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Introduction & Motivation

Since the advent of democracy, the issue of election legitimacy has been crucially important. Illegiti-
mate elections or even elections in which there is an appearance of impropriety undermine the democratic
process and cause people to distrust their governments. One need not dig very deeply in order to find
examples of controversial elections, even in industrialized countries. For example, the 2000 U.S. election,
in which George Bush won, angered many voters and caused them to lose trust in the system. More
recently, the 2004 U.S. election also saw its share of controversy, albeit not as severe, and the Ukrainian
elections sparked massive street protests.

In order to help secure election legitimacy, many rules have been developed over the years. For example,
most democratic countries implement at least the following protocols and regulations:

• Ensure that voting is anonymous. This allows people to vote as they choose, free of external
coercion.

• Do not issue any kind of receipt which can allow someone to prove who they voted for. This
counteracts the possibility of people ‘selling’ their votes, as well as the possibility of coercion.

• Ensure that voting precincts are staffed by members of the various parties running in the election.
This allows them to act as checks against each other and the possibility of voting fraud.

• Enact laws which require officials governing elections that are or appear to be in conflicts of interest
to recuse themselves.

There are many more such standard rules, and yet many elections continue to be controversial. As
described in [1, 2], there has been much recent research into secure and verifiable electronic voting, and
many of the results have been promising; it is possible to implement election systems that are much
more secure and trustworthy than those currently used. Although none of these systems has yet been
implemented and used in practice, it is almost certainly only a matter of time.

One important thing to note is that not all ‘e-voting’ schemes are equal, or for that matter, more
than superficially similar. In fact, contrary to popular perception, the fact that many of the proposed
cryptographic election systems would be implemented electronically is a largely irrelevant detail that
provides speed of computation and convenience to the voter, and has little to do with security, verifiability,
or trust. The underlying system ensures the election’s legitimacy; the electronic implementation is simply
the medium which allows voters to easily use it, provided that it accurately embodies the underlying
system.

It is very easy to envision electronic voting systems which would provide the voter with no assurances
of the election’s legitimacy, even if perfectly coded. For example, the recent 2004 U.S. election featured
electronic voting in the form of ‘Diebold Machines’, electronic voting machines made by Diebold Inc.
The use of these machines was highly controversial. Not only have there been allegations of insecurity
in the form of easy vote tampering, but the Diebold machines did not produce any kind of verifiable
certificate, physical or otherwise, that would inspire trust in the system.

Given an unverifiable system like this, it becomes easy and indeed justifiable for voters to mistrust the
election’s result, especially since the president of Diebold Inc. in a 2003 letter told Ohio Republicans that
he was “committed to helping Ohio deliver its electoral votes to the president next year” [5]. Regardless
of whether any fraud was committed using the machines, at the very least the appearance of impropriety
and lack of verifiability was enough to shake the confidence of many voters in the election’s legitimacy.
Had the results tallied by the Diebold machines been transparently verifiable by any citizen, then no
political discourse surrounding the vote could have undermined the people’s trust.
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The purpose of this project is to implement a secure election system and to explore its security with
respect to voter anonymity, receipt-freeness, public verifiability, and robustness against a coalition of
malicious authorities. In addition, we will explore which assumptions of trust the various parties taking
part in the election are required to make under the context of our implementation.

Project Description

Non-Electronic Version

Before describing our implementation, it is useful to describe an equivalent voting system that is not
reliant on electronics or any other technology. This abstraction will allow us to emphasize the fundamental
nature of the system without becoming mired in technical details. Once the nature of the system is clear,
we will describe the design decisions we made as well as the more interesting implementation details.
The general idea for this election system was adapted from [2].

Structure

Democratic elections often require a hierarchical structure that is based on geography. The details vary
from country to country, but in general it is impossible for all people to vote at one poll / precinct, so at
the very least it is necessary to have a number of polling stations distributed geographically. This gives
rise for the need to organize these polls in some way. The standard way to do this is to have a hierarchical
tree structure. For example, our project follows the U.S. Federal electoral system in which each state
is divided into counties, each county is divided into precincts (church basements, school gymnasiums,
etc.), and each precinct contains a number of voting booths. As shown below in Figure 1, each entity or
‘authority’ forms an internal node in the hierarchical tree, and the voting booths through which voters
interact with the system form the leaves.

State Authority

Country Authorities

Precincts

Voting Booths

Figure 1: The Tree Structure Underlying The U.S. Federal Election System

Note that it is not necessary to have a node at the national level, since the electoral college inherently
handles this abstraction. We need therefore only set up one voting system for each state. The fact that
we are modelling the U.S. system is irrelevant; it is easily adapted to serve any electoral system based
on a tree structure having a depth of at least three.
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Goals

Again mirroring the U.S. system, one obvious goal is to be able to accurately tally votes at each level
of the hierarchy. However, there are more goals which affect the legitimacy of the election:

• Votes must be anonymous.

• There must be no receipts linking people to how they voted.

• For legitimacy, the election should be publicly verifiable.

• The system should be robust; any fraud should require a large conspiracy.

Non-Technical Implementation

We assume that a voter registry exists such that every voter is uniquely identifiable (possibly by Social
Security number) and has a secret password. In addition, we assume that each voter has an RSA public
/ private key pair for the purposes of signing. Voters keep their private keys hidden, and publish their
public keys.

Each authority (state, county, and precinct) generates a Paillier public / private key pair, and publicly
displays an enormous bulletin board as well as their public key. The private key is split in an intelligent
manner amongst t people chosen from opposing parties. This is called ‘threshold cryptography’, and
guarantees that decrypting anything that was encrypted using an authority’s public key requires all t

key fragment holders to work together, making malicious collusion difficult.

Let n be a loose upper bound on the population of the state (ie. n > population size). Each of the j

candidates is given a unique number i in [1, j], and is given the unique identifying number ki = ni. This
will allow us to add all of the numerical values representing votes together, and once finished, look at the
result in order to discern the tally. For example, if our state population is 9, and we have 3 candidates,
A, B, and C, we choose n = 10, assign k1 = 101 to candidate A, assign k2 = 102 to candidate B, and
assign k3 = 103 to candidate C. Let’s say 1 person votes for A, 6 people vote for B, and 2 people vote
for C. The summation S of all the vote values is S = 1 · 101 + 6 · 102 + 2 · 103 = 2610. This number can
be unambiguously decoded to show that candidate C received 2 votes, candidate B received 6 votes, and
candidate A received only 1 vote. Because of the bound on our population, we know that it is impossible
for one candidate’s votes to overflow into the digits of another candidate and thereby invalidate the
results of the election. This method generalizes to any population size.

Voting proceeds as follows: voters go to their precincts, log in at the entrance by presenting their
unique identification and password, at which point they are checked off of the voter list, and allowed to
enter. Each voter encrypts three times the number ki associated with the candidate that he or she wants
to vote for, once using the precinct key, once using the county key, and once using the state key. Each is
then signed using the voter’s private RSA key. The voter then proceeds to the bulletin board, and writes
his / her unique id (so that the signature can be checked) as well as the three ciphers into a designated
slot. Note that since Paillier is randomized, two votes for the same candidate have an asymptotically
small probability of encrypting to the same cipher, so no two voters from the same precinct, region, or
state will produce the same ciphertexts, even when cast for the same candidate.

Once the voting is finished, the tallying phase of the election begins. By using each voter’s public RSA
key, each precinct immediately verifies via the signature that the votes came from the voters that they
were supposed to come from, and removes the signatures. The tallying then proceeds as follows: Let m

be the number of voters that voted at the precinct. Let x1, x2, ...xm be the votes encrypted using the
precinct key, let y1, y2, ...ym be the votes encrypted using its parent’s (county) key, and let z1, z2, ...zm

3



be the votes encrypted using its grandparent’s (state) key. Each precinct calculates X =
∏m

i=1
xi,

Y =
∏m

i=1
yi, and Z =

∏m

i=1
xi. These steps are obviously verifiable by the public. At this point it is

important to mention a vital property, namely that Paillier encryption is homomorphic. That is, for
any two sequences of integers k1, k2, ..., kj , and c1, c2, ..., cj , EPaillier(c1 · k1 + c2 · k2 + ... + cj · kj) =
EPaillier(k1)

c1
· EPaillier(k2)

c2
· ... · EPaillier(kj)

cj . In other words, multiplying the ciphertexts of the
votes together and then decrypting them will yield the same result as if we would simply have added
all of the plaintexts. Therefore, even though X , Y , and Z are all products, they are all equivalent to
EPaillier(S), the ciphertext of the sum of all of the unique candidate numbers over the votes cast in
the precinct. Therefore, if we decrypt a precinct’s X value, we will be left with S, which can easily be
decoded to reveal the vote tally in that precinct. Note that no individual vote was ever decrypted so
voters have total anonymity.

In order for a precinct to decrypt its X value, its t key fragment holders use a “combiner” machine
that takes X as well as all key fragments as an input, outputs DPaillier(X), and immediately clears
its memory. Briefly, the threshold cryptography works as follows: when dividing the key among the t

keyholders, we fragment the key into t arbitrary pieces. These pieces become the coefficients of a degree-
(t − 1) polynomial. A degree-(t− 1) polynomial is uniquely defined by at least t points. Find t suitable
points on the curve of this polynomial, and give each keyholder the (x, y) coordinates of one of these
points. This is that keyholder’s key fragment. Even if t− 1 of the keyholders collude, they still won’t be
able to find the coefficients of the polynomial because an infinite number of degree-(t − 1) polynomials
pass through any t − 1 points. To rebuild the key, the decryption machine simply reconstitutes the
polynomial by solving a system of t equations with t unknowns and concatenates its coefficients. No
human being ever has access to the private key, either during fragmentation or combination.

In order to tally the votes at the county levels, each precinct sends its S value, as well as its Y and
Z products to its parent authority. Once a county authority has received these totals from each of its
precincts, the county adds all of the S values together (the S value addition is clearly easily verifiable),
and multiplies the Y values together to get Y ∗, multiplies its Z values together to get Z∗. Its t keyholders
then come together and decrypt the Y ∗ value, at which point it is compared with the sum of the S values.
If there is a discrepancy, then we can track down the fraudulent precinct(s) by decrypting each individual
Y value and comparing it to its corresponding S value. Note that no anonymity is lost because we are
decrypting products of votes rather than votes themselves. This will only be done in the event of fraud.

Tallying votes at the state level is done similarly using the decrypted (plaintext) Y ∗ values and com-
paring them with the decrypted product of all counties’ Z∗ values.

If we assume that voters are honest, but make no assumptions about the honesty of the authorities,
then voters can have a high degree of trust in this system. Under these assumptions, all of our goals are
met:

• Anonymity: Voters can trust that their votes are anonymous. It would take a conspiracy among
t malicious authorities in order to decrypt a vote.

• Receipt-Freeness: There are no receipts, because all votes are encrypted using the public keys
from the different authorities, so no voter can decrypt their vote in order prove that they voted in
a certain way.

• Public Verifiability & Robustness: Every operation performed at the bulletin board is done
publicly using public information and is therefore fully publicly verifiable except for the single
decryption. For example, every individual voter can check that their vote was actually counted
included in the cipher product by reproducing the multiplication of the ciphertexts. Public verifi-
ability is clearly built into the system at each level. The only flaw is the single decryption. At any
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single level, a fraudulent combiner could give an inaccurate result. The hierarchical structure of the
system guards against this occurrence since every level of the hierarchy acts as a safeguard against
fraud in any lower levels; any discrepancy between tallies is immediately visible and traceable.
Fraud would require a conspiracy involving all t keyholders in every authority along one path down
the tree, from the precinct level all the way up to the state level or colluding faulty combiners at
each level. Not only is the first scenario highly unlikely, but it is doubtful that any system could
guarantee legitimacy under these conditions. The second scenario can be guarded against by using
the combiner a set number of times, once on the real product and a number of times on known
ciphertext, plaintext pairs, input into the machine in random order. The combiner will have no
way of knowing which input already has a known output and will therefore not be able to change
the result.

However, there is one major problem with this system. The conclusion that this system meets our
goals is dependent on the assumption that voters can be trusted. Unfortunately, it is very easy for voters
to commit fraud in the following way: after entering the precinct and choosing a candidate’s number ni,
instead of encrypting that number, a voter can encrypt 5 ·ni instead, thereby making his vote count five
times. Nobody can see the value of the vote, so it is easy for a voter to make their vote count an arbitrary
number of times. This clearly undermines the entire election. There are a number of solutions to this
problem. We can set up a booth that forces the voter to choose one of the numbers n1, n2, ..., nj , and
then encrypts that vote automatically, thereby removing any voter’s ability to commit this type of fraud.
However, this raises another problem; the voter now needs to have trust in the voting booth. Another
solution is to leave the encryption in the hands of the voter so that it can be trusted, but to require
the voter to provide three zero-knowledge proofs along with the encrypted votes to the precinct-level
bulletin board. Precincts will only include votes whose zero-knowledge proofs verify that they encrypt
the same legitimate value from n1, n2, ..., nj . This requires the voter to have faith in the bulletin board’s
zero-knowledge proof verifier. An interested reader should refer to [2, 4].

Implementation & Design Decisions

Our implementation of the election system described above consists of a number of programs which
interact to form the system. In order to solve the voter trust problem, we decided to implement voting
booths that perform all of the encryption rather than leaving the encryption up to the voter, and requiring
a zero-knowledge proof. This design decision was made for two reasons; firstly, implementing a zero-
knowledge proof system together with a verifier is beyond the scope of this project in that it would have
required considerably more time.

The programs comprising our implementation of the election system are as follows:

• The Voter Register: This program maintains a list of registered voters, their unique identification
values, their passwords, as well as their public and private keys. In reality, voters should be in
exclusive control of their private keys, but since we did not want the user to have to input numbers
containing hundreds of digits, we included the private keys in the register. This was done purely
for user-friendliness for the classroom presentation, and was not necessary, so should not be viewed
as a potential breach of trust.

• The State Authority: This program maintains the state’s bulletin board, tallies the information
sent to it by the county authorities, dictates when the election is over (which initiates the tallying
process), and announces the winner of the election. In addition, the state authority program ensures
that all authorities below it in the hierarchy are legitimate and that their tallies can be trusted.
Only one copy of this program may be running at any one time.

• The County Authority: This program maintains a county’s bulletin board and tallies the informa-
tion sent to it by the precinct authorities. County authorities are responsible for communicating
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their results to the state authority. In addition, each county authority program ensures that all
of its children in the hierarchy are legitimate and that their tallies can be trusted. Any arbitrary
number of instances of this program may be running during the election.

• The Precinct Authority: This program maintains a precinct’s bulletin board and tallies the infor-
mation sent to it by the voting booths. Precinct authorities are responsible for communicating
their results to their parent county authorities. Any arbitrary number of instances of this program
may be running during the election.

• The Voting Booth: This program controls a voter’s login, presents the voter with the candidates,
allows the voter to select a candidate and cast one vote. Each booth program performs all encryp-
tion and signing for every vote that is cast. Once the vote has been cast, the booth program reports
to the register program so that a voter cannot vote again. Votes are sent to parent precinct author-
ity programs. Each precinct program may have an arbitrary number of booth program instances
running during the election.

It should be noted that all communications between programs are encrypted using SSL 3.0, making a
man-in-the-middle attack very difficult to carry out.

Another design decision worth mentioning is that in the context of our implementation, it made little
sense to include the t keyholders at each authority level. In a real voting system, breaking the key into
t pieces would be vital, and storing these pieces in one place would be a serious security breach. Since
we are simulating the election system and don’t have t volunteers that could act as keyholders at each
authority, we have no choice but to store the authorities’ private keys, fragmented or not, in memory.
Implementing threshold cryptography in this context would have been moot. A combiner class has been
included which could readily be fleshed out to fragment and recombine the private keys.

We also decided to implement the variant of the Paillier Cryptosystem described in [3], rather than
Paillier’s original system. This is due to concerns with the original system’s efficiency when implemented.

This project was implemented using Java, and has been tested under Windows XP. Java has a large
library which saved much programming time. For example, Java has a BigInteger class which is useful
when working with the extremely large numbers encountered when using cryptography, and many algo-
rithms and protocols such as SSL 3.0 are provided by its libraries. In addition, Java is highly portable
to different platforms and allows applications to be easily put on-line by using Java applets. This allows
our voting system to be easily extended into an on-line version.

Example Execution of The Voting System Implementation

The Java project implementation has a graphical user interface, and as mentioned before doesn’t consist
of a single program, but rather consists of a coalition of programs working together over a network. To
illustrate the functionality of the voting system, it would be useful to step through the following example
execution:

Step 1: Getting The System Up & Running

For the purpose of this example, we will set up a system that consists of one voter registry, one
state authority, two county authorities, and four precincts, two for each county. Each precinct has one
voting booth. We assume that this example execution is being run under Windows, that Java has been
included in the system path, and that all programs are being run on the same computer. If more than
one computer is desired, the relevant IP addresses must be changed in the networking code.
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Go to the directories containing the programs, and double-click run.bat in the following order: the
voter register, the state authority, the regional (county) authority (twice), the local (precinct) authority
(four times), and the election booth (four times). The system is currently hard-coded so that each
authority in the tree can only have a maximum of two children. This can easily be adjusted by changing
a constant in the various XXXXServer.java files and re-compiling. The programs will automatically
communicate and synchronize with one another. Note that the voter registry already contains a list of
voters as well as their passwords and keys, as shown in Figure 2 below.

Figure 2: The Voter Register Program
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Step 2: Holding The Election

All voter interaction with the system is carried out through the election booth programs, shown below
in Figure 3. Voters log in using their unique IDs and passwords, which are verified with the voter registry.
Each voter then clicks on the candidate of their choice, and selects the circular ‘vote’ button. A dialog
box opens asking the voter to verify their choice. Once a vote has been cast, the booth resets for the
next voter to log in.

Let us simulate the 2004 U.S. presidential election in which the three primary candidates were Ralph
Nader, John Kerry, and George Bush. Using all 16 voters in the registry, send some of them to each
precinct, and cast a vote. The booths correspond to the precincts in the order that they were executed.
Each time a vote is cast, it will appear in encrypted form on the precinct bulletin board.

Figure 3: The Election Booth Interface
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Step 3: Tallying The Vote

Once the balloting is finished, it is time to tally the vote. Go to the state authority window, and click
on the ‘tally’ button. This causes all vote information to be passed up the tree. All multiplication and
decryption is carried out automatically at each authority. Figure 5 below shows the bulletin boards from
a sample election. Note that we assume that the state population is no greater than 99, so we choose
n = 100. George Bush’s associated value is k1 = 1001, John Kerry’s associated value is k2 = 1002, and
Ralph Nader’s associated value is k3 = 1003. The unencrypted tallies shown on each authority’s bulletin
boards can easily be decoded to show that the votes were tallied properly.

Figure 4: Authority Bulletin Boards
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Step 4: The Election Results

Once the tally is complete, the election results screen, shown below in Figure 5 will automatically pop
up, showing the results of the election.

Figure 5: The Election Results Screen
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Discussion and Conclusion

We believe that this implementation has been able to successfully illustrate many of the issues and
subtleties surrounding the design of a secure voting system that has requirements such as anonymity,
receipt-freeness, trust, and robustness. As such, this project constitutes a successful ‘proof of concept’.
At the very least, it shows that it is possible to set up an election system that is more credible and
inspires more trust than the current U.S. system.

We believe that this system is ready to perform a real-life election, using any number of candidates
and voters. Minor changes would naturally have to be made, such as changing the pictures and names
of the candidates etc. and obtaining a proper list of eligible voters. The only real concern is whether
voters would trust our booth. Given the addition of the zero-knowledge proofs and informed voters, this
problem could easily be overcome. Each voter could simply be responsible for sending his or her vote to
the bulletin board using whichever implementation of a booth that they do trust. As long as the vote has
the correct form, three signed ciphers and the accompanying zero-knowledge proofs, the bulletin board
could trust that the vote is legitimate and count it. Our implementation is a good first step and is ready
to have the zero-knowledge proofs and verifiers included.

Being theory students, we do not get many opportunities to program, so a lot was learned during the
implementation process which could be used to create a better implementation in the future with respect
to considerations other than security. For example, it would be a good idea to set up the booth in such
a way that its ballot could be easily changed, perhaps by using an HTML page as the ballot, or even
having a special class containing all of the constants used by the different programs.

Clearly it is possible to use technology in order to enhance election legitimacy. Furthermore, it stuns
us that two busy graduate students were able to code a system in a few weeks which comes very close
to being truly trust-worthy, while large corporations and even nations are not able to do so given years,
large budgets, and incredible manpower. This seems to demonstrate a lack of interest on their parts.
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