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Abstract

The importance of width as a resource in resolution theorem proving
has been emphasized in the work of Ben-Sasson and Wigderson. Their
results show that lower bounds on the size of resolution refutations can
be proved in a uniform manner by demonstrating lower bounds on the
width of refutations, and that there is a simple dynamic programming
procedure for automated theorem proving based on the search for small
width proofs. In addition, if a practical algorithm for calculating width
existed, then researchers working with SAT-solvers would be able to use
it to predict whether or not to even attempt solving a given formula.
Therefore there are both theoretical as well as practical motivations for
better understanding resolution width.

Given a set of clauses Σ and an integer k, the resolution width problem
is that of determining whether Σ has a refutation of width k. This problem
was conjectured to be EXPT IME-complete by Moshe Vardi; the present
paper confirms Vardi’s conjecture. The proof is by a reduction from the
(∃, k)-pebble game, which was shown to be EXPT IME-complete by Ko-
laitis and Panttaja.

1 Introduction & Motivation

The width of a resolution proof is the maximum width of any clause occurring in
it. The width of proofs has played a key part in investigations of the complexity
of resolution, starting with Tseitin [9] and Galil [5]. In these early papers, and
again in the seminal paper by Haken [6], lower bounds on the size of resolution
proofs rest on lower bounds on width.

This connection between size and width was systematized and explained in a
remarkable paper by Ben-Sasson and Wigderson [3]. In that article they prove
a general theorem, of which one consequence is that if Σ is a contradictory
set of clauses in 3-CNF, then the minimal size of a resolution refutation of Σ is
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exponential in the minimal width of such a refutation. In addition, they propose
a simple dynamic programming procedure for automated theorem proving – one
which simply searches for small width proofs. These results provide a theoretical
motivation for understanding the problem of deciding whether or not a set of
clauses has a proof of a given width.

However, there are also strong practical motivations from the areas of au-
tomated theorem proving and propositional reasoning for understanding this
problem. For example, although SAT-solvers have been remarkably successful,
there are some inputs on which they fail. Researchers working with SAT-solvers
may therefore be tempted to design preprocessing algorithms which determine
the width required to refute a given formula F . Since we know from [3] that
short proofs are narrow, if the minimum width of F is sufficiently large, then
any Resolution-based SAT-solver will fail in the case that F is unsatisfiable, so
researchers would be able to tell ahead of time whether or not to bother try-
ing to solve F , potentially saving a great deal of time and computer resources.
Unfortunately, any hopes for such a preprocessing algorithm are dashed by our
main result.

The width problem for resolution is as follows: given a set of clauses Σ, and
integer k as input, determine whether or not there is a resolution refutation of Σ
of width bounded above by k. This problem was conjectured to be EXPT IME-
complete by Moshe Vardi, a conjecture confirmed in the present paper. The
proof proceeds by a reduction from the problem of determining the winner in
the existential k-pebble game, recently proved EXPT IME-complete by Kolaitis
and Panttaja [7]. As an immediate consequence of our main result, we prove
that the problem of determining the winner in the fixed template version of the
existential k-pebble game is also EXPT IME-complete.

2 Resolution Proofs and Their Width

A clause is a set of literals. We write the empty clause as ∅, use the notation
C ∨ D for the clause C ∪ D, and write C ∨ l for C ∪ {l}, where l is a literal.
We also employ the notation x ↔ (y ∨ z) as an abbreviation for the set of three
clauses {x ∨ y ∨ z, y ∨ x, z ∨ x}.

If C ∨ x and D ∨ ¬x are clauses, then the resolution rule allows us to derive
the clause C ∨ D, by resolving on the variable x. If Σ is a set of clauses, then
a sequence of clauses C1, . . . , Ck is a resolution proof of the clause C from Σ if
every clause in the sequence either contains a clause in Σ, or is derived from
earlier clauses in the sequence by resolution, and Ck = C; it is a refutation of Σ
if C = ∅.

The width of a clause refers to the number of literals that it contains. The
width w(Σ) of a set of clauses is the maximum width of a clause in Σ, while
the width of a resolution proof π is the maximum width of a clause in π. The
k-width resolution problem is defined as follows. The input is a set of clauses Σ,
and a number k; the problem is – does Σ have a resolution refutation of width
no greater than k?
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3 Characterization of Resolution Width

In this section, we give a proof of the result of Atserias and Dalmau character-
izing the width of resolution refutations [1]. The characterization is in terms
of a two-player game which we shall call the k-width game, and it is played as
follows: The players are the Prover and the Adversary. 1 The game is played
as follows.

The players are given a set of clauses Σ, on a set V of variables, and an integer
parameter k > 0. The players together construct a succession of assignments
to the variables V . Initially, the assignment is empty; at every round of the
game, all assignments involve at most k variables. Each round of the game
proceeds as follows. First, the Prover can delete zero or more of the variable
assignments from a previous round. Second, the Prover queries a currently
unassigned variable, and the Adversary assigns a value to it.

The Prover wins if the current assignment falsifies an initial clause in Σ.
The Adversary wins if an earlier assignment is repeated during the play of the
game.

Clearly every play of the game must eventually terminate with a win for the
Prover or for the Adversary (Atserias and Dalmau define their game so that
when the game continues infinitely, the Adversary wins). It follows that either
the Prover or the Adversary must have a winning strategy.

Definition 3.1 If Σ is a set of clauses on a set V of variables, then a non-

empty family F of V -assignments is an extendible k-family for Σ if it satisfies

the following conditions:

1. No assignment in F falsifies a clause in Σ;

2. If α ∈ F , and β ⊆ α, then β ∈ F ;

3. If α ∈ F , |α| < k, and x ∈ V , then there is a β ∈ F , so that α ⊆ β, and

β(x) is defined.

The next theorem (Atserias and Dalmau [1]) shows that a resolution refuta-
tion of width k constitutes a winning strategy for the Prover, while an extendible
k + 1-family provides a winning strategy for the Adversary in the k + 1-width
resolution game.

Theorem 3.2 Let Σ be a contradictory set of clauses, and k ≥ w(Σ). Then

the following are equivalent:

1. There is no resolution refutation of Σ of width k;

2. There is an extendible k + 1-family for Σ;

3. The Adversary wins the k + 1-width game based on Σ.

1Atserias and Dalmau, following the tradition of finite model theory, call their players the

Spoiler and the Duplicator, but our terminology seems clearer in the present context.
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Proof: First, let us suppose that there is no resolution refutation of Σ of width
k. Define C to be the set of all clauses having a resolution proof from Σ of
width at most k; by assumption, Σ ⊆ C. Let F be the set of all assignments
of size at most k + 1 that do not falsify any clause in C. We claim that F is
an extendible k + 1-family for Σ. First, F is non-empty, because it contains
the empty assignment (since C does not contain the empty clause). Second, F
satisfies the first two conditions of Definition 3.1, by construction. To prove the
fourth condition, let α ∈ F , and |α| ≤ k, x ∈ V , but there is no extension β of
α in H with β(x) defined. It follows that there is a clause D ∈ C that is falsified
if we extend α by setting x to 0. Then D = E ∨ x for some E, since otherwise
α would falsify D. Similarly, there is a clause F ∨ x in C that is falsified by the
extension of α that sets x to 1. Then α must falsify E ∨ F ; but E ∨ F is in C,
contradicting our assumption.

Second, let us suppose that there is an extendible k + 1-family F for Σ.
Then the Adversary can play the k + 1-width game on Σ by responding to the
Prover’s queries with the appropriate assignment from the family, starting with
the empty assignment. Since no assignment in the family falsifies an initial
clause, this strategy must eventually end in a win for the Adversary, no matter
how the Prover plays.

Finally, let us suppose that there is a resolution refutation of Σ of width
k. Then the refutation provides the Prover with a winning strategy in the
k + 1-width game based on Σ. Starting from the empty clause at the root, the
Prover follows a path in the refutation to one of the leaves in the refutation. At
each round, the current assignment (after appropriate deletions), is a minimal
assignment falsifying a clause in the path. The variable queried is the variable
resolved upon to derive the current clause, and the next clause in the path is
one of the premises of the clause from the previous round. Since the refutation
has width k, every assignment has size bounded by k + 1, so this strategy must
result in a win for the Prover. �

Corollary 3.3 The k-width resolution problem is in EXPT IME .

Proof: On a given play of the game, it is possible to keep track of the number
of current assignments that have appeared up to a given round, and so deter-
mine if a repetition has occurred. Since there are at most N =

(

n
k

)

3k possible
assignments, where n is the number of variables in the clause set Σ employed
in the game, when the count reaches N + 1, a repetition must have occurred.

Consequently, the description of the game given above shows that there is
an alternating Turing machine operating in polynomial space that determines
whether the Prover or the Adversary wins a given instance of the game. Hence,
the problem is in EXPT IME . �

4 The Existential k-Pebble Game

The k-width resolution problem is a special case of the existential pebble game
described in this section, as Atserias and Dalmau show in [1].
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The existential k-pebble game [8], or (∃, k)-pebble game for short, is played
on two finite relational structures A and B of the same similarity type. A partial

homomorphism ϕ between A and B is a mapping from a substructure of A to
a substructure of B that preserves all of the relations in the structures; that is
to say, for every relation RA in A, if a1, . . . , am are in the domain of ϕ, and
RA(a1, . . . , am), then RB(ϕ(a1), . . . , ϕ(am)). A homomorphism between A and
B is a partial homomorphism that is defined on all the elements of A.

The (∃, k)-pebble game, where k ≥ 2 is a positive integer, is played by two
players, the Spoiler and Duplicator, on the relational structures A and B (in
the terminology of §3, the Prover plays the role of the Spoiler, the Adversary
the role of the Duplicator). Each player has a set of k pebbles, numbered
1, . . . , k; we shall write {p1, . . . , pk} for the set of pebbles used by the Spoiler,
and {q1, . . . , qk} for the set of pebbles used by the Duplicator. In each round of
the game, the Spoiler can make one of two different moves: either removing a
pebble pi from a pebbled element of A, or placing a free pebble pj on an element
of the domain of A. To each move of the Spoiler, the Duplicator must respond,
either by removing the corresponding numbered pebble qi from an element of
B, or placing the pebble qj on an element of B.

The pebbles placed by the two players at any stage of the game define a
relation R between the domains of A and B; if a is an element of A, and b of B,
then Rab holds if and only if there is a pebble pi on a, and a corresponding pebble
qi on b. The Spoiler wins a play of the game at a given round if the relation R

defined by the pebbling at that round is not a partial homomorphism between
A and B. The Duplicator wins if there is a repetition of an earlier position. As
before, the game must terminate after a finite number of moves in a win for the
Spoiler or the Duplicator, and so either the Spoiler or the Duplicator must have
a winning strategy.

As in the case of the resolution game of §3, we can give a combinatorial
characterization of a winning strategy for the Duplicator.

Definition 4.1 Let A and B be two finite relational structures of the same

similarity type. A non-empty family H of partial homomorphisms between A
and B is an extendible k-family if it satisfies the following two conditions:

1. H is closed under subfunctions: If h ∈ H, and g ⊆ h, then g ∈ H.

2. H has the k-extension property: If f ∈ H, |f | < k and a is an element of

A, then there is an element b of B so that f ∪ {〈a, b〉} is in H.

The characterization in the following theorem is the general result of which
Theorem 3.2 is a special case.

Theorem 4.2 Let A and B be two finite relational structures of the same sim-

ilarity type, and k a positive integer. Then the following two statements are

equivalent:

1. The Duplicator has a winning strategy for the (∃, k)-pebble game on the

structures A and B.
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2. There is an extendible k-family of partial homomorphisms for A and B.

Proof: See Kolaitis and Vardi [8, §4]. �

In the reduction of the next section, it is helpful to assume that the strategy
for the Spoiler in the (∃, k)-pebble game is of a restricted sort.

Lemma 4.3 If there is a winning strategy for the Spoiler in the (∃, k)-pebble
game, then there is a strategy in which the Spoiler never places more than one

pebble on any individual element of A.

Proof: If the Spoiler places a pebble pj on an element of A, where there is
already a pebble pi placed earlier in the game, then the Duplicator can respond
by placing qj on the same element of B as qi. Any other response is an obvious
blunder, since the relation defined from the resulting position is not a homo-
morphism. Consequently, such moves can give no advantage to the Spoiler, and
so the Spoiler might as well play as if the Duplicator never makes such obvious
blunders, and thus never place two pebbles on the same element of A. �

5 Complexity of the k-Width Problem

In this section, we prove our main result by reducing the problem of determining
the winner in the (∃, k)-pebble game to the k-width problem for resolution. The
former problem was proved EXPT IME-complete by Kolaitis and Panttaja [7].
In fact, they prove the stronger result, that a special case of this problem is
EXPT IME-complete, a fact that is useful in our reduction.

A coloured graph is a relational structure A of the form 〈A, E, C1, . . . , Cm〉,
where E is a symmetric, irreflexive relation on A, and C1, . . . , Cm are subsets
of A. Using this notion, we can state the main result of Kolaitis and Panttaja.

Theorem 5.1 The problem of determining whether the Duplicator has a win-

ning strategy in the (∃, k)-pebble game on the structures A and B, where A
and B are coloured graphs of the same similarity type, is EXPT IME-complete

under logspace reducibility.

Proof: See Kolaitis and Panttaja [7]. �

We now give a reduction of the (∃, k)-pebble game problem to the width
problem for resolution by translating the first problem into a set of clauses in
3-CNF.

Definition 5.2 Let A = 〈A, E, C1, . . . , Cm〉 and B = 〈B, F, D1, . . . , Dm〉 be

coloured graphs, with A = {a1, . . . , ap} and B = {b1, . . . , bq}. For every i,

1 ≤ i ≤ p, Σ(A,B) contains q variables P i
j , for each j, 1 ≤ j ≤ q, and in

addition, q − 1 auxiliary variables Qi
j , for 1 ≤ j < q. The clauses constituting

Σ(A,B) are as follows:

1. Qi
1, for 1 ≤ i ≤ p.
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2. Qi
j ↔ (P i

j ∨ Qi
j+1), for 1 ≤ j < q − 1, and Qi

q−1 ↔ (P i
q−1 ∨ P i

q).

3. ¬P i
j , where ai ∈ Cr, bj 6∈ Dr, for some r.

4. ¬P i
j ∨ ¬P s

t , where E(ai, as), but not F (bj , bt).

5. ¬P i
j ∨ ¬P i

k, where 1 ≤ j < k ≤ q.

The set of clauses Σ(A,B) is satisfiable if and only if there is a homomor-
phism from A to B, and is logspace constructible from A and B. If α is an
assignment to the variables of Σ(A,B), we define Dom(α) to be the set of all i

for which α(P i
j ) is defined, for some j.

If R ⊆ A×B, then we write α[R] for the assignment defined by: α[R](P i
j ) = 1

if and only if R(ai, bj). Furthermore, if f is a mapping from a subset of A to B,
then we define the assignment β[f ] determined by f as follows. If i ∈ Dom(f),
then β[f ](P i

j ) = 1 if f(ai) = bj , and β[f ](P i
j ) = 0 otherwise, while β[f ](Qi

k) = 1

if f(ai) = bj , for k ≤ j, and β[f ](Qi
k) = 0 otherwise. It is easily checked that

if f is a partial homomorphism from A to B, β[f ] does not falsify any clause in
Σ(A,B).

Lemma 5.3 If A and B are coloured graphs, and k ≥ 3, then the Spoiler has a

winning strategy for the (∃, k)-pebble game on A and B if and only if the Prover

has a winning strategy for the k + 2-width game on Σ(A,B).

Proof: (⇒) First, assume that the Spoiler has a winning strategy for the (∃, k)-
pebble game on A and B. By Lemma 4.3, we can assume that the strategy
for the Prover never involves doubly pebbled elements; this implies that every
relation Rt produced by the Spoiler’s strategy is a map from a subset of A to B.
Then the Prover has a winning strategy for the k + 2-width game that follows
the Spoiler’s strategy. At each stage in the strategy, the current assignment α

maintained by the Prover contains a set of at most k variables of the form P i
j ,

all of them set to 1, and representing a partial map from A to B. In addition,
α assigns values to at most two extra variables, each of these being either a
variable P i

q , or an auxiliary variable of the form Qi
j .

The Prover’s strategy consists of successively forcing the Adversary to assign
the value 1 to variables of the form P i

j , in such a way as to produce a series
of assignments of the form α[R0], α[R1], . . . , α[Rt], . . ., where R0, R1, . . . , Rt, . . .

are the relations Rt ⊆ A×B produced by following the Spoiler’s strategy in the
(∃, k)-pebble game on A and B.

Let us suppose that the Prover’s current assignment is of the form α[Rt]. If
Rt+1 is produced from Rt by removing pebbles, then the Prover simply deletes
the appropriate variable assignment from α[Rt]. So, let us suppose that the
Spoiler places a free pebble on an element ai of A, so that |Rt| < k. The Prover
must now force the Adversary to set at least one variable P i

j to 1.

The Prover begins by querying Qi
1, which the Adversary is forced to set to 1;

the Prover then queries P i
q . If the Adversary assigns this last variable the value

1, then the Prover has succeeded. Otherwise, the Prover performs a binary
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search in the sequence of variables σ = Qi
1, . . . , Q

i
q−1, P

i
q . At each stage in the

search, the Prover retains two variables from σ in the current assignment, the
first set to 1, the second set to 0. The next variable queried is chosen so as
to cut the interval between the two variables in σ as nearly in half as possible.
This search procedure must terminate with two consecutive variables in σ set to
1 and 0, respectively, say, Qi

j and Qi
j+1. Then the Adversary must assign 1 to

the variable P i
j on the next query, otherwise a clause of type 2 is falsified. Once

the Prover has succeeded in forcing a response of this kind from the Adversary,
the assignments to the extra variables are deleted, and the strategy continues
with the new assignment of the form α[Rt+1], with i ∈ Dom(α[Rt+1]).

Since the strategy described above corresponds to a winning strategy for the
Spoiler, any play using this strategy terminates in a win for the Prover, since
it must end when one of the assignments α[Rt] falsifies a clause of type 3, 4 or
5 in Definition 5.2 (the Spoiler wins the (∃, k)-pebble game when Rt is not a
partial homomorphism from A to B).

(⇐) Second, assume that the Duplicator has a winning strategy for the (∃, k)-
pebble game on A and B. We describe a winning strategy for the Adversary
in the k-width game, based on the Duplicator’s winning strategy. By Theorem
4.2, there is an extendible k-family H of homomorphisms for A and B. At each
round in a play of the k-width game, the Adversary has a partial homomorphism
belonging to H. Initially, this homomorphism is empty; the homomorphism
is updated as the play proceeds. We now describe the Adversary’s update
procedure.

The Adversary plays so as to maintain the following properties invariant
throughout the game:

1. f is a partial homomorphism in H, and |f | ≤ k.

2. {i : ai ∈ Dom(f)} ⊆ Dom(α).

Let α be the assignment at the start of a given round of the k-width game, and
f ∈ H the partial homomorphism that the Adversary has available at the end
of the previous round. Initially, the Prover removes some variable assignments
from α. If this results in the removal of some i ∈ Dom(α), where ai ∈ Dom(f),
then f is restricted appropriately; that is to say, the new assignment f ′ is defined
by f ′ := f� {ai : i ∈ Dom(α)}.

We now need to describe the variable querying part of a round. Let α be the
current assignment maintained by the Prover, and f the partial homomorphism
maintained by the Adversary. When the Prover queries an unset variable of the
form P i

j or Qi
j , three cases arise:

1. If ai ∈ Dom(f), then the Adversary answers in accordance with the as-
signment β[f ].

2. If ai 6∈ Dom(f), but |f | < k, then the Adversary extends f to a new partial
homomorphism g ∈ H, with ai ∈ Dom(g), and then replies according to
β[g].
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3. If ai 6∈ Dom(f), but |f | = k, then the Adversary sets any variable P i
j to

0, and any variable Qi
j to 1.

We need to prove that this strategy on the part of the Adversary succeeds.
This amounts to showing that whenever the Adversary answers a query, that the
resulting assignment never falsifies an initial clause in Σ(A,B). In the first two
cases, this is clearly true, by the definition of an extendible k-family. Only the
third case causes difficulties. Let α′ be the extension of α after the Adversary’s
reply. In this case, there are at most two variables assigned values by α′ that
are not assigned values by β[f ]. Since all such variables P i

j are set to 0 by the
Adversary, no clause of types 3,4 or 5 can be falsified by α′, and since all such
variables Qi

j are set to 1, no clause of type 1 can be falsified. Finally, since at
most two such variables are assigned values, no clause of type 2 can be falsified
by α′, completing the verification that the strategy used by the Adversary always
succeeds in the k + 2-width game using the set of clauses Σ(A,B). �

This brings us to our main result. We now show that the Resolution width
problem is EXPT IME-Complete. The language associated with this problem
is formally defined as follows:

Definition 5.4 (RES-WIDTH) RES-WIDTH = {(F, k) | F is a formula

for which there exists a Resolution refutation with width space at most k}

Theorem 5.5 RES-WIDTH is EXPT IME-complete under logspace reducibil-

ity.

Proof: Theorem 5.1 of Kolaitis and Panttaja shows that the problem of deter-
mining the winner in an instance of the (∃, k)-pebble game on coloured graphs
A and B of the same similarity type is EXPT IME-complete under logspace
reducibility. Theorem 3.2 and Lemma 5.3 provide a logspace reduction of this
problem to the k + 1-width problem for Σ(A,B). �

6 Related Complexity Results

This chapter’s main result in the previous section has an interesting corollary
concerning another form of the (∃, k)-pebble game:

Corollary 6.1 The problem of determining the winner in an instance of the

(∃, k)-pebble game on relational structures A and B, where B is a two-element

structure, is EXPT IME-complete under logspace reducibility.

Albert Atserias has remarked that the preceding theorem also settles the
complexity of the fixed template version of the existential k-pebble game. Feder
and Vardi [4] (see also [2]) observe that the satisfiability problem for formulas
in r-CNF can be encoded as a constraint satisfaction problem in the form where
the target structure B, or ‘template’ is fixed, while only the source structure, or
‘instance’ varies.
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Corollary 6.2 The problem of determining whether the Duplicator has a win-

ning strategy in the (∃, k)-pebble game on structures A and B, where B is a fixed

template on a two-element universe, is EXPT IME-Complete under logspace

reducibility.

In addition, Theorem 5.5 has another Corollary which settles the k-width
problem for Tree Resolution as well:

Corollary 6.3 The k-width problem for Tree Resolution is EXPT IME-complete

under logspace reducibility.

Proof: In order to prove this, it suffices to show that for any formula F , the
Resolution width of refuting it is equal to its Tree Resolution width. In the
forward direction, if we are given a Resolution refutation π of F with width
at most k, then we can easily build a Tree Resolution refutation of F with
width k by simply turning the DAG underlying the proof tree of π into a tree
by duplicating subtrees as necessary in the obvious way. Clearly this does not
introduce any new clauses, and therefore does not affect the proof width at
all. The other direction is trivial, since any Tree refutation is a Resolution
refutation. �
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