An O(pn + 1.1517)-Algorithm for p-Profit Cover
and its Practical Implications for Vertex Cover*

Ulrike Stege!, Iris van Rooij?, Alex Hertel®, and Philipp Hertel!

1 Dept. of Comp. Sc., Univ. of Victoria, Victoria B.C.
stege@cs.uvic.ca, awkkh@shaw.ca
2 Dept. of Psych., Univ. of Victoria, Victoria B.C., irisvr@uvic.ca

Abstract. We introduce the problem PROFIT COVER which finds
application in, among other areas, psychology of decision-making.
A common assumption is that net value is a major determinant of
human choice. PROFIT COVER incorporates the notion of net va-
lue in its definition. For a given graph G = (V, E) and an integer
p > 0, the goal is to determine PC C V such that the profit,
|E'| — |PC], is at least p, where E’ are the by PC covered edges.
We show that p-PROFIT COVER is a parameterization of VERTEX
COVER. We present a fixed-parameter-tractable (fpt) algorithm for
p-PROFIT COVER that runs in O(p|V|+ 1.150964”). The algorithm
generalizes to an fpt-algorithm of the same time complexity solving
the problem p-EDGE WEIGHTED PROFIT COVER, where each edge
e € E has an integer weight w(e) > 0, and the profit is deter-

mined by Y w(e)—|PC|. We combine our algorithm for p-PROFIT
ecE’'
COVER with an fpt-algorithm for k-VERTEX COVER. We show that

this results in a more efficient implementation to solve MINIMUM
VERTEX COVER than each of the algorithms independently.

1 Introduction

We introduce the profit problem PROFIT COVER and study its classical and pa-
rameterized complexity. PROFIT COVER is an adaptation of the graph problem
VERTEX COVER. We define the optimization version of this well known graph
problem. For a given graph® G = (V, E), a subset V' C V is called a vertez cover
for G if for each edge (u,v) € E,ue€ V' orve V'

MiNiMUM VERTEX COVER (MVC)

Input: A graph G = (V, E).

Output: A minimum vertex cover V' C V for G (i.e., a vertex cover V' for

G where |V’| is minimized over all possible vertex covers for G).

VERTEX COVER (VC) is known to be NP-complete [9]. Also its natural param-
eterization k-VERTEX COVER (k-VC) is known to be fixed-parameter tractable
[4,7] (here k denotes the size of the vertex cover to be determined). The fastest

* This research is supported by a UVic research grant and by NSERC grant 54194.
3 All graphs considered in this article are simple and undirected.

known fixed-parameter-tractable algorithm that solves k-VC has a running time
of O(|V|k + 1.285F) [3].

To illustrate the characteristic nature of a profit problem, we consider a
problem with two goals: (1) Find a set of vertices that covers as many edges as
possible and (2) find a set of vertices that contains as few vertices as possible.
Satisfying either goal is trivial. However, if we want to satisfy both goals at the
same time we are confronted with the trade-off between the number of edges
to cover and the number of vertices needed to do that. MVC is a special case
of the problem described above. In MVC, goal (1) is given priority over goal
(2), such that the final goal is to cover all edges with as few vertices as possible.
When we consider MAXIMUM PROFIT COVER then the same two goals are given,
but neither takes precedence over the other. The goal is to determine a subset
V' C V such that |E'| — |V’| is maximized, where E' C F are the edges covered
by the vertices in V'. |E’| — |V'| is called the profit of V' for G.

MaximuM ProfiT CoveErR (MPC)

Input: A graph G = (V, E).

Question: A mazimum profit cover V! C V (i.e., a subset V' C V where

profitpc ¢ (V') = |[Epc,g(V')| — |V'| is maximized over all possible subsets
of V! C V. Here, (u,v) € Epc,g(V') if (u,v) € E and (u € V' or v € V')).
The decision version of this problem is as follows.

ProriT CovER (PC)

Input: A graph G = (V, E), and an integer p > 0.

Question: Does there exist a subset V' C V with profitpg (V') > p?

Even though the questions asked in VC and PC are different, the problems are
closely related and thus the complexity of PC is of interest to fields in which VC
finds its application (e.g., data cleaning for multiple sequence alignments [4, 21]
and phylogeny compatibility in computational biology [19]). We also describe a
new field of research in which VC, and PC in particular, find a natural applica-
tion, viz. the psychology of decision-making (see [12] for a review). In this field,
EDGE WEIGHTED PROFIT COVER instantiates a useful generalization of PC.

EpGE WEIGHTED PROFIT COVER (EWPCQC)
Input: A graph G = (V, E), where each edge e € E is associated a integer
weight w(e) > 0, integer p > 0.
Question: Does there exist a subset V' C V with profitgwpc g(V') > p?
Here, profitgwpc,c(V') = X w(e) —[V'|
e€Epc,a(V')

1.1 Graph Problems in Human Decision Making
VC, PC and EWPC model choice situations that humans may encounter in their
everyday live. We discuss a scheduling problem as an illustration. Suppose a stu-
dent (DM) is planning a schedule for the upcoming year. There are a number of
activities that DM wants to undertake (e.g., attend a conference, take a course),
but for some pairs of these activities there exists a conflict in DM’s world (e.g.,
4 As in PC, in EWPC (u,v) € Epc,c(V') if (1) (u,v) € Eand (2) u€ V' orv € V'.
For simplicity, for the weight of an edge (u,v) we write w(u,v) instead of w((u,v)).

a conference overlaps with a course). This situation can be modeled as follows.
Let G = (V, E) be a graph such that the vertices represent the activities and
each edge (u,v) represents a conflict between u and v. Assume that DM wants
to exclude as few activities as possible from his or her schedule. Also, DM wants
to reduce the amount of conflict as much as possible. Since both goals cannot
be satisfied at the same time, DM has to formulate a goal that can be satisfied.
Let DM set as a goal to find at most k activities to exclude, such that there is
no conflict in the schedule. Then DM’s choice situation is modeled by VC. Al-
ternatively, DM can be interested in excluding a set of activities such that DM
makes at least p profit, where the profit is considered to be the number of con-
flicts resolved minus the number of activities excluded. This choice situation is
modeled by PC. In many real-world situations the value of activities and the
degree of conflict between pairs of activities may vary. Consider the situation
where the degree of conflict differs for different pairs of activities, but the value
of each activity is the same. If the goal is to establish a satisfactory profit by
excluding activities, then EWPC models the choice situation.

We have introduced and motivated the problems PC and EWPC. Complexity
analyses of such everyday human decision problems are relevant for the impor-
tant topic of human rationality [13,14]. Specifically, complexity theory can aid
psychology in understanding the limitations of human rationality [18, 20].

1.2 Overview

We show NP-completeness of the problems PC and EWPC (Section 3). We
further show that p-PROFIT COVER is a parameterization for VC. In Section 4,
we show both PC and EWPC have linear problem kernels for parameter p (of
size 2p for connected graphs and of size 3p — 3 for general graphs) and thus both
problems are in FPT. We then extend the algorithm by a bounded search-tree
technique and re-kernelization. The resulting running time is O(p|V|+1.1509647)
(Section 4.2). Section 5 discusses how to combine fpt-algorithms for different
parameterizations of a problem. As an example we discuss how the combination
of an algorithm for k-VC and our p-PC algorithm results in a practical and
efficient implementation solving the problems MVC and MPC.

2 Notation and Terminology

We assume basics in graph theory, algorithms, and complexity theory [9,11].
Let G = (V,E) be a graph with vertex set V and edge set E. We define the
neighborhood Ng(v) of a vertex v € V as the set of all vertices u € V with (u,v) €
E. The degree of a vertex v € V is denoted by degg (v), where degg(v) = |[Ng(v)].
The set difference of two sets V and W is denoted by V\W = {v € V|v ¢ W}.
For a graph G = (V, E) and a set V', G — V' denotes the graph G* = (V*, E*),
such that V* = V\V' and E* = E\E’' with E' = {(u,v) € Elue V' orv € V'}.
If V! = {v} we simply write G — v instead of G — V'. A graph S = (Vs, Es) is
a subgraph of a graph G = (V,E) if V¢ CV and Eg C E. Let S = (Vs, Es) be
a subgraph of G = (V, E). Then G — S denotes the graph G — Vg. For a rooted
tree T = (Vp, Er) that consists of more than 2 vertices we assume that root r

Branching vector Estimation for |r|
3,8] 1.146139
[4,6] 1.150064
4,7 1.138182
5,6 1.134724

Table 1. Branching vectors and their corresponding |r|.

is of degree degp(r) > 2. Let v,w € Vp such that w is parent of v. Then
T, denotes the by v induced subtree of T if T, is the connected component of
T — (v,w) that contains vertex v.

Parameterized complexity was introduced by Downey and Fellows [4]. For
introductory surveys see [1, 5, 6, 8]. We denote instances of parameterized decision
problems with (I,k) where I is the non-parameterized input and k denotes the
problem parameter. Furthermore, (I, k) is called a yes-instance if the answer to
the question asked in the problem is yes. If the answer is no, we call (I, k) a no-
instance. A parameterized decision problem is called fized-parameter tractable
(in short fpt), if for every instance (I, k) it can be solved in time pol(|I]) + f(k)
where pol is a polynomial function and f is a function depending on k only. The
complexity class containing all the fpt decision problems is denoted by FPT.®

A problem kernel for an instance (I,k) is |I'| where (I',k') is the result
of applying a polynomial-time algorithm on (I,k) such that |I'| = f(k) for
a function f [4]. Such a technique is called kernelization. It is known that a
parameterized decision problem is in FPT if and only if it is kernelizable [5].

In this paper we also make use of the bounded search-tree technique. The goal
is to maintain a bounded search tree for the different possible solutions of a given
problem instance (I, k). A bounded search tree is a rooted tree bounded in the
size by a function f(k). We call the vertices in a search tree nodes. The nodes
of the search tree are labeled by k-solution candidate sets. Since the size of the
search tree depends only on the parameter, the search tree becomes constant size
for fixed k. To estimate the size of such a search-tree we use linear recurrence
relations with constant coefficients. For an fpt-algorithm and a search tree, we
call [by,ba,...,bs] a branching vector® of length s, if the algorithm recursively
makes calls for parameters of sizes k—by, k—bs, ..., and k—b,. This corresponds
to the recurrence ty, = tg_p, +tk—p, +. . . +tx—p, With the characteristic polynomial
xzb = xbb 4 gb=b2 1 4 2b=bs (here b is the maximum value of all b;, i €
{1,...,s}). If the characteristic polynomial has a single root r, then we can
estimate the search-tree size with O(|r|*) [10]. For a list of branching vectors and
their corresponding estimated search-tree size used in this article see Table 1.

The combination of kernelization and bounded search-tree techniques leads to
a natural running time of O(pol(|I|)+ f(k)). In the case of an O(|r|*) search-tree
size, a problem kernel of size O(k®) and a kernelization time of O(kn), a typical
running time might be O(kn+|r|*k). The technique re-kernelization, described
first in [22], repeats the kernelization step after each branching in the search tree.

5 Parameterized decision problems that are not in FPT (unless W[1] = FPT) are
called W[1]-hard, where W[1] D FPT [4].

5 The term branching vector was first introduced in [16]. For a first fpt-algorithm using
this technique to estimate search trees see [2].

Niedermeier and Rossmanith presented a better time-complexity analysis for a
search-tree algorithm using re-kernelization [17]. Using their analysis the running
time improves to O(kn + |r|*).

3 NP-completeness of PC and EWPC

We show NP-completeness for PC via a reduction from VC. As a consequence,
the more general problem EWPC is also NP-complete.” Before proving NP-
completeness of PROFIT COVER we observe that for a given graph G = (V, E)
for each subset PC C V with profit p, there exists a vertex cover V' O PC,
V' C V, with profit at least p.

Observation 1. Let G = (V, E) be a graph and V' C V with profitgwpc,g(V') =
p. If there ezists (u,v) € E with u,v ¢ V', then profitgywpc o (V' U{u}) > p.

Theorem 1. PROFIT COVER is NP-complete.

Proof. We reduce from VC. An instance for VC is given by a graph G = (V, E)
and an integer k > 0. We show, G has a vertex cover V' C V of size k for G if and
only if there is a subset PC C V with profitpg o(PC) = |E|—k. Let V! C V bea
vertex cover for G of size k. Then Epc,g(V') = E and therefore profitp (V') =
|Epc,a(V')| — [V'| = |E| — k. Conversely, let PC C V with profitpc o(PC) =
p- We distinguish two cases: (1) Let Epc,g(PC) = E. We rewrite p = |E| —
k. We can conclude that |PC| = k and thus PC is a vertex cover of size k.
(2) Let Epc,o(PC) # E. We extend PC to a vertex cover V' by applying
Observation 1 as long as there exist uncovered edges in G. Thus, profitpg ¢ (V")
> profitpg g(PC) > p. Then Epc,g(V') = E and the vertex-cover size is k =
[V'| < |E| - profitpg ¢(V') < |E| - p.

Corollary 1. EDGE WEIGHTED PROFIT COVER is NP-complete.

The algorithm described in the proof above computes, in linear time, a vertex
cover of size k = |E| — p for a given set with profit p in G} especially we receive
a minimum vertex cover for a given maximum profit cover.

4 Fast fpt-algorithms for p-PC and p-EWPC

In this section we present an fpt-algorithm for p-EWPC, the naturally param-
eterized version of EWPC. Note that PC is a special case of EWPC. Thus the
algorithm applies also for p-PROFIT COVER (p-PC).

p-EDGE WEIGHTED PROFIT COVER (p-EWPC)

Input: A graph G = (V, E), each edge e € E has a positive weight w(e) €
IN\{0}, integer p > 0.

Parameter: p

Question: Does there exist a subset V' C V with profitgwpc g(V') > p?

We first show that p-EWPC has a linear problem kernel and then present a
bounded search-tree algorithm for p-EWPC which results in a time complexity
of O(p|V| + 1.1509647).

7 1t is easily verified that both PC and EWPC are members of the class NP.

4.1 A linear problem kernel for p-EWPC

We present a linear-sized problem kernel for p-EWPC that we can construct in
linear time.® We start by stating the Subgraph Lemma, the key property used to
show the existence of a problem kernel (|V| < 2p) for connected graphs. We then
present the six reduction rules that, together with the Component Lemma (cf.
page 8), allow us to conclude a problem kernel for general graphs (|V| < 3p—3).

Lemma 1. (Subgraph Lemma) Let G = (V, E) be an edge-weighted graph and
S = (Vs,Eg) be a subgraph of G. If there exists a set V', V! C Vs, with
profitpc g(V') = p then profitgwpc,c(V') > p-

(K 1) If v € V with degg(v) = 0 in an edge-weighted graph G = (V, E) then
(G, p) is a yes-instance for p-EWPC if and only if (G — v, p) is a yes-instance for
p-EWPC.

(K 2) Let G = (V, E) be an edge-weighted graph and let v € V with degg(v) =1

and Ng(v) = {w}. Then (G,p) is a yes-instance for p-EWPC if and only if

(G — {v,w},p — profitgwpc,g({w})) is a yes-instance instance for p-EWPC.

(K 3) Let G = (V, E) be an edge-weighted graph where neither (K 1) nor (K 2)

apply. Let v € V with Ng(v) = {u,w} and (u,w) € E. Then (G,p) is a yes-

instance for p-EWPC if and only if (G — {u,v,w},p — profitgwpc ¢ ({u, w})) is

a yes-instance for p-EWPC.

(K 4) Let G = (V, E) be an edge-weighted graph where the rules (K 1) to (K 3)

do not apply. Let v € V with Ng(v) = {u,w} and (u,w) ¢ E. We define an

edge-weighted graph G* = (V*, E*) with weight function w*(.) as follows. Let

F; and F; be edge sets with

e Fy ={(z,u)|(z,u) € E and (z,w) € E}\ {(u,v)} (i.e., F1 C F) and

e F, consists of new edges, namely F» = {(z,u)|(z,u) ¢ FE and (z,w) € E}
(i.e., F,NE= (Z))

Let V* =V \ {v,w} and let E* = (E \ ({(z,w)|z € Ng(w)} U {(u,v)})) U Fs.

We define w*(.) for G* such that

e for all edges e € E* \ (F1 U F2) w*(e) = w(e).

e for every e € Fy, e = (u,z). Then w*(u,z) = w(u, z) + w(w,).

e for every e € Fy, e = (u,z). Then w*(u,z) = w(w, z).

Then (G, p) is a yes-instance for p-EWPC if and only if (G*, p—w(v, u)—w(v, w)+

1) is a yes-instance for p-EWPC.°

Proof. (Sketch) Let V! C V with profitgwpc,g(V') = p. We show there exists
V" C V* with profitgwpc,g(V") 2 p — w(v,u) — w(v,w) + 1. We distinguish
the cases (1) v € V' and u,w ¢ V' and (2) u,w € V' and v ¢ V'. (To see

8 We remark that the kernelization algorithm described here is much simpler than the
algorithm that creates a linear kernel for k-VC by Chen et al [3]. Their algorithm
requires after a O(k|V|) preprocessing step another O(k®) procedure applying a
theorem by Nemhauser and Trotter [15].

? A similar reduction for vertex cover was first described in [22]. Chen et al. call this
reduction vertez folding [3].

that these are the only cases, assume w.l.o.g. v,u € V' and w ¢ V'. But then
profitpwpc ¢ ((V'\{v})U{w}) > p and we can consider case (2) instead.) Because
of Observation 1, we can assume if v € V' and u,w ¢ V' that Ng(u) C V'
and Ng(w) C V'. Then profitgwpc g« (V' \ {v}) = p — profitgwpc c({v}) =
p—w(v,u)—w(v,w)+1.Ifv ¢ V' and u,w € V', then profitgwpc g+ (V' \{w}) =
p—w(v,u) — w(v,w) + 1.

Conversely, assume there exists V' C V* with profitgwpc g+ (V') > p*. Be-
cause of Observation 1, we can assume that every edge in G* is covered by V.
Therefore either u € V' or Ng«(u) C V'. If u € V' then profitgwpc ¢(V' U
{w}) > p* + w(v,u) + w(v,w) — 1. If u ¢ V' then profitgwpc (V' U {v}) >
p* + w(v,u) + w(v,w) — 1.

(K 5) Let G = (V, E) be an edge-weighted graph and let z € V with Ng(z) =
{u,v,w}. Assume that the rules (K 1) to (K 4) do not apply. If the subgraph of
G induced by the vertices z,u,v, and w is a clique, then (G, p) is a yes-instance
for p-EWPC if and only if (G — {z,u,v,w},p — profitgwpc g ({u,v,w})) is a
yes-instance for p-EWPC.

(K 6) Let G = (V, F) be an edge-weighted graph and let z € V with Ng(z) =
{u,v,w}. Assume that the rules (K 1) to (K 5) do not apply to G. Assume
further that the subgraph of G induced by the vertices z,u,v, and w contains
exactly 5 edges, say (u,w) ¢ E. Then (G, p) is a yes-instance for p-EWPC if and
only (G — v,p — profitgwpc ¢({v})) is a yes-instance for p-EWPC.

Proof. (Sketch) Let V' C V with profitgwpc,g(V') > p. Because of Observation
1 we can assume that V' covers every edge in G. If z ¢ V' then u,v, and
w are included in V'. If z € V' then either v or 2 vertices of {u,v,w} are
included in V’. Say u,w € V'. But then profitgwpc (V' \ {z}) U {v}) > p.
Therefore, in all cases we can assume that v € V'. Thus, profitgwpc,g_o(V' \
{v}) > p — profitgwpc,g({v})- On the other hand, assume there exists V* C
V \ {v} with profitgwpc g_,(V*) = p* then profitgwpc o(V* U {v}) > p* +
profitpwpc g ({v})-

Note that after each application of (K 6) to G (on a vertex =) we can apply rule
(K 4) (to vertex x).

Definition 1. We call an edge-weighted graph G = (V, E) reduced if (K 1) to
(K 6) do not apply to G.

Observation 2. Let G = (V, E) be a reduced and connected edge-weighted graph.
Then |V| > 5.

Theorem 2 shows the existence of a problem kernel for connected graphs. Note
that this theorem also applies for non-reduced graphs with |V| > 3.

Theorem 2. Let G = (V, E) be a connected edge-weighted graph. If |V| > 2p+1
then (G,p) is a yes-instance for p-EWPC.

To prove Theorem 2, we remark that each connected graph has a spanning
subtree. In Lemma 2 we show that each tree consisting of at least 2p+ 1 vertices

has profit p. From the Subgraph Lemma (Lemma 1) it then follows that every
connected graph consisting of at least 2p + 1 vertices has profit p.

Lemma 2. Let T = (Vr,Er) be a tree with |Vr| > 2p + 1. Then (T,p) is a
yes-instance for p-EWPC.

Proof. Let T = (Vr, ET) be a rooted tree with |Vr| > 2p + 1. Since |Vr| > 3,
we can pick a vertex w € Vp with degr(w) > 2 and w is parent of leaves only.
Let T, = (Vi, Ey) be the by w induced subtree of T. Then |V,,| = degy(w)
and profitgwpc r({w}) = degp(w) — 1. Consider T — T, Then [V \ Vy| >
2p + 1 — degp(w) and T — T, has profit p’ = p — (degy(w) — 1). To prove the
claim it is enough to show that |Vz\V,,| > 2p’+1. Since p = p’ + (degp(w) —1) it
follows that |V \ Viy| > 2p+ 1 —degp(w) = 2(p' +degp(w) — 1) + 1 —degp(w) =
2p' + degr(w) — 1. We know that degy(w) > 2 and thus |V \ V,,| > 2p' + 1.

With Theorem 2 above we determined a lower bound for the maximum profit
in connected graphs, i.e. for each graph G = (V, E) there is a subset V! C V
with profit at least [M%J It follows from (K 2) that the linear-time algorithm
implied by the proof above solves MAXIMUM EWPC for trees. We generalize the
kernelization result to disconnected graphs using the following lemma.

Lemma 3. (Component Lemma) Let G = (V, E) be a reduced edge-weighted

graph consisting of at least & connected components. Then (G,p) is a yes-instance
for p-EWPC.

Theorem 3. Let G = (V, E) be a reduced edge-weighted graph. Assume further
that the Component Lemma does not apply. If |V| > 3p — 2 then (G,p) is a
yes-instance for p-EWPC.

Proof. Let G; = (V;, E;), i =1,...,q (¢ < %), be the connected components of
G.Let |V| > 3p—2. Then p < 1|V| — £ + 1. (G, p) is a yes-instance because G

q q q
has profit). [4=] > 3 2 — 4 = 1 52 Vi —q=}IV|-q> }|V|-§+1.
i=1 i=1 i=1

Definition 2. For an instance (G, p) for p-EWPC, we say G = (V, E) is kernel-
ized if (K 1) to (K 6) and the Component Lemma do not apply, and |V| < 3p—3.

Corollary 2. p-PC and p-EWPC are in FPT.

4.2 A Bounded Search Tree

In the remainder of this section, let (G, p) be a kernelized instance for p-EWPC.
From Observation 1 we can conclude the following branching step.

Basic branching step. Let (G,p) be an instance for p-EWPC. Then for a
vertex v of G we can branch into instances (G1,p1) and (Ga,p2) with G; =
G — v, p1 = p — profitgwpc,c({v}); G2 = G — (Ng(v) U {v}), and p» = p —
profitgypc,c(Na(v))-

This branching step is the only branching step applied. To branch efficiently
we branch on a highest degree vertex. After each branching step we re-kernelize
before branching is repeated.

Theorem 4. Let G = (V, E) be a kernelized edge-weighted graph and let (G, p)
be an instance for p-EWPC. Then the branching vector at the node labeled by
(G,p) is [a,b] where eithera>4,b>6 ora>3,b> 8.

Proof. (Sketch) Let G = (V, E) be a kernelized edge-weighted graph. We know
that for all z € V, degg(z) > 3. We distinguish five cases. For every case we
assume that the preceding cases do not apply.

Case 1. Let z € V with degg(z) > 6. Branching on z results in the instances
(Glapl) and (Gz,pz), G’i = (‘/’HE’L) (’l = 1,2), with G1 = G — z and G2 =
G — (Ng(z) U {z}). Then we ask if (G1,p1) or (G2,p2) is a yes-instance for p-
EWPC with p; = p—profitgwpc ¢({z}) and p> = p—profitgwpc (N (z)). We
know that profitgwpc,g({z}) > 5. Because each vertex in Ng(z) has a degree of
at least 3 in G, there are at least 12 edges incident to the vertices in Ng(z). Then
profitgwpc,g(Na(z)) > 12 — 6 = 6. Thus, the worst branching vector resulting
out of this case is [5,6].

Case 2. Let z € V with degg(z) = 5. Because each vertex in Ng(z) has a
degree of at least 3 and the graph is reduced, there are at least 11 edges incident
to Ng(z). We know that profitgwpc,g({z}) = 4 and profitgwpc g(Na(z)) > 6.
Thus, the worst branching vector is [4,6].

Case 3. Let degg(z) = 4. Because each vertex in v € V has 3 < deg(v) < 4
and G is kernelized, there are at least 10 edges incident to Ng(z). We distin-
guish three cases. Case 3a. There are at least 12 edges incident to the vertices in
Ng(z). Since profitpwpc,g({z}) = 3 and profitpypc ¢(Ne(z)) > 8, the worst
branching vector is [3,8]. Case 3b. There are exactly 10 edges incident to the ver-
tices in Ng(z). Let N(z) = {a,b,c,d}. Then w.l.o.g. the edges incident to Ng(z)
are (a,b), (c,d), (a,vq), (b,v), (c,v.), and (d,vq), with {v,,vp,ve,v4} C V but
Vg, Vb, Ve, Vd ¢ Ng(z) (here vy, v, v, v4 are not necessarily distinct). Branching
on z results in (G1, p1) and (G, p2) with G; = G—z and G3 = G—(Ng(z)U{z}).
Since profitgwpc,c({z}) = 3 and profitpwpc,g(Ne(z)) > 6, the worst branch-
ing vector is [3,6]. Since degg, (a) = 2 we can always reduce (G1,p1) further by
applying (K 3) or (K 4) and improve the profit by at least 1. Thus, the worst
case branching vector improves to [4,6]. Case 3c. Assume there are exactly 11
edges incident to Ng(z). Branching on z results in (G1,p1) and (Ga,p2) with
G1 = G -z and G2 = G — (Ng(z) U {z}). Since profitgwpc,c({z}) = 3 and
profitpwpc,g(Na(v)) > 7, the worst branching vector is [3,7]. Because there
exists v € Ng, (¢) with degg, (v) = 2 we can always reduce (G1,p1) further by
applying (K 3) or (K 4) and improve the profit by at least 1. Thus the worst
case branching vector improves to [4,7].

Case 4. Let degg(z) = 3, Ng(z) = {a, b, c}. Since G is reduced, we only have
to consider two cases. Case 4a. Assume (b, ¢), (a,c) ¢ E but (a,b) € E. Since G is
kernelized and 3-regular, a and b have z as the only common neighbor. Branching
on z results in (G1,p1) and (G2, p2) with G; = G—z and G3 = G—(Ng(z)U{z}).
Since profitgwpc,g({z}) = 2 and profitgwpc,g(Na(z)) > 5, the worst branching
vector so far is [2,5]. Because degg, (a) = 2, we can apply (K 4) to a (note that,
since a and c are not adjacent, this does not affect the degree of c) and apply
(K 3) or (K 4) to c¢. Thus the branching vector improves to [4,5]. Consider Gs.

Since G4 has at least one degree-2 vertex we can apply (K 3) or (K 4). The final
worst case branching vector is [4,6]. Case 4b. Assume (a,b),(a,c),(b,c) ¢ E.
We know that G is 3-regular. Branching on z results in (G1,p1) and (Ga,p2)
with G; = G — z and G2 = G — (Ng(z) U {z}). Since profitgwpc c({z}) = 2
and profitpwpc,g(Ne(z)) > 6, the worst branching vector is [2,6]. We know
degg, (a) = degg, (b) = degg, (c) = 2. Since a and b have no neighbor in common
we can apply (K 3) or (K 4) to a and b and thus the branching vector improves
to [4,6].

From Theorem 4 and Table 1 on page 4 we receive the estimated search-tree size
for the algorithm described above.

Corollary 3. The bounded search tree has a worst-case size of O(1.1509647).

The kernelization step of the described fpt-algorithm can be realized in time
O(p|V|). Then the bounded-search-tree algorithm with the integrated re-kerneli-
zation after each branching step leads to the running time of O(p|V|+1.1509647)
(see Section 2 for a more detailed explanation of this complexity analysis).

Corollary 4. The fpt-algorithm above has a running time of O(p|V|+1.1509647).

5 Efficient implementations via combining tractable
parameterizations
We conclude from the NP-completeness proof for PC that there is a 1:1 corres-
pondence between the yes-instances (G, p) for p-PC and the yes-instances (G, |E|—
p) for k-VC (Theorem 1). Thus we can consider p-PC and k-VC as two different
parameterizations of VC.1° With our fpt-algorithm for p-PC we presented an
alternative strategy to attack VC. In this section we demonstrate how differ-
ent fpt-parameterizations of a given decision problem can be combined to an
algorithm that incorporates the advantages of all these algorithms. Therefore,
the combined algorithm yields a more efficient implementation than any of the
algorithms if implemented independently. As an example, we sketch how we can
combine the presented fpt-algorithm for p-PC with any fpt-algorithm for k-VC.
The general flavor of common fpt-algorithms for k-VC [3, 5, 16] is analogous
to our fpt-algorithm for p-PC (i.e., the algorithms consist of a combination of
kernelization, bounded-search-tree technique, and often re-kernelization, as de-
scribed in the last paragraph in Section 2). The last step in a kernelization for an
instance (G, k) for k-VC is a check of the number of vertices in the reduced graph.
If the number exceeds the problem-kernel size, then (G, k) is a no-instance. At
each node in the search tree at least one vertex is picked and thus k is reduced by
at least 1. Therefore, the bounded search tree has branches of length at most k.
The computation of a branch in the search tree is finished as soon as k vertices
are picked or a vertex cover is found. On the other hand, our p-PC algorithm

10 For another parameterization for VC consider the problem INDEPENDENT SET. For
a given graph G = (V, E) there exists a vertex cover of size k if and only if there
exists an independent set of size |V| — k [9]. INDEPENDENT SET, parameterized by
the size of the independent set to be determined, is known to be W[1]-complete [4].

returns as an answer yes for an instance (G,p) if, after reducing, the graph is
larger than the problem kernel. The branch length in the search tree is bounded
by p; the computation of a branch can be ended as soon as enough profit is
allocated and therefore its length does not exceed £ (Theorem 4).

We construct a combined algorithm by (1) keeping track of both parameters
during every step of the algorithm and (2) checking the possible decisions for
both parameters at each stage of the implementation. First, we take advantage
of the problem kernels for the different parameterizations. The problem kernel
for k-VC allows no-instances to be identified early whereas the problem kernel
for p-PC allows yes-instances to be identified early. If, for a given positive integer
p, the problem kernel for p-PC is smaller than the problem kernel for k-VC (with
k = |E| — p) then there are more instances for which an early decision can be
made (thanks to the p-PC kernel) than if we solely use the problem kernel for
k-VC. Conversely, if the kernel for p-PC is larger than the problem kernel for
k-VC (with k = |E| — p) then there are more instances for which an early deci-
sion can be made (thanks to the k-VC kernel) than if we solely use the problem
kernel for p-PC. Secondly, in the search tree, whenever a decision in terms of &k
or p (= |E| — k) can be made after a branching step, the computation of this
particular branch terminates. Note that a yes-decision in terms of p might be
possible even before a vertex cover is found. Conversely, since a no-decision in
terms of k£ can be made even before a vertex cover is found, we can decide early
that it is impossible to allocate |E| — k profit.

To solve for example MVC an fpt-algorithm has to be repeated for a given
graph until the optimum value for the fixed parameter is found. Using a com-
bined implementation as described above will speed up the process of early de-
cisions and thus avoid a big part of the otherwise necessary exponential search
via branching. We implemented the algorithm suggested above and the results
reflect the expected speed-up when compared with an implemenation of a k-VC
algorithm as published in [5].

6 Conclusions

We presented a new fpt-algorithm for VERTEX COVER. We first introduced a pa-
rameterization, p-PROFIT COVER, and showed that it is solvable in time O(p|V |+
1.150964P). We then showed how our fpt-algorithm for p-PROFIT COVER can be
used to speed up existing algorithms for k-VERTEX COVER. This new approach
of combining fpt-algorithms for different parameterizations of a problem provides
an additional tool for applying parameterized complexity theory in practice.

Besides its useful relationship to VC, the problem PC is also of theoretical
and practical interest in itself. We have demonstrated that in some contexts PC
is a better model than VC (Section 1.1). For example, in certain problems in
human decision making VC may pose unnecessary constraints on the set of ac-
ceptable solutions. Further, in many real-world situations conflicts are a matter
of degree. Here EDGE WEIGHTED PROFIT COVER provides a natural and useful
adaptation of VC to model those problem situations.

We have shown that both p-PC and p-EWPC have linear problem kernels of

size 2p for connected graphs and size 3p— 3 for disconnected graphs. The fast fpt-
algorithm we presented for p-PC also solves the more general problem p-EWPC.
Despite the small constant ¢ = 1.150964 in the running time of O(p|V| + ¢P),
this fpt-algorithm is much simpler to implement than the sophisticated k-VC
algorithm presented in [3].

Acknowledgements We thank Hausi A. Miiller and Frank Ruskey for their feedback.

References

[1] J. Alber, J. Gramm, R. Niedermeier, “Faster exact algorithms for hard problems:
A parameterized point of view,” Discr. Mathematics (2001) 229, 3-27.

[2] R. Balasubramanian, M.R. Fellows, and V. Raman, “An improved fixed-parameter
algorithm for Vertex Cover”. Inform. Proc. Letters (1998) 65, 163—-168.

[3] J. Chen, I.A. Kanj, W. Jia, “Vertex Cover: Further observations and further im-

provements,” J. Algorithms (2001), 41, 280-301.

] R.G. Downey and M.R. Fellows, Parameterized Complezity (1999), Springer.

] R.G. Downey, M.R. Fellows, and U. Stege, “Parameterized Complexity: A
Framework for Systematically Confronting Computational Intractability,” AMS-
DIMACS Proc. Series (1999) 49, 49-99.

[6] R.G. Downey, M.R. Fellows, and U. Stege, “Computational Tractability: The View

From Mars,” Bulletin of the EATCS (1999).

[7] M.R. Fellows, “On the complexity of vertex set problems,” Tech. Rep. (1988),
Computer Science Department, University of New Mexico.

[8] M.R. Fellows, “Parameterized Complexity: The Main Ideas and Connections To
Practical Computing,” 1st Dagstuhl Workshop on Ezp. Algorithms (2001).

[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness (1979), Freeman.

[10] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-
Wesley (1994).

[11] J. Gross and J. Yellen, Graph theory and its applications (1999), CRC Press.

[12] R. Hastie, “Problems for judgment and decision making,” Ann. Review of Psy-
chology (2001) 52, 653—683.

[13] K.I. Manktelow and D.E. Over (Eds.), Rationality: Psychological and philosophical
perspectives (1993), London, Routledge.

[14] P.K. Moser (Ed.), Rationality in action: Contemporary approaches (1990), Cam-
bridge University Press.

[15] G.L. Nemhauser and L.E. Trotter, “Vertex packing: structural properties and
algorithms,” Mathematical Programming (1975), 8, 232-248.

[16] R. Niedermeier and P. Rossmanith, “Upper Bounds for Vertex Cover Further
Improved,” In Proc. of 16th STACS (1999). LNCS 1563 , 561-570.

[17] R. Niedermeier, P. Rossmanith, “A general method to speed up fixed-parameter-
tractable algorithms,” Inf. Proc. Letters (2000) 73, 125-129.

[18] M. Oaksford and N. Chater, “Reasoning theories and bounded rationality,” In
K.I. Manktelow & D.E. Over (Eds.) Rationality: Psychological and philosophical
perspectives (1993), 31-60, Routledge.

[19] J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology
(1997), PWS Publ. Comp.

[20] H.A. Simon, “Invariants of human behavior”. Ann. Rev. Psych. (1990) 41(1), 1-19.

[21] U. Stege, Resolving Conflicts from Problems in Computational Biology (2000)
Ph.D. thesis, No.13364, ETH Ziirich.

[22] U. Stege and M.R. Fellows, “An Improved Fixed-Parameter-Tractable Algorithm
for Vertex Cover,” (1999) Tech. Rep. 318, Dept. of Comp. Science, ETH Ziirich.

