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1 Introduction

This paper has two purposes. The first purpose is to provide a progress report describing research
and results completed to date. Its second purpose is to describe current open problems, and lay out
an area for future research that should yield further interesting results. The completed results are
categorized into four papers, all of which fall in the area of proof complexity. These results are tied
together chronologically, with the later results having intuitive relationships to the earlier ones.

Our first paper [Her06] describes a Non-Hamiltonicity Proof System (NHPS), together with proofs
of soundness, completeness, exponential lower bounds, and simulation results relating it to other proof
systems. These results are described below in Section 2. The NHPS came from the analysis of an algo-
rithm for determining non-Hamiltonicity. The overall direction of this research was to better understand
graphical proof systems, as well as general limitations of algorithms of this type. Specifically, since the
NHPS deals with local configurations in the graph, the goal was to prove lower bounds for graph algo-
rithms which involved ideas such as local search. This motivated the search for a simulation result with
Tree Resolution (T-RES), which necessarily required the use of a reduction. The development of such a
reduction from the Hamiltonian Cycle problem to SAT led to the next result.

This next result is described in our second paper [HH06], which formalizes the concept of dangerous
reductions. We were able to show that slightly different versions of the reduction from Hamiltonian
Cycles to SAT give results with drastically different proof complexities. These results are described
below in Section 3. However, investigating which translations require easy proofs and which ones require
hard proofs needed a more efficient method than drawing out clumsy DPLL trees. The Prover / Delayer
Game from [BSIW04] is known to simplify lower bounds on proof sizes, but we discovered that it is also
an excellent tool for giving upper bounds which are much simpler than DPLL upper bounds.

This led us to our third paper, [HU06b], in which we explore Prover / Delayer Game upper bounds
for T-RES proof size. These results are described below in Section 4.

Our fourth paper [HU06a] is probably the one containing the most significant results. In it we explore
the proof complexity of Intuitionistic Propositional Logic. This research was not motivated by any of
the previous work, but the result interestingly is highly relevant to the research on dangerous reductions.
These results are described below in Section 5.

∗This research supported by NSERC and the University of Toronto Department of Computer Science
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2 Non-Hamiltonicity Proof System

In this paper [Her06] we describe the NHPS, a proof system for non-Hamiltonicity. This proof system
was formalized partly as a means of analyzing an algorithm for non-Hamiltonicity, and partly from the
aim of diversifying the field of proof complexity by developing another graphical proof system.

We prove that the NHPS is both sound and complete, and provide families of graphs for which it has
exponential size lower bounds, where size is defined to be the number of nodes in the NHPS proof-tree.
We call one of these families the G n

2
, n
2

graphs.

Theorem 2.1. The lengths of tree-like NHPS proofs have Ω(3n) size-lower bounds.

Using the reduction and definitions from the research on dangerous reductions as well as Prover /
Delayer Game upper bound techniques, we show that T-RES effectively p-simulates (see Section 3) the
NHPS:

Theorem 2.2. Under the reduction described in [HH06] which uses all of the clause groups, T-RES

effectively p-simulates NHPS.

In addition, we again use the reduction from [HH06] as well as an example from [HU06b] to show
an effective exponential separation between T-RES and NHPS. The example using the Prover / Delayer
Game is given below in Theorem 4.5, which shows that the H(G n

2 , n
2
)T,O,1,F formulas described in Section

3 below have polynomial size upper bounds. Since the NHPS has exponential lower bounds for the G n
2 , n

2

graphs (see Theorem 2.1 above), but T-RES has polynomially-bounded proofs for the H(G n
2

, n
2
)T,O,1,F ,

we have an effective separation between the two proof systems.

These results provide concrete connections between the NHPS, Dangerous Reductions, and the Prover
/ Delayer Game.

3 Formalizing Dangerous Reductions

In this paper [HH06] which was written together with Philipp Hertel, we give a theoretical proof
confirming empirical results from the Propositional Reasoning community.

The area of SAT-Solving has been very successful. Because of this, research into solving other NP-
Complete problems has largely consisted of translating them into SAT, and then applying researchers’
considerable experience with SAT-Solvers. However, this strategy is not without its pitfalls. For example,
researchers were noticing that different reductions, when applied to the same input, could output for-
mulas with drastically different proof complexities. They similarly found that adding redundant clauses
which were not technically required for the correctness of a reduction would sometimes make formulas
considerably easier to solve. The problem of exploring these phenomena was listed in [KMS97, KS03] as
being one of the most interesting open problems in the area of Propositional Reasoning.

To this end we provide formal examples supporting these empirical results as well as proofs explaining
the underlying mechanisms at play. We give two examples of very similar and natural reductions from
the Hamiltonian Cycle problem to SAT, which, when applied to a certain family of graphs, produces
formulas with drastically different proof complexities. More specifically, prove the two theorems below.
Note that H is the reduction being used, the subscripts indicate slight differences between the reductions,
and K∗

n is the family of graphs being translated to formulas.
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The polynomial upper bounds for T-RES are given by:

Theorem 3.1. T-RES proofs for the unsatisfiability of H(K∗
n)T,O,F formulas have O(n2) size upper

bounds, where n is the number of distinct variables contained in the formulas.

The exponential lower bounds for AC0-Frege systems are given by:

Theorem 3.2. The size of AC0-Frege proofs for the unsatisfiability of H(K∗
n)T,1,F formulas have Ω(2

d
√

n)
lower bounds, where d is the depth of the Frege proof, and if there exist size-N AC0-Frege proofs restricted
by mx,n = 1 of H(K∗

n)T,1,F , then there exist size-N + O(n3) proofs of fPHP n
n−2.

This has an immediate corollary which is relevant to Propositional Reasoning:

Corollary 3.3. No SAT algorithm based on AC0-Frege nor any weaker proof system can efficiently solve
H(K∗

n)T,1,F formulas. This includes DPLL as well as clause-learning based SAT-solver algorithms.

Apart from their relevance to the open problems from Propositional Reasoning, these results have
proof complexity implications. The first implication is that this result allows us to define the intuitive
notion of dangerous and safe reductions. There are three different types of reductions. Let α be a proof
system for a language L1, let β be a proof system for a language L2, and let R : L1 → L2 be a reduction
from L1 to L2. Informally,

• If R takes easy instances for α, and converts them to hard instances for β, then we say that R is
explosive. This corresponds to our idea of a dangerous reduction.

• If R takes instances for α, and converts them to instances for β which have the same complexity,
then we say that R is stable. This corresponds to our idea of a neutral reduction.

• If R takes hard instances for α, and converts them to easy instances for β, then we say that R is
implosive. This corresponds to our idea of a beneficial reduction.

More formally,

Definition 3.4. Let α be a proof system for a language L1, let β be a proof system for a language L2,
and let R : L1 → L2 be a reduction from L1 to L2. If there exists some family of strings X = {x1, x2, ...},
X ⊆ L1 such that for all k and for all xi ∈ X there exists an α-proof P1 of xi, but there exists no β-proof
P2 of R(xi) such that |P2| ≤ |P1|k, then we say that the reduction R is (α, β)-Explosive on the set X.

Definition 3.5. Let α, β, L1, L2, and R be as in Definition 3.4. If there exist constants k1 and k2 and
a family of strings X = {x1, x2, ...}, X ⊆ L1 such that for any α-proof P1 of xi there exists a β-proof P2

of R(xi) where |P2| ≤ |P1|k1 and |P1| ≤ |P2|k2 then we say that the reduction R is (α, β)-Stable on the
set X.

Definition 3.6. Let α, β, L1, L2, and R be as in Definition 3.4. If there exists some family of strings
X = {x1, x2, ...}, X ⊆ L1 such that for all k and for all xi ∈ X there exists a β-proof P2 of R(xi) but there
exists no α-proof P1 of xi such that |P1| ≤ |P2|k, then we say that the reduction R is (α, β)-Implosive on
the set X.

We provide a number of examples of explosive, stable, and implosive reductions, many of which are
drawn from the three other papers mentioned in the introduction.
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This leads to the second implication for proof complexity: When comparing the relative proof com-
plexity of two proof systems over different languages, one necessarily must perform a reduction. However,
as we have seen, reductions can either unfairly inject complexity by leaving out critical clauses, or ‘cheat’
by doing some of the work that the target proof system might not be able to do itself. This makes
it impossible to carry out an objective comparison of proof system strength, because it is impossible
to tell what role is being played by the reduction. The use of the standard definitions of p-simulation
and exponential separations when comparing proof systems over different languages should therefore be
avoided in favor of the notions of ‘effective p-simulation’, and ‘effective exponential separation’, which
are the standard notions relative to a specific reduction.

4 Prover / Delayer Game Upper Bounds for Tree Resolution

In this paper [HU06b] we describe a useful application for the Prover / Delayer Game given in
[BSIW04]. The Prover / Delayer Game is an adversarial game between two players, the ‘Prover’, and
the ‘Delayer’. The game is played on an unsatisfiable CNF formula F . The point of the game is for the
Prover to falsify some initial clause of F , thereby falsifying the formula. Since the formula is unsatisfiable,
this is inevitable. Roughly speaking, the Delayer’s goal is to delay the falsification of the formula for as
long as possible.

The game proceeds in rounds. Each round starts with the Prover choosing a variable, and asking the
Delayer what the value of that variable is. The Delayer can give one of three answers:

• True

• False

• You Choose

If the Delayer says ‘You Choose’, then the Prover gets to decide the value of that variable. In addition,
every time ‘You Choose’ is said, the Delayer wins one point. This is the only way in which points can be
scored. The game finishes when some clause has been falsified. The real goal of the game is not actually
to prove or delay; rather, the Delayer’s aim is to win as many points as possible, while the Prover’s aim
is to make sure that the Delayer wins as few as possible. This leads us to the following definition:

Definition 4.1. The Prover / Delayer number of an unsatisfiable formula F , denoted PD(F ), be the
maximum number of points that the Delayer can score on F with the Prover playing with an optimal
strategy.

The literature contains some interesting uses for this value. For example, in [BSIW04], the authors
show that lower bounds on PD(F ) translate into lower bounds for the size of T-RES proofs for F . More
specifically,

Theorem 4.2. If the Delayer has a strategy guaranteed to win > k points on F , then every DPLL tree
for F has size > 2k.

This result simplifies T-RES lower bounds, since it allows us to make arguments about the game, which
are much simpler than arguments about formulas.

Another use for PD(F ) is to prove bounds on the amount of clause space required to compute a T-RES

proof. Informally, the tree clause space of F , denoted TCS(F ) is the minimum number of clauses that
must be simultaneously kept in memory at any time while computing a T-RES proof of F . A more
precise characterization is given below in Definition 6.4. In [ET03], the authors give both upper and
lower bounds for TCS(F ) using PD(F ):

Theorem 4.3 ([ET03]). For any unsatisfiable formula F , TCS(F ) = PD(F ) + 1.
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We extend these results by showing that an upper bound on PD(F ) also translates into an upper
bound for the size of a T-RES proof for F :

Theorem 4.4. If the Prover has a strategy limiting the Delayer to at most k points playing on formula
F which contains ≤ n distinct variables, then F has a DPLL tree of size O(nk).

We conclude this paper by providing some examples of how the Prover / Delayer Game can be used
to simplify T-RES upper bound proofs. The first example shows how the Prover / Delayer Game can be
used to simplify Theorem 3.1 from the dangerous reductions research above. The second example shows
that there is a translation of the G n

2 , n
2

formulas which give the NHPS exponential lower bounds such
that the resulting formula has polynomial T-RES upper bounds, thereby proving an effective separation
between the two proof systems:

Theorem 4.5. T-RES proofs for the unsatisfiability of H(G n
2

, n
2
)T,O,1,F formulas have O(n3) size upper

bounds, where n is the number of distinct variables contained in the formulas.

These examples further illustrate the relationship between the different areas of research.

5 Proof Complexity of Intuitionistic Propositional Logic

In this paper [HU06a] we explore the proof complexity of Intuitionistic Logic. Since this is our most
important and complicated result, we shall describe it in greater detail than the other three papers. The
following is an overview of the paper with proofs and minor details omitted:

5.1 Introduction

Intuitionistic Propositional Logic (IPL) is perhaps the best-studied non-classical logic. It contains
all of the standard connectives ∧,∨,⊃,¬, but uses non-classical semantics that rely on Kripke models
[TD88]. An intuitionistic formula is considered to be intuitionistically valid if it is true in all possible
models. A well-known paper by Statman [Sta79] shows via a very natural reduction from QBF that the
problem of determining whether a formula is intuitionistically valid is PSPACE-Complete.

IPL was born out of the desire to enforce the requirement of constructivism in mathematics [TD88].
The following classical tautologies are not intuitionistically valid, since it is possible to build Kripke
countermodels which falsify them:

• A ∨ ¬A

• (A ⊃ B) ⊃ (¬A ∨ B) (but (¬A ∨ B) ⊃ (A ⊃ B) is intuitionistically valid).

• ¬(A ∧ B) ⊃ (¬A ∨ ¬B) (but all other forms of DeMorgan’s Laws are intuitionistically valid).

• ¬¬A ⊃ A (but A ⊃ ¬¬A is intuitionistically valid).

The last non-tautology, ¬¬A ⊃ A, gives insight into why IPL is associated with constructivism.
Without this inference pattern, the standard proof-by-contradiction technique where we assume ¬A, de-
rive a contradiction, conclude ¬¬A, and eliminate the double negation to conclude A becomes impossible.
In effect, all IPL proofs must be constructive.
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Since IPL is hamstrung by its inability to take advantage of the standard proof-by-contradiction
technique available to Classical logic, it is widely believed to be weaker in the sense that there are probably
formulas which have short Classical proofs, but no short Intuitionistic proofs. From a complexity-
theoretic perspective, IPL is in some regards more tractable than Classical Logic. For example, it has
feasible interpolation [Pud99, BP01]. It is consequently reasonable to assume that IPL lower bounds
should be easier to prove than for Classical Logic. The main theorem of this paper is a partial result
working towards this goal. Rather than showing that IPL is weak in an absolute sense, we show it to be
weak relative to Statman’s translation. More specifically, we show that unless NP = coNP , Statman’s
reduction from QBF to IPL cannot even translate trivial classical instances of the law of excluded middle
into intuitionistic formulas which have polynomially-bounded proofs. Since Statman’s translation is the
obvious and natural reduction to use, this result shows that if a more feasible reduction exists, then it
must be complicated. An immediate implication of this result is that unless NP = coNP , there is a
superpolynomial separation between an extended form of Gentzen’s system LK and an extended form of
his system LJ.

5.2 The System LJ

For the purposes of this paper, we deal with a sequent calculus for IPL in the style of Gentzen [Sza69].
We use capital letters A, B, C, ... to denote complex formulas, lower-case letters x, y, z, ... to denote atomic
formulas, and Greek letters Γ, ∆, Θ, ... to denote sets.

The proof system that we use is essentially the same as Gentzen’s system LJ. Our proofs are tree-like,
meaning that each sequent can be an input for at most one inference rule. Furthermore, each sequent
has singular right side; that is, there is at most one formula on the right-hand side of each sequent. In
addition, all axioms are of the form x 7→ x, where x is an atomic sentence letter. LJ is formulated as
follows:

axiom:

x 7→ x
where x is atomic

weakening:

left
Γ 7→ A

B, Γ 7→ A
and right

Γ 7→
Γ 7→ B

exchange:

left
Γ1, A, B, Γ2 7→ C

Γ1, B, A, Γ2 7→ C

contraction:

left
Γ1, A, A, Γ2 7→ B

Γ1, A, Γ2 7→ B

cut:

Γ 7→ A A, ∆ 7→ B

Γ, ∆ 7→ B
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⊥ introduction:

left ⊥7→ and right
Γ 7→

Γ 7→⊥

¬ introduction:

left
Γ 7→ A

¬A, Γ 7→ and right
A, Γ 7→
Γ 7→ ¬A

∨ introduction:

left
A, Γ 7→ C B, ∆ 7→ C

A ∨ B, Γ, ∆ 7→ C
and right

Γ 7→ A

Γ 7→ A ∨ B
as well as

Γ 7→ A

Γ 7→ B ∨ A

∧ introduction:

left
A, B, Γ 7→ C

A ∧ B, Γ 7→ C
and right

Γ 7→ A ∆ 7→ B

Γ, ∆ 7→ A ∧ B

⊃ introduction:

left
Γ 7→ A B, ∆ 7→ C

A ⊃ B, Γ, ∆ 7→ C
and right

A, Γ 7→ B

Γ 7→ A ⊃ B

One important point of note is that if you remove the requirement of having only a single formula on
the right-hand side of a sequent, then the system LJ becomes the system LK for Classical Logic [Sza69].
In other words, every LJ proof is also an LK proof.

5.3 Statman’s Translation & LJ[ ~ES]

In this section we define an augmented form of LJ that includes extension axioms. We then review
Statman’s reduction from QBF to IPL. Next we define a specific form of LJ augmented with Statman’s
extension axioms.

5.3.1 Extended LJ

Definition 5.1. We shall use LJ[ ~E] to denote an augmented form of LJ where ~E = E1, ..., En, and each
Ei contains the pair of sequents A ◦ B 7→ yA◦B and yA◦B 7→ A ◦ B with the restriction that A ◦ B must
be a complex formula, and yA◦B is an atom not appearing in E1, ..., Ei−1. We allow the sequents in ~E

to be used as axioms in any LJ[ ~E] proof. We refer to LJ[ ~E] as an Extended Sequent Calculus, and the
two sequents in each Ei are referred to as extension axioms. This same augmentation can be defined for
the system LK.

5.3.2 Statman’s Translation

In his paper showing that IPL is PSPACE-Complete [Sta79], Statman proves this result by providing
a reduction from QBF to IPL. This translation is very important to our main result, and proceeds as
follows:

1. As input take a QBF formula FQBF = Qnxn, ..., Q1x1B0, where B0 is a quantifier-free prenex
formula, and each Qi = ∀ or ∃.
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2. Let y0, ..., yn be entirely new variables not appearing in FQBF . These are extension variables that
are necessary to keep our translation from growing exponentially.

3. Define a series of B
√

i formulas as follows (note that these are not extension variables, but rather
are just shorthand for the purposes of this reduction; similarly, A ↔ B is shorthand for (A ⊃
B) ∧ (B ⊃ A)):

• B
√

0 = ¬¬B0 ↔ y0

• B
√

k = ((xk ∨ ¬xk) ⊃ yk−1) ↔ yk if Qk = ∀
• B

√

k = ((xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1)) ↔ yk if Qk = ∃

4. Output FIPL = B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...))

5.3.3 Proof of Correctness

A full proof of correctness showing that FQBF is true if and only if FIPL is intuitionistically valid does
not add to the understanding of this paper, so we shall refer the interested reader to [Sta79]. However,
part of the proof is of interest. Specifically, Statman’s proof of correctness implicitly proves that a cut-
free tree-like sequent calculus formulation of LJ p-simulates Boolean Truth Trees (BTT), a brute-force
tree-like system for QBF .

Boolean Truth Trees

The BTT proof system is defined as follows:

• Every BTT proof is a tree in which every node contains a fully-quantified QBF formula. These
formulas may contain constants 0 and 1. The root contains the formula which is to be proven true,
and each leaf contains a formula in which all variables have been replaced by constants, and it
consequently evaluates to 1, thereby showing that the formula is true. (It is most convenient to
picture the proof with the root at the top and the leaves at the bottom).

• Every internal node v in the proof tree has either one or two children. If the outermost quantifier in
the formula F at v is ∃x, then v has one child containing F

′

, which is F with ∃x removed, and every
instance of x replaced by an appropriate constant such that F

′

is true. If the outermost quantifier
in the formula F at v is ∀x, then v has two children, one containing F0, where all instances of x
have been replaced by 0, and the other containing F1, where all instances of x have been replaced
by the value 1.

It is easy to see that BTT is sound; if a BTT tree can be built for a QBF formula F , then F is
true. It is also easy to see that BTT is complete; every true QBF formula has a BTT proof. This is a
brute-force proof system, because it is extremely inefficient; the size of a BTT proof is exponential in the
number of ∀ quantifiers contained in the formula to be proved true.

BTT Example

Consider the formula ∀x∃y∀z(((¬x ∧ ¬y) ∨ z) ∨ ((x ∧ y) ∨ z)). The following BTT proof shows that it
is a true QBF formula:

∀x∃y∀z(((¬x ∧ ¬y) ∨ z) ∨ ((x ∧ y) ∨ z))
[0/x] [1/x]

∃y∀z(((1 ∧ ¬y) ∨ z) ∨ ((0 ∧ y) ∨ z))
[0/y]

∀z(((1 ∧ 1) ∨ z) ∨ ((0 ∧ 0) ∨ z))
[0/z] [1/z]

((1 ∧ 1) ∨ 0) ∨ ((0 ∧ 0) ∨ 0)

= 1

((1 ∧ 1) ∨ 1) ∨ ((0 ∧ 0) ∨ 1)

= 1

∃y∀z(((0 ∧ ¬y) ∨ z) ∨ ((1 ∧ y) ∨ z))
[1/y]

∀z(((0 ∧ 0) ∨ z) ∨ ((1 ∧ 1) ∨ z))
[0/z] [1/z]

((0 ∧ 0) ∨ 0) ∨ ((1 ∧ 1) ∨ 0)

= 1

((0 ∧ 0) ∨ 1) ∨ ((1 ∧ 1) ∨ 1)

= 1
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P-Simulation Result

We shall now make explicit the implicit p-simulation result in Statman’s proof of correctness; this
provides a deeper insight into the mechanisms at play underlying the reduction.

If we forget about the extension variables, then Statman’s translation converts the formula FQBF to
an intermediate formula A+ as follows:

• B+

0 = ¬¬B0

• B+

k = (xk ∨ ¬xk) ⊃ B+

k−1
if Qk = ∀

• B+

k = (xk ⊃ B+

k−1
) ∨ (¬xk ⊃ B+

k−1
) if Qk = ∃

Note that A+ = B+
n . Statman’s proof of correctness proceeds in two parts. He first shows that

FQBF is true if and only if A+ is intuitionistically provable. Next he proves that A+ is intuitionistically
provable if and only if FIPL is. We are only interested in the forward direction of the first part; the
implicit p-simulation result is given by the proof that FQBF being true implies that A+ is intuitionistically
provable.

The overall idea of the simulation is to take the brute-force BTT proof tree TBTT for FQBF , and by
way of very local transformations, build an exactly analogous cut-free tree-like LJ proof TLJ.

Theorem 5.2. Cut-free tree-like LJ p-simulates BTT.

In effect, the obvious brute-force BTT proof translates into a brute-force cut-free, tree-like LJ proof.

5.3.4 The System LJ[ ~ES ]

Given that we have the definition of LJ[ ~E] as well as the details of Statman’s translation (the full

version, with extension variables), we may now define the system LJ[ ~ES ]. This is the system which we
will use for our main theorem in Section 5.6.

Definition 5.3. We define LJ[ ~ES ] to be LJ augmented with Statman’s extension axioms for a formula
FQBF = Qnxn, ..., Q1x1B0, where B0 is a quantifier-free prenex formula, and each Qi = ∀ or ∃. More

precisely, ~ES = E0, ..., En, where

• E0 = {¬¬B0 7→ y0, y0 7→ ¬¬B0}

• Ek = {(xk ∨ ¬xk) ⊃ yk−1 7→ yk, yk 7→ (xk ∨ ¬xk) ⊃ yk−1} if Qk = ∀, and

• Ek = {(xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1) 7→ yk, yk 7→ (xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1)} if Qk = ∃

5.4 Cut-Elimination

In this section we extend the cut-elimination technique developed by Buss and Pudlák in [BP01] (which

itself was adapted from [BM99]) so that it holds for any system LJ[ ~E].

Definition 5.4. The closure of a proof P , denoted cl(P ), is the smallest set of sequents which includes
the sequents of P and is closed under both weakening and cut.

Definition 5.5. A principal cut is a cut in which at least one of its two input sequents is an extension
axiom.

Theorem 5.6 (Cut-Elimination). For any proof P in any system LJ[ ~E], it is possible to eliminate all
non-principal cuts from P to produce a pseudo-cut-free proof P

′

such that cl(P
′

) ⊆ cl(P ).
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5.5 The Proof Closure Property

Informally, the Proof Closure Property guarantees that any sequent in the closure of an LJ[ ~ES ] proof
P can be derived via a polynomial number of cuts and weakenings from the sequents in P . This property
is strongly related to Resolution involving Horn clauses.

Lemma 5.7 (Proof Closure Property). Let P be a size-N LJ[ ~ES ] proof, where N is the number of
bits required to encode P . If Γ 7→ A ∈ cl(P ) then there exists a size-O(N 2) tree-like and a size-O(N)

DAG-like LJ[ ~ES ]-proof of Γ 7→ A.

The Proof Closure Property will be used together with the Cut-Elimination Theorem. The overall
idea is to apply a the Cut-Elimination Theorem, which blows up our proof exponentially, but allows us
to prove things that we otherwise could not have proved due to the presence of cut. Once we have what
we want in the closure of our proof, we apply the Proof Closure property to extract what we showed to
be in the closure with a polynomially-bounded proof.

5.6 Main Result

We are now ready to prove our main result, which relies heavily on the Cut-Elimination Theorem as
well as the Proof Closure Property.

Theorem 5.8 (Main Theorem). Let FProp = A(x1, ...xn) be any arbitrary classical propositional

tautology containing n distinct variables, and consider the formula F
′

Prop = A(x1, ...xn) ∨ ¬A(x1, ...xn).

Let FQBF be the prenex QBF translation of F
′

Prop where each quantifier is ∀, and let FIPL be Statman’s

translation of FQBF . If there exists a size-N DAG-like LJ[ ~ES ] proof of FIPL, where N is the number of

bits required to encode FIPL, then FProp has a DAG-like classical LK[ ~ES ] proof of size-O(N4).

5.7 Immediate Implications

Our main result implies that if Statman’s translation maps trivial instances of the law of excluded
middle in QBF to IPL instances which have polynomially-bounded proof complexity, then NP = coNP .
This leads to some immediate corollaries:

5.7.1 Conditional Separation Between Classical & Intuitionistic Logic

The most important implication of our main result is that under the assumption that NP 6= coNP ,
there is a superpolynomial separation between LK[ ~ES ] and LJ[ ~ES ]:

Corollary 5.9. The FIPL formulas have size-O(n) LK[ ~ES ] proofs, where n is the number of distinct

variables in FIPL, but unless NP = coNP, there are no LJ[ ~ES ] proofs of FIPL with polynomial upper
bounds.

An interesting point of note is how powerful LJ[ ~ES ] really is. LJ and LK are very similar, and LJ[ ~ES ]

is strictly stronger than LJ. But LK with cut is p-equivalent to any Frege system, and LJ[ ~ES ] has cut.
All of these things together suggest that it is a fairly powerful system.

5.7.2 Dangerous Reductions

The second implication of our main result is that Statman’s reduction is ‘dangerous’ in the sense that
unless NP = coNP , it translates some trivial formulas from QBF to very difficult formulas in IPL. In
order to formalize this notion, we take the formal definitions of what constitute dangerous and safe proof
complexity reductions from [HH06].
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Corollary 5.10. Unless NP = coNP, Statman’s reduction is (α,LJ[ ~ES ])-Explosive for every proof
system α for QBF which has polynomially-bounded proofs for every prenex instance of the law of excluded
middle.

6 Proposed Future Research

There are a few different avenues for further research. One potential direction is to continue research
in the areas defined by the four papers described above.

6.1 Continuing The Work Already Done

6.1.1 Further Research Involving The NHPS

As already mentioned, one of the motivations for developing the NHPS was to explore lower bounds
for graph algorithms that take advantage of local properties. An interesting avenue of research would be
to do just that. Is it possible to establish a framework more general than the NHPS which allows us to
translate lower bounds for known proof systems into lower bounds for graph algorithms?

6.1.2 Further Research Involving Dangerous Reductions

Although we gave an example of a provably dangerous reduction, we still lack a meaningful way of
characterizing such reductions so that researchers can predict which reductions will be dangerous and
therefore avoid them. Such a characterization would be very useful and interesting.

6.1.3 Further Research Involving IPL

Our work in Intuitionistic Logic has highlighted a few interesting open problems, all of which appear
to be fairly difficult.

The first open problem is to prove superpolynomial LJ lower bounds which do not depend on any
assumptions.

This first problem probably subsumes the second open problem, namely showing a superpolynomial
or even exponential separation between LK and LJ which does not depend on any assumptions. Another
way of phrasing this is as follows: Statman’s translation is probably explosive, but perhaps some other
safe translation is possible. Does a safe translation exist, or are all reductions from QBF to IPL
explosive? Since our conditional separation seems to show that IPL is weaker than QBF , it is reasonable
to conjecture that no safe translation exists. However, if a safe translation does exist, then it almost
certainly is not as natural or intuitive (no pun intended) as Statman’s.

The third open problem has to do with the reduction in the reverse direction: Does a safe translation
from IPL to QBF exist? Finding such a translation appears to be difficult, but it is reasonable to
conjecture that the answer is yes. One possible way to prove the opposite reduction is to further work
with the results from [Lad77], in which the author proves the PSPACE-Completeness of various systems
of Modal Logic, all of which use the same Kripke Semantics as Intuitionistic Logic.

6.2 A New Research Area: Resolution Size vs. Width vs. Space

Another potential direction is to work in a new area that is still closely related to the work that we
have been doing. There has been a fair amount of work done lately on the relationship between different
measures of complexity for RES proofs. The three most studied measures are refutation size, width,
and various different forms of space. The definitions of size and width can be formalized using a fairly
simple definition of what constitutes a RES proof, whereas the definition of space requires a slightly more
complicated formulation.
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Definition 6.1 (RES Proof). If F is an unsatisfiable set of clauses, then the sequence of clauses
π = C1, C2, ..., Ck is a RES refutation of F if the clauses in π meet the following requirements:

1. Ck = ∅ (the empty clause).

2. Each Ci appears in F (ie. is an input, or initial clause) or follows from two previous clauses in π
by the resolution rule.

If the graph underlying the structure of π is a tree (ie. each clause in π is part of at most one
application of the resolution rule), then the proof is said to be a Tree-Like T-RES refutation. Otherwise
it is said to be DAG-Like.

This allows us to define size and width:

Definition 6.2 (Size & Width). Let F and π be as above in Definition 6.1. If a RES proof π contains
k clauses, then it is said to have size k. The width of a clause C refers to how many literals it contains.
The width of a RES refutation π is equal to the width of its widest clause.

The definitions of the various different measures of space that we shall be discussing requires an
alternative definition of RES proof which requires the notion of configuration:

Definition 6.3 (Configuration-Style RES Proof). A configuration C is a set of clauses. If F is an
unsatisfiable set of clauses, then the sequence of configurations π = C1,C2, ...,Cx is a RES refutation of
F if C1 ⊆ F , ∅ ∈ Cx, and for each i < x, Ci+1 is obtained from Ci by one of the following rules:

1. deleting one or more of its clauses,

2. adding the resolvent of two clauses of Ci,

3. adding one or more of the clauses of F (initial clauses).

In addition, π is said to be Tree-Like if we replace rule 2 with the following:

2. adding the resolvent of two clauses of Ci and deleting the parent clauses

This leads us to our different definitions of space. Intuitively, space refers to the amount of memory
that is required in order to compute π. Note that for each of these measures, it is important to distinguish
between space for RES and clause space for T-RES.

Definition 6.4 (Clause Space). Let F be an unsatisfiable set of clauses and π be a RES (T-RES)
refutation of F as defined above in Definition 6.3. If each configuration Ci in π contains at most s
clauses, then π is a RES (T-RES) refutation bounded by (tree) clause space s.

Definition 6.5 (Variable Space). Let F be an unsatisfiable set of clauses and π be a RES (T-RES)
refutation of F as defined above in Definition 6.3. If each configuration Ci in π contains at most s
distinct variables, then we say that π is a RES (T-RES) refutation bounded by (tree) variable space s.

Definition 6.6 (Total Space). Let F be an unsatisfiable set of clauses and π be a RES (T-RES)
refutation of F as defined above in Definition 6.3. If for each configuration Ci in π,

∑

C∈Ci
Width(C) ≤

s, then π is a RES (T-RES) refutation bounded by (tree) total space s.

We shall abbreviate clause space, variable space, and total space of a formula F as CS(F ), V S(F ),
and TS(F ) respectively. In the Tree-Like cases, we will abbreviate them as TCS(F ), TV S(F ), and
TTS(F ), respectively. For each of these space measures, the (T )CS / (T )V S / (T )TS of a formula F
refers to the minimal (T )CS / (T )V S / (T )TS of any RES proof of F .
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It is easy to see that for all F , CS(F ) ≤ TS(F ), and V S(F ) ≤ TS(F ). The same holds for the
Tree-Like cases. V S(F ) and CS(F ) are incomparable, since each of these quantities can be made larger
than the other by choosing an appropriate example for F .

6.3 Major Results

6.3.1 Space & Games

The investigation of RES space has always been associated closely with the well-known Pebbling Game
and Pebbling Number of a graph. There are different versions of Pebbling Games, but in its simplest
form, the player tries to ‘pebble’ a DAG G = (V, E) in which every vertex has in-degree at most 2. The
leaves of G have in-degree 0 and are referred to as ‘Source’ nodes. A single vertex in G is referred to
as a ‘Target’ node, and has out-degree 0. All non-target nodes can have arbitrary out-degree, except
of course in the case where G is a tree, in which case the maximum out-degree is 1. The rules of the
pebbling game are as follows:

• At any point, the player may put a pebble on a source node.

• At any point, the player may remove a pebble.

• If both of a node’s children have pebbles on them, then the player may put a pebble on it.

• The game ends once the player puts a pebble on the target node.

Definition 6.7. The Pebbling Number of G, denoted Peb(G) is the minimum number of pebbles that the
player must be given in order for it to be possible to pebble the target node without violating any of the
above rules.

The pebbling game is related closely to RES clause space. Let F be any arbitrary unsatisfiable formula,
let π be a RES refutation of F , and let G be the DAG underlying the structure of π. It is not hard to
see that the clause space required to compute π is exactly equal to Peb(G). More specifically, the clause
space of a formula F is equal to the pebbling number of the DAG with the smallest pebbling number of
all DAGs underlying valid RES refutations of F . This shows that both general clause space as well as
tree clause space are related closely to the Pebbling Game.

Tree clause space is also related closely to our work with the Prover / Delayer Game. As already
mentioned above in Theorem 4.3, the results in [ET03] are the definitive work relating the Prover /
Delayer number PD(F ) of an unsatisfiable CNF formula to its tree clause space TCS(F ) by showing
that TCS(F ) = PD(F ) + 1. In other words, the Prover / Delayer Game perfectly captures the notion
of clause space for T-RES.

6.3.2 Tree Space & Size

In addition to pioneering the field and proving many other space results, Esteban & Torán also showed
that an upper bound on tree clause space gives an upper bound on the size of T-RES proofs:

Theorem 6.8 ([ET01]). Let F be an unsatisfiable formula on n distinct variables. If F has a T-RES

refutation requiring tree clause space s = TCS(F ), then it has a T-RES refutation of size
(

n+s

s

)

.

6.3.3 Space & Width

The definitive paper relating space and width is [AD03]. In it the authors prove that for unsatisfiable
k-CNF formulas, space is an upper bound on width:
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Theorem 6.9 ([AD03]). Let F be any unsatisfiable k-CNF formula. Then CS(F ) ≥ w(F ` ∅) − k,
where CS(F ) is the minimal clause space of refuting F , and w(F ` ∅) is the minimal width of refuting
F .

This is a very powerful result, because it can be used to derive space lower bounds for all formulas
for which width lower bounds are known.

6.3.4 Width & Size

The relationship between width & size is very important because it shows that lower bounds for width
imply lower bounds for size. This simplifies proofs for size lower bounds by allowing us to focus on lower
bounds for width. The main result linking width and size was [BSW01], but their results have since been
generalized in [Urq06]:

Theorem 6.10 ([BSW01]). Let Σ be a contradictory set of clauses with an underlying set of variables
V , S(Σ) the minimum size of a RES refutation of Σ, w(Σ) the maximum number of literals in a clause
in Σ, and w(Σ ` ∅) the minimal width of refuting Σ. Then

S(Σ) = exp

(

Ω

(

(w(Σ ` ∅) − w(Σ))2

|V |

))

6.3.5 Other Relationships

Another important result is [BS02], in which the author proves a number of interesting tradeoff results.
For example, he provides families of formulas for which

• there are linear size T-RES proofs and constant width T-RES proofs, but there is no T-RES proof
that has both small width and small size.

• there are RES proofs with constant clause space, and RES proofs with constant width, but there is
no RES proof that has both small width and small clause space.

• there are linear size RES proofs that also have constant width, but there is no RES proof that has
both small clause space and small size.

These results rely on the Pebbling Formulas, unsatisfiable formulas which are based on the Pebbling
Game described above.

6.4 Open Problems

This area of research has some interesting open problems. One such problem is to prove a separation
between clause space for T-RES and clause space for RES. The current best result seems to be the linear
separation in [ET03]. The authors show that for the Pebbling Formulas of the complete binary tree of
height h, the general clause space is at most 2h/3 + 3, but the tree clause space is at least h− 2. Surely
this separation can be improved. In addition, for the same formulas, the lower bound for general clause
space given in [Nor05] is Ω(

√
h). This also leaves quite a gap for improvement.

Other important open problems come from [Nor05], one of the most interesting recent papers in the
area. In it the author investigates the Pebd

Th
formulas, which are simply the pebbling formulas using

d colours built on the complete binary tree. The main result is a separation between width and space
showing that the Pebd

Th
formulas have RES proofs with constant width, but have no RES proofs with

clause space less than Ω(
√

h). This result leads to the following interesting conjectures / open problems.
Note that BW -Peb is the Black-White Pebbling Number of a Graph; the Black-White Pebbling game is
a simple variant of the Pebbling Game described above.
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Conjecture 6.11. For any constant d ≥ 2, CS(Pebd
Th

` ∅) = Θ(BW -Peb(Th)) = Θ(h)

Conjecture 6.12. For any constant d ≥ 2 and for G an arbitrary DAG with a unique target and with
all vertices having in-degree 0 or 2, C(Pebd

G ` ∅) = Ω(BW -Peb(G))
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