
Fall 2008 Python: Exceptions, Operator Overloading, Privacy

The current topic: Python

! Introduction

• Object-oriented programming: Python

! Features, variables, numbers, strings, Booleans, while loops

! If statements, sequences, functions, modules

!Dictionaries, command-line arguments, files, classes, inheritance, polymorphism

– Next up: Exceptions, operator overloading, privacy

• Types and values

• Syntax and semantics

• Functional programming: Scheme

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Announcements

• By the end of today's lecture, we will have covered all the material

needed for Lab 1.

– Don't forget to look at the bulletin board for clarifications.

– Make sure you follow the specified input and output format for each question.

• Reminder: Office hours are Monday 1:30-2:30 and Wednesday 11-12.

2

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Instance methods

• Instance methods can only be called on instances of their class (or its

descendants)!

class Parent(object):

 x = 5

 def m(self):

 return self.x + 2

class Child(Parent):

 x = 8

 def m(self):

 return self.x + 4 + Parent.m(self)

class Unrelated(object):

 x = 8

c = Child()

Parent.m(c) # 10

u = Unrelated()

Parent.m(u) # TypeError (u isn't a Parent)

3 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Exceptions

• A way to deal with errors.

– Recover from them if you can.

– Otherwise, stop execution.

• Idea: When something "bad" happens, an exception is raised. At this

point, the program stops whatever it's doing and then:

– Goes to the highest level in the call stack (that is, the most recently called method

or function) that can deal with the exception.

– If no level is able to deal with the exception, go back to the system that called the

program (which results in the program halting with an error message).

• To "catch" (deal with) an exception, code that may raise the exception is

enclosed in a "try...except" block where the "except" portion is

executed when the exception occurs.

• Reference: Sebesta, Chapter 14.

4

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Exceptions

• Suppose function f3() in module m3 raises

an exception E as in the given call stack.

• If statement C is in a try...except block, this

block will catch exception E.

• Otherwise, exception E is passed to the next

level down in the call stack. So if statement

B is in a try...except block, this block will

catch exception E.

• Otherwise... (the same idea again). So if

statement A is in a try...except block, this

block will catch exception E.

• Otherwise (no one has caught the exception

so far), the program stops and an error

message is given to the user.

5

!
m3.f3()

raises E

m2.f2()

stmt C calls m3.f3()

m1.f1()

stmt B calls m2.f2()

main

stmt A calls m1.f1()

Call stack

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Except

• In Python, built-in exceptions are descendants of the class Exception.

An except clause catches all descendants of the exception it specifies.

try:

 L=[]

 L[4] # IndexError

except Exception:

 print "Error caught"

print "continuing..."

Output:
Error caught

continuing...

6

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Except

• A Try...Except block can include multiple except clauses. The first one

that catches a particular exception is the only one that gets executed. If

none of the except clauses catches a particular exception, it gets

passed back to the previous level of the call stack.

try:

 4 / 0 # This causes a ZeroDivisionError

except IndexError:

 print "catching IndexError"

except ArithmeticError:

 print "catching ArithmeticError"

except ZeroDivisionError:

 print "catching ZeroDivisionError"

Output:

catching ArithmeticError

• "except ArithmeticError" catches a ZeroDivisionError since

ArithmeticError is the parent of ZeroDivisionError.

7 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Except... Else

• A Try...Except block can include an else clause that only gets executed

when no exceptions are raised. That is, the else clause handles the non-

exceptional case.

try:

 #do some stuff that might cause an exception

except (IndexError, TypeError): # catch multiple exceptions

 #handle exceptions

else:

 # yay! Here we assume that the try clause succeeded without

 # raising any exceptions.

8

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Finally

• A Try block can include a finally clause that gets executed whether or

not an exception is raised. This is a good place to do any cleanup (e.g.

closing open files) that needs to occur regardless of whether there was

an exception.

try:

 outFile = open("someFile", "w")

 #do some other stuff that might cause an exception

finally:

 outFile.close()

• The finally clause is run either:

– After the try clause successfully executes.

– When an exception is raised in the try clause; in this case, the finally clause is

executed, and then the exception is passed on to enclosing/calling code.

9 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Except... Else... Finally

• Python 2.5 allows you to have except and finally clauses in the same

block.

try:

 L[0] # NameError (there is no variable L)

except NameError:

 print 'catching NameError'

except IndexError:

 print 'catching IndexError'

else:

 print 'no errors'

finally:

 print 'done'

print 'continuing execution'

Output:
catching NameError

done

continuing execution

10

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Raising exceptions

• To raise an exception, use a raise statement.

try:

 raise Exception

except Exception:

 print "Exception raised"

Output:
Exception raised

11 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

User-defined exceptions

• User-defined exceptions aren't (yet) strictly required to be descendants

of Exception, but this is a good practice to follow.

class SimpleE(Exception):

 pass # pass tells Python "we have nothing to say here"

try:

 raise SimpleE # treated as "raise SimpleE()"

except SimpleE:

 print 'caught SimpleE'

Output:
caught SimpleE

12

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

User-defined exceptions

• Exceptions can take arguments (that might give more information about

what caused them to be raised). These arguments are passed to the

exception's constructor.

class BetterE(Exception):

 def __init__(self, value):

 self.value = value

 def __str__(self):

 return self.value

try:

 raise BetterE("abcde") # leaving out the argument will

 # cause another exception!

except BetterE, e: # e is the instance that was raised

 print e # print uses e.__str__()

Output:
abcde

• Note that the catching code can get the actual exception instance.

13 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Operator overloading

• Operator overloading: Operators are given multiple definitions, and the

right one is chosen based on context.

– e.g. The + operator means different things for ints and strings.

4 + 4 # for ints, + means addition

"ab" + "cd" # for strings, + means concatenation

– You can even give the + operator a new meaning for your own class. Just define

an __add__() instance method in your class. Then, if x is an instance of your

class,

x + y

is treated as a call to

x.__add__(y)

• Reference: Sebesta, Sections 7.3 and 9.10.

14

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Operator overloading

• Some other operators you can overload:

– Define __sub__(), __mul__(), and __div__() instance methods to overload

the – operator, the * operator, and the / operator.

• x – y is treated as a call to x.__sub__(y).

• x * y is treated as a call to x.__mul__(y).

• x / y is treated as a call to x.__div__(y).

– Define a __getitem__() instance method to overload the indexing operator [].

• x[i] is treated as a call to x.__getitem__(i).

• __getitem__() should raise an IndexError when given an invalid index.

– Define a __len__() instance method to overload the len() operator.

• len(x) is treated as a call to x.__len__().

15 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Operator overloading

• Example: A class that acts like a list of powers of 2.

class PowersOfTwo(object):

 def __init__(self, n):

 self.size = n

 def __len__(self):

 return self.size

 def __getitem__(self, i):

 if i < self.size:

 return 2 ** i

 else:

 raise IndexError

c = PowersOfTwo(5)

len(c) # 5

c[4] # 16

c[2] # 4

c[5] # IndexError

16

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Operator overloading

• Note that __getitem__() raises an IndexError when given an

invalid index.

– This allows us to iterate through a PowersOfTwo object.

– When iterating through a PowersOfTwo object c, Python keeps indexing c until

an IndexError is raised. That is, Python gets c[0], c[1], c[2], etc., until

there's an IndexError.

c = PowersOfTwo(6)

for x in c:

 print x

Output:

1

2

4

8

16

32

17 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Private methods and variables

• Python does not have any way of enforcing privacy.

• Instead, name mangling can be used to indicate that a particular

variable or method should be treated as if it were private.

– Then, anyone who ignores this indication and writes code that accesses "private"

variables or calls "private" methods does so at their own risk.

– As we'll see, this also prevents naming conflicts between "private" methods/

variables of a parent class and "private" methods/variables of a child class.

• Name mangling: Whenever the name of a variable or method within a

class begins with __ (two underscores), Python adds on

_<NameOfClass> to the beginning.

class A(object):

 def __m(self):

 return 0

a = A()

a._A__m() # 0

a.__m() # AttributeError

18

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Name mangling

• Another example, this time with inheritance:
class A(object):

 def __m(self):

 self.__y = 20

 self.x = 5

 return 1

 def callM(self)

 return self.__m()

class B(A):

 def __m(self):

 self.__y = 15

 self.x = 10

 return 2

c = B()

c._A__m() # 1

c._B__m() # 2

c.x # 10 (instance variable x is shared by A and B)

c._A__y # 20

c._B__y # 15 (instance variable __y is not shared)

c.callM() # 1 (A's __m() gets called)

19 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Name mangling

• Observe that name mangling prevents naming conflicts: You can use a

name __<name> without having to first check if an ancestor uses it too.

• The method __m() defined in B does not override the method __m()

defined in A, and does not change the behaviour of A's callM()

method.

– The call to __m() within callM() is treated as a call to _A__m().

• Similarly, the assignment to instance variable __y by B does not have

any effect on the instance variable __y used by A.

– On the other hand, the assignment to instance variable x by B is to the same

instance variable x used by A.

20

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Bound and unbound methods

• Consider the following class:
class C(object):

 def m(self):

 print 'm in C'

• C.m is an unbound method. That is, it is not bound to an instance of C.

This means we need to specify an instance when calling it:

C.m() # Error (need to provide an instance)

x = C()

C.m(x) # Outputs 'm in C'

x.m() # Outputs 'm in C'

• On the other hand, in the above example, x.m is a bound method – it is

bound to instance x.

• What if we want to define methods that we can call without an instance?

Such methods are called class methods or static methods in C++/Java.

21 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Static and class methods

• In Python, static methods are not the same as class methods.

– Both can be called without being bound to an instance.

– The difference is that a class method gets the class on which it's called as a

parameter.

– Instance, class, and static methods:

• An instance method gets the instance on which its called as a parameter self.

• A class method gets the class on which its called as a parameter cls.

• A static method gets neither.

– The functions staticmethod() and classmethod() are used to identify static

and class methods in a class.

22

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Static and class methods

• An example:
class C(object):

 def sm(): # No 'self' parameter!

 print 'static'

 sm = staticmethod(sm)

 def cm(cls): # 'cls' instead of 'self'

 print 'called on class', cls.__name__

 cm = classmethod(cm)

class D(C): pass

x = C()

C.sm() # 'static'

x.sm() # 'static'

C.cm() # 'called on class C'

x.cm() # 'called on class C'

y = D()

D.cm() # 'called on class D'

y.cm() # 'called on class D'

23 Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Exercises

• Continuing with the NewFibonacci class from the last set of exercises:

– Overload the indexing operator []. Specifically, define a __getitem__(i)

method that returns the i-th number in the sequence. This method should raise

an IndexError if i is negative.

– Modify the constructor so that it raises an exception when either number it is

given is negative. Define a new exception called FibonacciError for this

purpose.

– Use name mangling to make all instance variables "private".

24

