
Fall 2008 Tkinter

The current topic: Tkinter

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Introduction

!Numeric operators, REPL, quotes, functions, conditionals

! Function examples, helper functions, let, let*

!More function examples, higher-order functions

!More higher-order functions, trees

!More trees, lambda reductions, mutual recursion, examples, letrec

• Python GUI programming (Tkinter)

• Types and values

• Logic programming: Prolog

• Syntax and semantics

• Exceptions

1 Fall 2008 Tkinter

Announcements

• Lab 2 was due today at 10:30 am.

• Reminder: Term Test 2 is on Monday November 3rd in GB405, not in the

regular lecture room.

– 50 minutes (11:10 – 12:00).

– You're allowed to have one double-sided aid sheet for the test. You must use

standard letter-sized (that is, 8.5" x 11") paper. The aid sheet can be produced

however you like (typed or handwritten).

– Bring your TCard.

– What's covered?

• Everything from September 29 up to and including October 24.

• Lab 2.

– An old Term Test 2 has been posted.

– The exercises at the end of each lecture are also good practice.

2

Fall 2008 Tkinter

What is Tkinter?

• Tkinter is a Python interface to Tk.

– Tkinter = Tk interface

• Tk is a cross-platform GUI library.

– It lets you write GUI code that runs (without modification) on Windows, Linux,

Mac OS, etc.

– Tk uses native widgets on each platform, so your program gets a native look-

and-feel on each platform even though you've only written the code once.

• That is, it looks like a Windows application when run on Windows, it looks like a Mac

application when run on Mac OS, etc., without any extra programming effort.

3 Fall 2008 Tkinter

Overview

• This lecture is meant to be just an introduction to Tkinter.

– It will not include everything you need for the project.

– Learning Tkinter is still part of the project.

• We'll look at:

– The basic structure of Tkinter code.

– Some of the Tkinter widgets that you might find useful.

– Registering callback functions.

4

Fall 2008 Tkinter

A simple Tkinter program

import Tkinter

root = Tkinter.Tk()

Tkinter.mainloop()

• Observe that:

– You need to import the Tkinter module.

– Calling Tkinter.Tk() creates a "root" (top-level) window.

– Calling mainloop() starts Tkinter's event loop. Without this call, nothing will be

displayed (unless you're working in the Python interpreter).

– The call to mainloop() does not return until all Tkinter windows are closed. This

means that any code after this call won't get executed until all windows are

closed.

5 Fall 2008 Tkinter

The Tkinter event loop

• Calling mainloop() starts Tkinter's event loop.

• In the event loop, Tkinter "listens" for and responds to particular events

(like clicks and key presses).

– This is called event-driven programming. Instead of a sequence of steps that is

fixed ahead of time by the programmer, the program's behaviour depends on

events that occur at runtime.

– We'll see later that we can register callback functions that act in response to

particular events.

• In the event loop, Tkinter periodically redraws windows.

– No drawing occurs outside of the event loop, so nothing appears on the screen

before the call to mainloop().

• Since the call to mainloop() does not return until all windows are

closed (which, essentially, is the end of your program), you need to do

all initial setup of your GUI before the call to mainloop().

6

Fall 2008 Tkinter

Another simple Tkinter program

import Tkinter

root = Tkinter.Tk()

root.title("Hello!")

myLabel = Tkinter.Label(root, text="CSC326", fg="blue", bg="yellow")

myLabel.pack()

Tkinter.mainloop()

The following produces an error since it isn't run till the window

is closed.

label2 = Tkinter.Label(root, text="Project", fg="green")

label2.pack()

7 Fall 2008 Tkinter

Creating widgets

• When creating a widget (for example, a Label), we need to specify its

parent (where it's going to go).

– We can optionally specify other properties using keyword arguments.

myLabel = Tkinter.Label(root, text="CSC326", fg="blue", bg="yellow")

– The above line creates a Label widget whose parent is the root window.

– It also specifies the Label's text, foreground colour, and background colour.

– It does not actually place the Label on the window. The Label is placed on the

window by the line:

myLabel.pack()

– Notice that we're not specifying where on the window the Label should go. The

default is to place the first widget on top, the next one underneath it, and so on,

from top to bottom.

8

Fall 2008 Tkinter

Arranging widgets

import Tkinter

root = Tkinter.Tk()

root.title("Hello!")

myLabel = Tkinter.Label(root, text="CSC326", fg="blue")

myLabel.pack(side=Tkinter.RIGHT)

label2 = Tkinter.Label(root, text="Project", fg="red")

label2.pack(side=Tkinter.LEFT)

Tkinter.mainloop()

9 Fall 2008 Tkinter

Arranging widgets

• Observe that we can pass a side argument to pack(), giving us some

basic control over layout.

– The side argument can be Tkinter.TOP (this is the default value),

Tkinter.BOTTOM, Tkinter.LEFT, or Tkinter.RIGHT.

– The layout depends on both the order in which widgets are packed, and the side

arguments given to the pack() calls.

• For more sophisticated layouts (for example, when you have lots of

widgets), you can use grid() instead of pack().

– This lets you specify a row and column for each widget.

– Note that you can't combine grid() and pack() within the same window.

• Another option for sophisticated layouts is using Frame widgets within a

window.

– The window is the parent of the Frame widgets.

– Other widgets are created with a Frame as a parent, so packing them positions

them inside the Frame.

10

Fall 2008 Tkinter

Creating additional windows

import Tkinter

root = Tkinter.Tk()

win = Tkinter.Toplevel(root)

root.title("Hello!")

win.title("New window!")

myLabel = Tkinter.Label(root, text="CSC326", fg="blue", bg="orange")

myLabel.pack(side=Tkinter.RIGHT)

label2 = Tkinter.Label(root, text="Project", fg="red", bg="yellow")

label2.pack(side=Tkinter.LEFT)

root.mainloop()

11 Fall 2008 Tkinter

Creating additional windows

• As we've seen, the call

root = Tkinter.Tk()

creates a "root" window for our application.

• To create an additional window, we can call Tkinter.Toplevel().

– This window then "belongs" to whichever root window we've specified.

– Closing that root window will close this window too.

• To create an additional root window (that is, to create a new window

whose existence doesn't depend on another root window), make

another call to Tkinter.Tk():
root2 = Tkinter.Tk()

12

Fall 2008 Tkinter

Buttons

import Tkinter

root = Tkinter.Tk()

root.title("Buttons!")

myButton = Tkinter.Button(root, text="CSC326")

myButton.pack()

root.mainloop()

• The button can be clicked, but it doesn't do anything (yet).

13 Fall 2008 Tkinter

Responding to a button click

import Tkinter

root = Tkinter.Tk()

root.title("Buttons!")

def changeCol():

 root.config(bg="blue")

myButton = Tkinter.Button(root, text="CSC326", command=changeCol)

myButton.pack()

root.mainloop()

• Clicking the button changes the window's colour to blue.

• Observe that we used the keyword argument command to set the

function changeCol as a callback function that is called whenever the

button is clicked.

14

Fall 2008 Tkinter

Responding to a button click

• Note that the previous slide has bad coding style.

– The function changeCol accesses the global variable root.

• Better style:

– Define classes.

– Let root be an instance variable and let changeCol be an instance method of

the same class.

• For the sake of simplicity, we'll continue using the "bad" approach in

this lecture (rather than defining classes), but you're expected to use

good coding style for the project.

• There's another problem with the previous slide:

– What if we want multiple buttons, each changing the background to a different

colour?

15 Fall 2008 Tkinter

Responding to button clicks

import Tkinter

def blueCol():

 root.config(bg="blue")

def redCol():

 root.config(bg="red")

root = Tkinter.Tk()

root.title("Buttons!")

blueBtn = Tkinter.Button(root, text="Blue!", command=blueCol)

redBtn = Tkinter.Button(root, text="Red!", command=redCol)

blueBtn.pack()

redBtn.pack()

root.mainloop()

• Problem: Code duplication (redCol and blueCol).

16

Fall 2008 Tkinter

Callbacks and arguments

• Observe that the code duplication problem gets worse if we add buttons

for more colours (green, orange, etc.).

• To solve this problem, we need to have just a single function,

changeCol, that takes a colour as an argument and sets the

background to this colour.

– But the callback function for a button is called with no arguments.

– So we can't set such a changeCol function as the callback for a button.

• Solution: lambda expressions!

– Just like in Scheme, lambda expressions in Python create functions.

– However, in Python, the body of a lambda expression must be just a single

expression, so lambda expressions cannot always replace a def statement.

– Python lambda expression syntax:

(lambda arg1, arg2, ...: expression)

For example:

(lambda x, y: x+y) (3, 4) # This evaluates to 7.

17 Fall 2008 Tkinter

Using lambda to create a callback function

import Tkinter

def changeCol(colour):

 root.config(bg=colour)

root = Tkinter.Tk()

root.title("Buttons!")

blueB = Tkinter.Button(root, text="Blue!",command=(lambda: changeCol("blue")))

redB = Tkinter.Button(root, text="Red!", command=(lambda: changeCol("red")))

blueB.pack()

redB.pack()

root.mainloop()

• Observe that we've use lambda to create callback functions for each

button.

– These functions take no arguments (as required for button callbacks).

– These functions call changeCol with an appropriate argument.

18

Fall 2008 Tkinter

Canvasses

• The Canvas widget lets you draw various shapes.

– Recall that you're required to use a Canvas widget for the project's game board.

• An example:

import Tkinter

root = Tkinter.Tk()

root.title("Canvas")

myC = Tkinter.Canvas(root)

myC.pack()

r = myC.create_rectangle(50,100,200,140, fill="blue")

l = myC.create_line(0,0,100,100, fill="red", width=2.0)

root.mainloop()

19 Fall 2008 Tkinter

Canvas events

import Tkinter

root = Tkinter.Tk()

root.title("Canvas")

def makeRed(i):

 myC.itemconfig(i,fill="red")

myC = Tkinter.Canvas(root)

myC.pack()

r = myC.create_rectangle(50,100,200,140,fill="blue")

l = myC.create_line(0,0,100,100,fill="red",width=2.0)

myC.bind("<Button-1>", (lambda e: makeRed(r)))

root.mainloop()

• Clicking the canvas makes the rectangle red.

20

Fall 2008 Tkinter

Canvas events

• Observe that the bind() method is used to set callbacks for a canvas.

– The event called "<Button-1>" is a left-click.

– A canvas callback function takes a single argument (we didn't do anything with

this argument).

• Observe that itemconfig() method can be used to configure objects

that have already been added to the canvas.

• The argument passed to a canvas callback function is an event object

that provides information about the event that caused the callback to be

called.

– For example, the location of the pointer on the canvas when the mouse was

clicked.

21 Fall 2008 Tkinter

Using canvas event objects

import Tkinter

import tkMessageBox

root = Tkinter.Tk()

root.title("Canvas")

def announce(event):

 message = "Click at "+ str((event.x, event.y))

 tkMessageBox.showinfo("Position", message)

myC = Tkinter.Canvas(root)

myC.pack()

r = myC.create_rectangle(50,100,200,140,fill="blue")

l = myC.create_line(0,0,100,100,fill="red",width=2.0)

myC.bind("<Button-1>", announce)

root.mainloop()

• Look at the next slide to see what happens when we click inside the

canvas.

22

Fall 2008 Tkinter

Using canvas event objects

23 Fall 2008 Tkinter

Using canvas event objects

• Observe that the x and y instance variables of the event object passed

to a canvas callback function provide the canvas co-ordinates of the

pointer when the event (in our case, a left-click) occurred.

• The tkMessageBox module provides a collection of dialog boxes

(showinfo, askyesno, askokcancel, etc.).

• The call:
tkMessageBox.showinfo("Position", message)

creates a dialog box that displays the given message and has an OK

button.

– The first argument ("Position") is meant to set the title of the dialog box, but

this seems to have no effect on Mac OS. Try this out on your system to see what

happens.

24

Fall 2008 Tkinter

Some other useful widgets

• Entry widgets

– These allow the user to enter text.

• Radiobutton widgets

– These allow the user to choose exactly one item from a collection.

• Listbox widgets

– These allow to user to choose an item from a list.

• And more!

25 Fall 2008 Tkinter

What we've left out

• Object-oriented design.

– For the project, you need to create appropriate classes for your GUI.

– And, more generally, you need to follow good programming style (unlike what

we've seen in many of these examples).

• Tkinter.

– There's (not surprisingly) much more than what we've covered in this lecture.

– Widgets, methods, settings, etc.

– This lecture was just meant to be a starting point.

26

Fall 2008 Tkinter

Exercises

• Create a simple Tkinter application. Like we did in this lecture, start with

an application that displays an empty window. Then add some widgets.

• Experiment with callback functions. First create a callback function for a

button. Then create a callback function for a canvas.

• Go beyond what we did in this lecture. Read about some widgets that

we didn't cover (such as the widgets on slide 25), and add them to your

application.

27

