The current topic: Python

v Introduction

¢ Object-oriented programming: Python
v Features, variables, numbers, strings, Booleans, while loops
v If statements, sequences, functions, modules
v Dictionaries, command-line arguments, files, classes, inheritance, polymorphism
— Next up: Exceptions, operator overloading, privacy

¢ Types and values

Syntax and semantics

Functional programming: Scheme

e Exceptions

¢ | ogic programming: Prolog

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Announcements

¢ By the end of today's lecture, we will have covered all the material
needed for Lab 1.
— Don't forget to look at the bulletin board for clarifications.
— Make sure you follow the specified input and output format for each question.

¢ Reminder: Office hours are Monday 1:30-2:30 and Wednesday 11-12.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Instance methods

¢ Instance methods can only be called on instances of their class (or its
descendants)!

class Parent(object):
x =5
def m(self):
return self.x + 2

class Child(Parent):
X = 8
def m(self):
return self.x + 4 + Parent.m(self)

class Unrelated(object):

x = 8
c = Child()
Parent.m(c) # 10
u = Unrelated()
Parent.m(u) # TypeError (u isn't a Parent)

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Exceptions

A way to deal with errors.
— Recover from them if you can.
- Otherwise, stop execution.

Idea: When something "bad" happens, an exception is raised. At this

point, the program stops whatever it's doing and then:

— Goes to the highest level in the call stack (that is, the most recently called method
or function) that can deal with the exception.

— If no level is able to deal with the exception, go back to the system that called the
program (which results in the program halting with an error message).

To "catch" (deal with) an exception, code that may raise the exception is
enclosed in a "try...except" block where the "except" portion is
executed when the exception occurs.

Reference: Sebesta, Chapter 14.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Exceptions

Call stack ¢ Suppose function £3 () in module m3 raises
an exception E as in the given call stack.
m3.£3()
raises E L .
e |f statement C is in a try...except block, this
block will catch exception E.
m2.£2()

e Otherwise, exception E is passed to the next

stmt C callsm3. £3 () level down in the call stack. So if statement

B is in a try...except block, this block will
ml.£1() catch exception E.

stmt B callsm2.£2() ¢ Otherwise... (the same idea again). So if

statement A is in a try...except block, this
block will catch exception E.

main
stmt A callsml.£1() Otherwise (no one has caught the exception
so far), the program stops and an error
message is given to the user.
Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Except

¢ A Try...Except block can include multiple except clauses. The first one
that catches a particular exception is the only one that gets executed. If
none of the except clauses catches a particular exception, it gets
passed back to the previous level of the call stack.

try:
4/ 0 # This causes a ZeroDivisionError
except IndexError:
print "catching IndexError"
except ArithmeticError:
print "catching ArithmeticError"
except ZeroDivisionError:

print "catching ZeroDivisionError"

Output:
catching ArithmeticError

"except ArithmeticError" catches a ZeroDivisionError since
ArithmeticError is the parent of ZeroDivisionError.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Except

¢ In Python, built-in exceptions are descendants of the class Exception.

An except clause catches all descendants of the exception it specifies.

try:

L=[]

L[4] # IndexError
except Exception:

print "Error caught”
print "continuing..."

Output:
Error caught
continuing...

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Except... Else

¢ A Try...Except block can include an else clause that only gets executed

when no exceptions are raised. That is, the else clause handles the non-
exceptional case.

try:
#do some stuff that might cause an exception

except (IndexError, TypeError): # catch multiple exceptions
#handle exceptions

else:
yay! Here we assume that the try clause succeeded without
raising any exceptions.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Finally

¢ A Try block can include a finally clause that gets executed whether or
not an exception is raised. This is a good place to do any cleanup (e.g.
closing open files) that needs to occur regardless of whether there was
an exception.

try:
outFile = open("someFile", "w")
#do some other stuff that might cause an exception

finally:
outFile.close()

e The finally clause is run either:
— After the try clause successfully executes.

— When an exception is raised in the try clause; in this case, the finally clause is
executed, and then the exception is passed on to enclosing/calling code.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Try... Except... Else... Finally

¢ Python 2.5 allows you to have except and finally clauses in the same

block.

try:

L[0] # NameError (there is no variable L)
except NameError:

print 'catching NameError'
except IndexError:

print 'catching IndexError'
else:

print 'no errors'
finally:

print 'done’
print 'continuing execution'

Output:
catching NameError
done

continuing execution

Fall 2008 Python: Exceptions, Operator Overloading, Privacy 10

Raising exceptions

¢ To raise an exception, use a raise statement.
try:
raise Exception

except Exception:
print "Exception raised"

Output:

Exception raised

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

User-defined exceptions

e User-defined exceptions aren't (yet) strictly required to be descendants

of Exception, but this is a good practice to follow.

class SimpleE(Exception):
pass # pass tells Python "we have nothing to say here"

try:

raise SimpleE # treated as "raise SimpleE()"
except SimpleE:

print 'caught SimpleE'

Output:
caught SimpleE

Fall 2008 Python: Exceptions, Operator Overloading, Privacy 12

User-defined exceptions

¢ Exceptions can take arguments (that might give more information about
what caused them to be raised). These arguments are passed to the
exception's constructor.

class BetterE(Exception):
def init_(self, value):
self.value = value
def str (self):

return self.value

try:
raise BetterE("abcde") # leaving out the argument will
cause another exception!
e is the instance that was raised
print uses e._ str_ ()

except BetterE, e:
print e

Output:

abcde

¢ Note that the catching code can get the actual exception instance.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Operator overloading

e Some other operators you can overload:
— Define __sub__ (),__mul__ (),and__div__ () instance methods to overload
the — operator, the * operator, and the / operator.
ex — yistreatedasacalltox._ sub_ (y).
ex * yistreatedasacalltox. mul_ (y).
ex / yistreatedasacalltox._div_ (y).

— Definea ___getitem__ () instance method to overload the indexing operator [].

e x[i] istreated asacallto x._ getitem (i).
e getitem_ () should raise an IndexError when given an invalid index.

— Definea___len_ () instance method to overload the 1en () operator.
e len(x) istreatedasacalltox. len ().

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Operator overloading

e Operator overloading: Operators are given multiple definitions, and the
right one is chosen based on context.

— e.g. The + operator means different things for ints and strings.
4 + 4 # for ints, + means addition
"ab" + "cd" # for strings, + means concatenation

— You can even give the + operator a new meaning for your own class. Just define
an___add__ () instance method in your class. Then, if x is an instance of your
class,

X +y

is treated as a call to

X._ _add__ (y)

¢ Reference: Sebesta, Sections 7.3 and 9.10.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy 14

Operator overloading

e Example: A class that acts like a list of powers of 2.

class PowersOfTwo(object):
def _ init_(self, n):
self.size = n

def _ len (self):
return self.size

def _ getitem_ (self, i):
if i < self.size:
return 2 ** i
else:
raise IndexError

c = PowersOfTwo(5)
len(c) # 5

c[4] # 16
cl[2] # 4
c[5] # IndexError

Fall 2008 Python: Exceptions, Operator Overloading, Privacy 16

Operator overloading

* Notethat __ getitem__ () raises an IndexError when given an
invalid index.
— This allows us to iterate through a PowersOfTwo object.

— When iterating through a PowersOfTwo object ¢, Python keeps indexing ¢ until
an IndexError is raised. That is, Python gets c[0], c[1], c[2], etc., until
there's an IndexError.

c = PowersOfTwo(6)
for x in c:
print x

Output:
1

2

4

8

16

32

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Name mangling

¢ Another example, this time with inheritance:
class A(object):
def _ m(self):
self. y = 20
self.x = 5
return 1
def callM(self)
return self. m()
class B(A):
def _ m(self):
self. y =15
self.x = 10

return 2
c = B()
c._ A m() # 1
c._B_ m() # 2
c.X # 10 (instance variable x is shared by A and B)
c. Ay # 20
c._ B vy # 15 (instance variable __y is not shared)
c.callM() # 1 (A's __m() gets called)
Fall 2008 Python: Exceptions, Operator Overloading, Privacy

Private methods and variables

¢ Python does not have any way of enforcing privacy.

¢ Instead, name mangling can be used to indicate that a particular
variable or method should be treated as if it were private.

— Then, anyone who ignores this indication and writes code that accesses "private"
variables or calls "private" methods does so at their own risk.

— As we'll see, this also prevents naming conflicts between "private" methods/
variables of a parent class and "private" methods/variables of a child class.

¢ Name mangling: Whenever the name of a variable or method within a
class begins with __ (two underscores), Python adds on
_<NameOfClass> to the beginning.

class A(object):
def _ m(self):

return 0
a = A()
a. A m() #0
a._ m() # AttributeError
Fall 2008 Python: Exceptions, Operator Overloading, Privacy 18

Name mangling

¢ Observe that name mangling prevents naming conflicts: You can use a
name __<name> without having to first check if an ancestor uses it too.

e The method _ m() defined in B does not override the method m()
defined in A, and does not change the behaviour of A's callM()
method.

— Thecallto __m() within callM() istreatedasacallto_A m().

e Similarly, the assignment to instance variable __y by B does not have
any effect on the instance variable __y used by A.

— On the other hand, the assignment to instance variable x by B is to the same
instance variable x used by A.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy 20

Bound and unbound methods

¢ Consider the following class:
class C(object):
def m(self):
print 'm in C'

C.m is an unbound method. That is, it is not bound to an instance of C.
This means we need to specify an instance when calling it:

Cc.m() # Error (need to provide an instance)
x = C()
C.m(x) # Outputs 'm in C'

x.m() # Outputs 'm in C'

On the other hand, in the above example, x.m is a bound method - it is
bound to instance x.

What if we want to define methods that we can call without an instance?
Such methods are called class methods or static methods in C++/Java.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

21

Static and class methods

* An example:
class C(object):
def sm(): # No 'self' parameter!
print 'static'
sm = staticmethod(sm)
def cm(cls): # 'cls' instead of 'self'
print 'called on class', cls._ name

cm = classmethod(cm)

class D(C): pass

x = C()
C.sm() # 'static'
xX.sm() # 'static'
C.cm() # 'called on class C'
x.cm() # 'called on class C'
y = D()
D.cm() # 'called on class D'
y.cm() # 'called on class D'
Fall 2008 Python: Exceptions, Operator Overloading, Privacy

23

Static and class methods

¢ In Python, static methods are not the same as class methods.

— Both can be called without being bound to an instance.

— The difference is that a class method gets the class on which it's called as a
parameter.

- Instance, class, and static methods:
¢ An instance method gets the instance on which its called as a parameter self.
¢ A class method gets the class on which its called as a parameter c1s.
¢ A static method gets neither.

— The functions staticmethod () and classmethod () are used to identify static
and class methods in a class.

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

22

Exercises

¢ Continuing with the NewFibonacci class from the last set of exercises:

— Overload the indexing operator []. Specifically, definea _ getitem (i)
method that returns the i-th number in the sequence. This method should raise
an IndexError if i is negative.

— Modify the constructor so that it raises an exception when either number it is
given is negative. Define a new exception called FibonacciError for this
purpose.

— Use name mangling to make all instance variables "private".

Fall 2008 Python: Exceptions, Operator Overloading, Privacy

24

