The current topic: Scheme

v Introduction

v Object-oriented programming: Python

Functional programming: Scheme

v Introduction

v Numeric operators, REPL, quotes, functions, conditionals
¥ Function examples, helper functions, let, let”

— Next up: More function examples, higher-order functions
¢ Types and values

Syntax and semantics

e Exceptions

¢ | ogic programming: Prolog

Fall 2008 Scheme: More function examples, higher-order functions

More announcements

* Project.
— Send me an email with a list of group members by Monday.

e Lab 2.
— Due October 27th.

Fall 2008 Scheme: More function examples, higher-order functions

Announcements

e Lab 1 has been marked.
— A marking report has been emailed to your ECF address.
— Deadline for requesting a re-mark is Monday.
e Use the form provided on the course website.

e Term test 1 has been marked.
— Handed back at the end of class today.
— Average: 73.7%
— Deadline for requesting a re-mark is Friday October 24th.
e Use the form provided on the course website.

e Grades are now posted on the course website.

— Your initial password is your student number.
— Double-check the posted grades.

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers (again)

e Given a positive integer n, compute the n-th Fibonacci number.

(define (fib n)
(cond ((<=n 2) 1)
(else (+ (fib (- n 1)) (fib (- n 2))))
)
)

> (fib 1)
1
> (fib 2)
1
> (fib 3)
2
> (fib 4)
3

* Problems:

- Efficiency. (Why?)
— What if we want a list of the first n Fibonacci numbers?

Fall 2008 Scheme: More function examples, higher-order functions



Fibonacci numbers

¢ A more efficient approach, using a helper function.

> (define (fib-help n f1 £f2 last)
(cond ((= n last) (+ f1 £2))
(else (fib-help (+ n 1) (+ f1 £2) f1 last))
))

> (define (fib n)
(if (= n 1) 1 (fib-help 2 1 0 n)))

* Note that fib-help's parameter n keeps track of which Fibonacci
number is currently being computed, and parameter last keeps track
of which Fibonacci number that we ultimately want. £1 is the previous
Fibonacci number, and £2 is the Fibonacci number that comes before
f1.

e Observe that fib-help is tail-recursive.

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

e Getting a list of the first n Fibonacci numbers (first attempt):

> (define (fiblist n)
(cond ((=n 0) '())
(else (cons (fib n) (fiblist (- n 1))))
)
)

> (fiblist 6)
(853211)

e But this is inefficient.
— Each call made by fiblist to £ib repeats work done in the previous call.

— Solution: Use the contents of the list as we build it up. That is, if we have a list of
the first n-1 Fibonacci numbers, it should be very easy to add the n-th Fibonacci
number to this list.

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

¢ Tracing a call to the efficient version of £ib:

Call: (£ib 6)

Trace:
(£ib 6)
(fib-help 2 1 0 6)
(fib-help 3 1 1 6)
(fib-help 4 2 1 6)
(fib-help 5 3 2 6)
(fib-help 6 5 3 6)
8

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

e Getting a list of the first n Fibonacci numbers (second attempt):

> (define (fiblist n)
(cond ((=n 1) '"(1))
((=n 2) '"(11))
(else (cons (+ (car (fiblist (- n 1)))
(cadr (fiblist (- n 1)))
)
(fiblist (- n 1))))

)

> (fiblist 6)
(85321 1)

e But this is still inefficient — we're constructing the same list three times
at each recursive step!

¢ We can do much better.
— Approach 1: Using let.
— Approach 2: Using a helper function.

Fall 2008 Scheme: More function examples, higher-order functions



Fibonacci numbers

e Getting a list of Fibonacci numbers (more efficient version):

> (define (fiblist n)
(cond ((=n 1) '(1))
((=n2) '(11))
(else (let ((f (fiblist (- n 1))))
(cons (+ (car f) (cadr f)) f)
))

)

> (fiblist 6)
(85321 1)

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

¢ Tracing a call to the most efficient version of fiblist:
Call: (fiblist 6)

Trace:
(fiblist 6)
(fiblist-help 3 '(1 1) 6)
(fiblist-help 4 '(2 1 1) 6)
(fiblist-help 5 '(3 2 1 1) 6)
(fiblist-help 6 '(5 3 2 1 1) 6)
(853211)

Fall 2008 Scheme: More function examples, higher-order functions

Fibonacci numbers

¢ Getting a list of Fibonacci numbers (most efficient version):

> (define (fiblist-help n f last)
(let ((new-f (cons (+ (car f) (cadr f)) f)))
(cond ((= n last) new-f)
(else (fiblist-help (+ n 1) new-f last))
)))

> (define (fiblist n)
(cond ((=n 1) '(1))
((=n2) '"(11))
(else (fiblist-help 3 '(1 1) n))
))

e Observe that fiblist-help is tail-recursive, and its parameter £ acts
as an accumulator.

Fall 2008 Scheme: More function examples, higher-order functions 10

Equality checking

¢ The eqg? predicate doesn't work for lists. :

> (eqg? (cons 'a '()) (comns 'a '()))
#£

e Why not?
— Thefirst (cons 'a '()) makes anew list.
— The second (cons 'a '()) makes another new list.
— eqg? checks whether its two arguments are the same.
— And they're not: they're two separate lists.

e Lists are stored as pairs of pointers: one to the first element (the car)
and one to the rest of the list (the cdr).

e Symbols and numbers are stored uniquely, so eq? works on them.

Fall 2008 Scheme: More function examples, higher-order functions 12



Equality checking for lists

e For lists, we need a comparison function to check for the same structure
in two lists. This is what the built-in function equal? does. Let's define
our own version of equal?. We'll use the atom? function we previously
defined.

> (define (equal? x y)
(or (and (atom? x) (atom? y) (eq? x y))
(and (not (atom? x))
(not (atom? y))
(equal? (car x) (car y))
(equal? (cdr x) (cdr y)))))

1 [

> (equal? 'a 'a)

#t
> (equal? '(a (b)) '(a (b)))
#t
> (equal? '((a)) '(a))
#£
Fall 2008 Scheme: More function examples, higher-order functions

Sum of all the numbers in a list of lists

* Parameter: a nested list of numbers.
¢ Result: the sum of all the numbers in the parameter.

>(define (sum-list-nested ls)
(cond ((null? 1s) 0)
((list? (car 1ls))
(+ (sum-list-nested (car 1s))
(sum-list-nested (cdr 1ls))))
(else (+ (car 1s)
(sum-list-nested (cdr 1s))))))

> (sum-list-nested '(1 (3 (4 5)) 5))
18

¢ This is car-cdr recursion again:
— If the first element is a list, then recursion on car processes the nested level.
— Then recursion on cdr advances the computation to the next element of the list.

Fall 2008 Scheme: More function examples, higher-order functions 14

Higher-order functions

¢ A higher-order function is a function that takes a function as a
parameter, returns a function, or does both.

e For example, the function you'll write for Exercise 6 of Lab 2 takes a list
of functions as a parameter, and returns the composition of these
functions.

— The return value is a function.
— Let's see an example of this in math (rather than in Scheme):
Define £ (x) = x+2.
Define g(x) = 2*x
Leth = compose([£, g]). Thatis, compose "returns" a function, which we're
"assigning" to h.
Thenh(x) = f(g(x)).
e.g.h(3) = f(g(3)) = £(2%3) = 6+2 = 8.

Fall 2008 Scheme: More function examples, higher-order functions

Functions as parameters

¢ A higher-order function that takes a function as a parameter:

> (define (all-num-f f 1lst)
(cond ((all-num 1lst) (f 1st))
(else 'error)))

> (all-num-f abs-list '(1 -2 3))
(12 3)

> (all-num-f car '(1 -2 3))

1

> (all-num-f abs-list '(1 a))
error

e We assume that helper function all-num has been defined to return
true iff its parameter is a list containing only numbers. (Exercise: write
this helper function.)

® all-num-f returns the result of calling £ on 1st.

Fall 2008 Scheme: More function examples, higher-order functions 16



Lambda expressions Functions as return values

¢ A higher-order function that returns a function as its value:
¢ A lambda expression is a function without a name.
- Defined in terms of the action performed on a list of parameters. > (define (plus-list x)
— More formally, a lambda expression evaluates to an unnamed function. (cond ((number? x)

e That is, the result of the expression is an unnamed function. (lambda (y) (+ (sum-n x) y)))

((list? x)

(lambda (y) (+ (sum-list x) y)))
(else (lambda (x) x))
)

> ((lambda (xy z2) (+ xy z)) 1 2 3)
6

> ((lambda (x y) (cons x y)) 1 '(a b))

(1 a b) > ((plus-list 3) 4)
10

> ((lambda (f x) (f x)) car '(9 8 7)) > ((plus-list '(1 3 5)) 5)

9 14
> ((plus-1list 'a) 5)
5

e Recall that (sum-n x) returns the sum of the numbers from 0 to x, and
(sum-list x) returns the sum of the numbers in list x.
Fall 2008 Scheme: More function examples, higher-order functions 17 Fall 2008

Scheme: More function examples, higher-order functions

Functions as return values map
e Observe that:

- (plus-list 3) is a function that takes a single parameter, and adds 6 to this
parameter.

¢ map is a built-in higher-order function.
— Parameters: a function and a list
— Result: a new list in which each element is the result of applying the function
parameter to the corresponding element of the list parameter
— (plus-list '(1 3 5)) is afunction that takes a single parameter, and adds 9

to this parameter. e Examples:

— (plus-list 'a) is the identity function (it takes a single parameter and returns ,
it). > (map abs '(-1 2 -3 4))

(123 4)

> (map (lambda (x) (+ 1 x)) '(-1 2 -3))

(0 3 -2)

> (map car '((abc) (de f) (g h i)))

(a dg)

> (map cdr '((a b c) (de f) (ghi) (jk1)))
((b c) (e £f) (h i) (k1))

Fall 2008 Scheme: More function examples, higher-order functions 19 Fall 2008 Scheme: More function examples, higher-order functions



map
¢ We could define our own map like this:
> (define (map f 1)
(cond ((null? 1) ())

(else (cons (f (car 1))
(map £ (cdr 1))))))

¢ Unlike ours, the built-in map can take more than two arguments.

— This allows it to work with functions f that need more than one argument.

— Examples:
> (map cons '(a b c) '((1) (2) (3)))
((a 1) (b 2) (c 3))
> (map + '(1 2 3) '(456) '(789))

(12 15 18)
> (map max '(1 4 8) '(2 52) '(9 4 1) '"(00 0))
(9 5 8)

Fall 2008 Scheme: More function examples, higher-order functions

21

Exercises

¢ Write a function called addToEnd that takes an element e and a list L,
and adds e to the end of L. Do not use recursion. Example:
> (addToEnd 'd '(1 2 3))
(1 234d)

¢ Write a function called funAddToEnd that takes an element e and
returns a function that takes a list and adds e to the end of the list.
Example:
> ((funAddToEnd 'a) '(2 3 4))
(2 3 4 a)

e Write a function called fixFirst that takes a binary function £ and a
parameter p, and returns a function that is the same as £ except the first
parameter is fixed to be p. Examples:
> ((fixFirst cons 'z) '(a b c))

(z a b c)
> ((fixFirst append '(1 2)) '(3 4))
(1 2 3 4)

Fall 2008 Scheme: More function examples, higher-order functions 22



