
Fall 2008 Scheme: More function examples, higher-order functions

The current topic: Scheme

! Introduction

!Object-oriented programming: Python

• Functional programming: Scheme

! Introduction

!Numeric operators, REPL, quotes, functions, conditionals

! Function examples, helper functions, let, let*

– Next up: More function examples, higher-order functions

• Types and values

• Syntax and semantics

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Scheme: More function examples, higher-order functions

Announcements

• Lab 1 has been marked.

– A marking report has been emailed to your ECF address.

– Deadline for requesting a re-mark is Monday.

• Use the form provided on the course website.

• Term test 1 has been marked.

– Handed back at the end of class today.

– Average: 73.7%

– Deadline for requesting a re-mark is Friday October 24th.

• Use the form provided on the course website.

• Grades are now posted on the course website.

– Your initial password is your student number.

– Double-check the posted grades.

2

Fall 2008 Scheme: More function examples, higher-order functions

More announcements

• Project.

– Send me an email with a list of group members by Monday.

• Lab 2.

– Due October 27th.

3 Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers (again)

• Given a positive integer n, compute the n-th Fibonacci number.

(define (fib n)

 (cond ((<= n 2) 1)

 (else (+ (fib (- n 1)) (fib (- n 2))))

)

)

> (fib 1)

1

> (fib 2)

1

> (fib 3)

2

> (fib 4)

3

• Problems:

– Efficiency. (Why?)

– What if we want a list of the first n Fibonacci numbers?

4

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

• A more efficient approach, using a helper function.

> (define (fib-help n f1 f2 last)

 (cond ((= n last) (+ f1 f2))

 (else (fib-help (+ n 1) (+ f1 f2) f1 last))

))

> (define (fib n)

 (if (= n 1) 1 (fib-help 2 1 0 n)))

• Note that fib-help's parameter n keeps track of which Fibonacci

number is currently being computed, and parameter last keeps track

of which Fibonacci number that we ultimately want. f1 is the previous

Fibonacci number, and f2 is the Fibonacci number that comes before

f1.

• Observe that fib-help is tail-recursive.

5 Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

• Tracing a call to the efficient version of fib:

Call: (fib 6)

Trace:

 (fib 6)

 (fib-help 2 1 0 6)

 (fib-help 3 1 1 6)

 (fib-help 4 2 1 6)

 (fib-help 5 3 2 6)

 (fib-help 6 5 3 6)

 8

6

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

• Getting a list of the first n Fibonacci numbers (first attempt):

> (define (fiblist n)

 (cond ((= n 0) '())

 (else (cons (fib n) (fiblist (- n 1))))

)

)

> (fiblist 6)

(8 5 3 2 1 1)

• But this is inefficient.

– Each call made by fiblist to fib repeats work done in the previous call.

– Solution: Use the contents of the list as we build it up. That is, if we have a list of

the first n-1 Fibonacci numbers, it should be very easy to add the n-th Fibonacci

number to this list.

7 Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

• Getting a list of the first n Fibonacci numbers (second attempt):

> (define (fiblist n)

 (cond ((= n 1) '(1))

 ((= n 2) '(1 1))

 (else (cons (+ (car (fiblist (- n 1)))

 (cadr (fiblist (- n 1)))

)

 (fiblist (- n 1))))

)

)

> (fiblist 6)

(8 5 3 2 1 1)

• But this is still inefficient – we're constructing the same list three times

at each recursive step!

• We can do much better.

– Approach 1: Using let.

– Approach 2: Using a helper function.

8

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

• Getting a list of Fibonacci numbers (more efficient version):

> (define (fiblist n)

 (cond ((= n 1) '(1))

 ((= n 2) '(1 1))

 (else (let ((f (fiblist (- n 1))))

 (cons (+ (car f) (cadr f)) f)

))

)

)

> (fiblist 6)

(8 5 3 2 1 1)

9 Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

• Getting a list of Fibonacci numbers (most efficient version):

> (define (fiblist-help n f last)

 (let ((new-f (cons (+ (car f) (cadr f)) f)))

 (cond ((= n last) new-f)

 (else (fiblist-help (+ n 1) new-f last))

)))

> (define (fiblist n)

 (cond ((= n 1) '(1))

 ((= n 2) '(1 1))

 (else (fiblist-help 3 '(1 1) n))

))

• Observe that fiblist-help is tail-recursive, and its parameter f acts

as an accumulator.

10

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

• Tracing a call to the most efficient version of fiblist:

Call: (fiblist 6)

Trace:

 (fiblist 6)

 (fiblist-help 3 '(1 1) 6)

 (fiblist-help 4 '(2 1 1) 6)

 (fiblist-help 5 '(3 2 1 1) 6)

 (fiblist-help 6 '(5 3 2 1 1) 6)

 (8 5 3 2 1 1)

11 Fall 2008 Scheme: More function examples, higher-order functions

Equality checking

• The eq? predicate doesn't work for lists. :

 > (eq? (cons 'a '()) (cons 'a '()))

#f

• Why not?

– The first (cons 'a '()) makes a new list.

– The second (cons 'a '()) makes another new list.

– eq? checks whether its two arguments are the same.

– And they're not: they're two separate lists.

• Lists are stored as pairs of pointers: one to the first element (the car)

and one to the rest of the list (the cdr).

• Symbols and numbers are stored uniquely, so eq? works on them.

12

Fall 2008 Scheme: More function examples, higher-order functions

Equality checking for lists

• For lists, we need a comparison function to check for the same structure

in two lists. This is what the built-in function equal? does. Let's define

our own version of equal?. We'll use the atom? function we previously

defined.

 > (define (equal? x y)

 (or (and (atom? x) (atom? y) (eq? x y))

 (and (not (atom? x))

 (not (atom? y))

 (equal? (car x) (car y))

 (equal? (cdr x) (cdr y)))))

 > (equal? 'a 'a)

 #t

 > (equal? '(a (b)) '(a (b)))

 #t

 > (equal? '((a)) '(a))

 #f

13 Fall 2008 Scheme: More function examples, higher-order functions

Sum of all the numbers in a list of lists

• Parameter: a nested list of numbers.

• Result: the sum of all the numbers in the parameter.

 >(define (sum-list-nested ls)

 (cond ((null? ls) 0)

 ((list? (car ls))

 (+ (sum-list-nested (car ls))

 (sum-list-nested (cdr ls))))

 (else (+ (car ls)

 (sum-list-nested (cdr ls))))))

> (sum-list-nested '(1 (3 (4 5)) 5))

18

• This is car-cdr recursion again:

– If the first element is a list, then recursion on car processes the nested level.

– Then recursion on cdr advances the computation to the next element of the list.

14

Fall 2008 Scheme: More function examples, higher-order functions

Higher-order functions

• A higher-order function is a function that takes a function as a

parameter, returns a function, or does both.

• For example, the function you'll write for Exercise 6 of Lab 2 takes a list

of functions as a parameter, and returns the composition of these

functions.

– The return value is a function.

– Let's see an example of this in math (rather than in Scheme):

Define f(x) = x+2.

Define g(x) = 2*x.

Let h = compose([f, g]). That is, compose "returns" a function, which we're

"assigning" to h.

Then h(x) = f(g(x)).

e.g. h(3) = f(g(3)) = f(2*3) = 6+2 = 8.

15 Fall 2008 Scheme: More function examples, higher-order functions

Functions as parameters

• A higher-order function that takes a function as a parameter:

 > (define (all-num-f f lst)

 (cond ((all-num lst) (f lst))

 (else 'error)))

 > (all-num-f abs-list '(1 -2 3))

 (1 2 3)

 > (all-num-f car '(1 -2 3))

 1

 > (all-num-f abs-list '(1 a))

 error

• We assume that helper function all-num has been defined to return

true iff its parameter is a list containing only numbers. (Exercise: write

this helper function.)

• all-num-f returns the result of calling f on lst.

16

Fall 2008 Scheme: More function examples, higher-order functions

Lambda expressions

• A lambda expression is a function without a name.

– Defined in terms of the action performed on a list of parameters.

– More formally, a lambda expression evaluates to an unnamed function.

• That is, the result of the expression is an unnamed function.

 > ((lambda (x y z) (+ x y z)) 1 2 3)

 6

 > ((lambda (x y) (cons x y)) 1 '(a b))

 (1 a b)

 > ((lambda (f x) (f x)) car '(9 8 7))

 9

17 Fall 2008 Scheme: More function examples, higher-order functions

Functions as return values

• A higher-order function that returns a function as its value:

 > (define (plus-list x)

 (cond ((number? x)

 (lambda (y) (+ (sum-n x) y)))

 ((list? x)

 (lambda (y) (+ (sum-list x) y)))

 (else (lambda (x) x))

))

 > ((plus-list 3) 4)

 10

 > ((plus-list '(1 3 5)) 5)

 14

 > ((plus-list 'a) 5)

 5

• Recall that (sum-n x) returns the sum of the numbers from 0 to x, and

(sum-list x) returns the sum of the numbers in list x.
18

Fall 2008 Scheme: More function examples, higher-order functions

Functions as return values

• Observe that:

– (plus-list 3) is a function that takes a single parameter, and adds 6 to this

parameter.

– (plus-list '(1 3 5)) is a function that takes a single parameter, and adds 9

to this parameter.

– (plus-list 'a) is the identity function (it takes a single parameter and returns

it).

19 Fall 2008 Scheme: More function examples, higher-order functions

map

• map is a built-in higher-order function.

– Parameters: a function and a list

– Result: a new list in which each element is the result of applying the function

parameter to the corresponding element of the list parameter

• Examples:

 > (map abs '(-1 2 -3 4))

 (1 2 3 4)

 > (map (lambda (x) (+ 1 x)) '(-1 2 -3))

 (0 3 -2)

 > (map car '((a b c) (d e f) (g h i)))

 (a d g)

 > (map cdr '((a b c) (d e f) (g h i) (j k l)))

 ((b c) (e f) (h i) (k l))

20

Fall 2008 Scheme: More function examples, higher-order functions

map

• We could define our own map like this:

 > (define (map f l)

 (cond ((null? l) ())

 (else (cons (f (car l))

 (map f (cdr l))))))

• Unlike ours, the built-in map can take more than two arguments.

– This allows it to work with functions f that need more than one argument.

– Examples:

 > (map cons '(a b c) '((1) (2) (3)))

 ((a 1) (b 2) (c 3))

 > (map + '(1 2 3) '(4 5 6) '(7 8 9))

 (12 15 18)

 > (map max '(1 4 8) '(2 5 2) '(9 4 1) '(0 0 0))

 (9 5 8)

21 Fall 2008 Scheme: More function examples, higher-order functions

Exercises

• Write a function called addToEnd that takes an element e and a list L,

and adds e to the end of L. Do not use recursion. Example:

> (addToEnd 'd '(1 2 3))

(1 2 3 d)

• Write a function called funAddToEnd that takes an element e and

returns a function that takes a list and adds e to the end of the list.

Example:

> ((funAddToEnd 'a) '(2 3 4))

(2 3 4 a)

• Write a function called fixFirst that takes a binary function f and a

parameter p, and returns a function that is the same as f except the first

parameter is fixed to be p. Examples:

> ((fixFirst cons 'z) '(a b c))

(z a b c)

> ((fixFirst append '(1 2)) '(3 4))

(1 2 3 4)

22

