yes

?- sibling(alice,edward).

Yes

20

Fall 2008 Prolog: Introduction

Prolog rules

• Variables at the head of the rule are (implicitly) quantified universally, and

those in the body are quantified existentially (as in queries):

– The rule we defined says that "For all X, Y, X and Y are siblings if there is some P

such that P is parent to both X and Y."

• A query involving a variable:

?- sibling(edward, Sib).

Sib = edward ;

Sib = alice ;

Sib = edward ;

Sib = alice ;

No

• Why do we get the same answer twice?

– There are two parents that yield each answer. That is, there are two instantiations

of P that make sibling(edward, alice) hold, and there are two

instantiations of P that make sibling(edward, edward) hold.

21 Fall 2008 Prolog: Introduction

Meaning of rules

• A Prolog rule has this form:

– c :- a1, a2, a3, …, ak.

• and this meaning (ignoring the quantification issue):

– a1 " a2 " a3 " … " ak # c.

– A logical statement of this form is known as a "Horn clause".

• Rules for Horn clauses:

– There can be zero or more antecedents (the a's).

– There cannot be more than one consequent (the c).

22

Fall 2008 Prolog: Introduction

How to say it

• a1 ! a2 ! a3 # c:

c :- a1.

c :- a2.

c :- a3.

– The ; operator gives a more concise way to express the above.

c :- a1; a2; a3.

• a1 " a2 " a3 # c1 " c2:

c1 :- a1, a2, a3.

c2 :- a1, a2, a3.

• a1 " a2 " a3 # c1 ! c2 :

– Can't be done!

23 Fall 2008 Prolog: Introduction

Exercises

• Run pl on ECF.

– Enter some facts interactively, and then make some queries.

– Now add some rules interactively, and make queries.

– Load facts and rules from a file, and make queries.

24

