
Proof Complexity of Intuitionistic Propositional Logic

Alexander Hertel & Alasdair Urquhart ∗

November 29, 2006

Abstract

We explore the proof complexity of intuitionistic propositional logic (IPL). The problem of
determining whether or not an intuitionistic formula is valid is PSPACE-Complete via a reduction
from QBF . In view of this reduction (due to Statman), it is natural to compare the proof-theoretic
strength of a standard axiomatic system for IPL with a similar proof system for classical quantified
Boolean logic. In fact, the intuitionistic system seems to be weak in comparison with the latter, in the
following sense – unless a variant of Gentzen’s proof system LK is super (and therefore NP = coNP),
Statman’s reduction from QBF to IPL cannot even translate trivial classical instances of the law of
excluded middle into intuitionistic formulas having proofs with polynomial size upper bounds. An
immediate implication of this result is that unless the variant of LK for classical logic is a super proof
system, there is a superpolynomial separation between it and a similar variant of Gentzen’s system
LJ for Intuitionistic Logic.

1 Introduction

Intuitionistic propositional logic (IPL) is perhaps the best-studied non-classical logic. The validity
problem for intuitionistic logic appears to be intrinsically more complex than the corresponding problem
for classical logic. A well-known paper by Statman [Sta79] shows via a natural reduction from QBF
that the problem of determining whether a formula is intuitionistically valid is PSPACE-Complete.

The purpose of this paper is to explore the proof complexity of IPL, considered as a proof system
for a PSPACE-Complete set. Intuitionistic logic is weaker than classical logic, since it disallows proof
by contradiction; hence it is reasonable to conjecture that there are classical tautologies that are also
provable intuitionistically, but whose shortest constructive proofs are super-polynomially longer than
their minimal proofs in classical logic. From a complexity-theoretic perspective, IPL is in some regards
more tractable than classical logic. For example, it has feasible interpolation [Pud99, BP01]. Hence, it
is reasonable to conjecture that IPL lower bounds might be easier to establish than for classical logic.
The main theorem of this paper provides some evidence for this view. Although we do not show IPL to
be weak in an absolute sense, we show it to be weak relative to Statman’s translation. More specifically,
we show that unless the system LK[~ES] is super (and therefore NP = coNP), Statman’s reduction from
QBF to IPL cannot translate trivial classical instances of the law of excluded middle into intuitionistic
formulas with polynomially-bounded proofs. Since Statman’s translation is the obvious and natural
reduction to use, this result shows that if a more feasible reduction exists, then it must be complicated.
An immediate implication of this result is that unless the variant of Gentzen’s system LK for classical
logic is a super proof system, there is a superpolynomial separation between it and an extended form of
his system LJ for Intuitionistic Logic.

∗This research supported by NSERC and the University of Toronto Department of Computer Science

1

The overview of this paper is fairly straightforward. Section 7 contains the main result, and the
sections preceding it contain various theorems and lemmas which are needed to prove it.

In Section 2, we describe LJ, the standard sequent calculus system formulated by Gentzen for IPL.
Section 3 describes Statman’s translation from QBF to IPL and introduces the proof system LJ[~ES],
an augmented form of LJ which has been strengthened by including the extension variables from the
translation as axioms. This is the proof system that we use in our main result.

In Section 4 we show that it is possible to take any proof in an extended form of LJ and eliminate
all cuts not involving extension axioms (thereby producing a new potentially exponential proof) without
affecting the closure of the proof. In Section 5 we show that any sequent in the closure of a proof can
be derived efficiently. Together, Sections 4 and 5 constitute an important proof technique, since they
allow us to wander into the realm of exponentially-large proofs, take advantage of the reasoning which
is possible only there, and then extract what was learned back in the polynomially-bounded realm.

Section 6 contains two critical lemmas which are closely related to the ‘Disjunction Property’ of IPL.
As already stated, Section 7 contains the main result. This is followed by the main theorem’s imme-

diate implications, described in Section 8, and open problems, described in 9.

2 The System LJ

For the purposes of this paper, we are dealing with a sequent calculus for IPL in the style of Gentzen
[Sza69]. We will use capital letters A, B, C, ... to denote complex formulas, lower-case letters x, y, z, ... to
denote atomic formulas, and Greek letters Γ, ∆, Θ, ... to denote sets.

The proof system that we will be using is essentially the same as Gentzen’s system LJ. Our proofs
are tree-like, meaning that each sequent can be an input for at most one inference rule. Furthermore,
each sequent has singular right side; that is, there is at most one formula on the right-hand side of each
sequent. In addition, all axioms are of the form x 7→ x, where x is an atomic sentence letter. LJ is
formulated as follows:

axiom:

x 7→ x
where x is atomic

weakening:

left
Γ 7→ A

B, Γ 7→ A
and right

Γ 7→

Γ 7→ B

exchange:

left
Γ1, A, B, Γ2 7→ C

Γ1, B, A, Γ2 7→ C

contraction:

left
Γ1, A, A, Γ2 7→ B

Γ1, A, Γ2 7→ B

cut:

Γ 7→ A A, ∆ 7→ B

Γ, ∆ 7→ B

2

⊥ introduction:

left
⊥7→

and right
Γ 7→

Γ 7→⊥

¬ introduction:

left
Γ 7→ A

¬A, Γ 7→
and right

A, Γ 7→

Γ 7→ ¬A

∨ introduction:

left
A, Γ 7→ C B, ∆ 7→ C

A ∨ B, Γ, ∆ 7→ C
and right

Γ 7→ A

Γ 7→ A ∨ B
as well as

Γ 7→ A

Γ 7→ B ∨ A

∧ introduction:

left
A, B, Γ 7→ C

A ∧ B, Γ 7→ C
and right

Γ 7→ A ∆ 7→ B

Γ, ∆ 7→ A ∧ B

⊃ introduction:

left
Γ 7→ A B, ∆ 7→ C

A ⊃ B, Γ, ∆ 7→ C
and right

A, Γ 7→ B

Γ 7→ A ⊃ B

One important point of note is that if you remove the requirement of having only a single formula on
the right-hand side of a sequent, then the system LJ becomes the system LK for classical logic [Sza69]. In
other words, every LJ proof is also an LK proof. Technically speaking, LK is a formulation for first-order
logic, but we are only interested in its propositional fragment. There has been some effort to distinguish
this propositional part of LK by calling it PK, but we shall use the more standard form, since it is clear
that we are dealing with propositional logic.

3 Statman’s Translation & LJ[~ES]

In this section we define an augmented form of LJ that includes extension axioms. We then review
Statman’s reduction from QBF to IPL. Next we define a specific form of LJ augmented with Statman’s
extension axioms. Finally, we prove that it is easy to extract the ultimate y extension axiom from
Statman’s translation.

3.1 Extended LJ

Definition 3.1. We shall use LJ[~E] to denote an augmented form of LJ where ~E = E1, ..., En, and each
Ei contains the pair of sequents A ◦ B 7→ yA◦B and yA◦B 7→ A ◦ B with the restriction that A ◦ B must
be a complex formula, and yA◦B is an atom not appearing in E1, ..., Ei−1. We allow the sequents in ~E

to be used as axioms in any LJ[~E] proof. We refer to LJ[~E] as an Extended Sequent Calculus, and the
two sequents in each Ei are referred to as extension axioms. This same augmentation can be defined for
the system LK.

3

3.2 Statman’s Translation

In his paper showing that IPL is PSPACE-Complete [Sta79], Statman proves this result by providing
a reduction from QBF to IPL. This translation is very important to our main result, and proceeds as
follows:

1. As input take a QBF formula FQBF = Qnxn, ..., Q1x1B0, where B0 is a quantifier-free prenex
formula, and each Qi = ∀ or ∃.

2. Let y0, ..., yn be entirely new variables not appearing in FQBF . These are extension variables that
are necessary to keep our translation from growing exponentially.

3. Define a series of B
√

i formulas as follows (note that these are not extension variables, but rather
are just shorthand for the purposes of this reduction; similarly, A ↔ B is shorthand for (A ⊃
B) ∧ (B ⊃ A)):

• B
√

0 = ¬¬B0 ↔ y0

• B
√

k = ((xk ∨ ¬xk) ⊃ yk−1) ↔ yk if Qk = ∀

• B
√

k = ((xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1)) ↔ yk if Qk = ∃

4. Output FIPL = B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...))

3.3 Proof of Correctness

A full proof of correctness showing that FQBF is true if and only if FIPL is intuitionistically valid does
not add to the understanding of this paper, so we shall refer the interested reader to [Sta79]. However,
part of the proof is of interest. Specifically, Statman’s proof of correctness implicitly proves that a cut-
free tree-like sequent calculus formulation of LJ p-simulates Boolean Truth Trees (BTT), a brute-force
tree-like system for QBF .

3.3.1 Boolean Truth Trees

The BTT proof system is defined as follows:

• Every BTT proof is a tree in which every node contains a fully-quantified QBF formula. These
formulas may contain constants 0 and 1. The root contains the formula which is to be proven true,
and each leaf contains a formula in which all variables have been replaced by constants, and it
consequently evaluates to 1, thereby showing that the formula is true. (It is most convenient to
picture the proof with the root at the top and the leaves at the bottom).

• Every internal node v in the proof tree has either one or two children. If the outermost quantifier in
the formula F at v is ∃x, then v has one child containing F

′

, which is F with ∃x removed, and every
instance of x replaced by an appropriate constant such that F

′

is true. If the outermost quantifier
in the formula F at v is ∀x, then v has two children, one containing F0, where all instances of x
have been replaced by 0, and the other containing F1, where all instances of x have been replaced
by the value 1.

It is easy to see that BTT is sound; if a BTT tree can be built for a QBF formula F , then F is
true. It is also easy to see that BTT is complete; every true QBF formula has a BTT proof. This is a
brute-force proof system, because it is extremely inefficient; the size of a BTT proof is exponential in the
number of ∀ quantifiers contained in the formula to be proved true.

4

3.3.2 BTT Example

Consider the formula ∀x∃y∀z(((¬x ∧ ¬y) ∨ z) ∨ ((x ∧ y) ∨ z)). The following BTT proof shows that it
is a true QBF formula:

∀x∃y∀z(((¬x ∧ ¬y) ∨ z) ∨ ((x ∧ y) ∨ z))
[0/x] [1/x]

∃y∀z(((1 ∧ ¬y) ∨ z) ∨ ((0 ∧ y) ∨ z))
[0/y]

∀z(((1 ∧ 1) ∨ z) ∨ ((0 ∧ 0) ∨ z))
[0/z] [1/z]

((1 ∧ 1) ∨ 0) ∨ ((0 ∧ 0) ∨ 0)

= 1

((1 ∧ 1) ∨ 1) ∨ ((0 ∧ 0) ∨ 1)

= 1

∃y∀z(((0 ∧ ¬y) ∨ z) ∨ ((1 ∧ y) ∨ z))
[1/y]

∀z(((0 ∧ 0) ∨ z) ∨ ((1 ∧ 1) ∨ z))
[0/z] [1/z]

((0 ∧ 0) ∨ 0) ∨ ((1 ∧ 1) ∨ 0)

= 1

((0 ∧ 0) ∨ 1) ∨ ((1 ∧ 1) ∨ 1)

= 1

3.3.3 P-Simulation Result

We shall now make explicit the implicit p-simulation result in Statman’s proof of correctness; this
provides a deeper insight into the mechanisms at play underlying the reduction.

If we forget about the extension variables, then Statman’s translation converts the formula FQBF to
an intermediate formula A+ as follows:

• B+

0 = ¬¬B0

• B+

k = (xk ∨ ¬xk) ⊃ B+

k−1
if Qk = ∀

• B+

k = (xk ⊃ B+

k−1
) ∨ (¬xk ⊃ B+

k−1
) if Qk = ∃

Note that A+ = B+
n . Statman’s proof of correctness proceeds in two parts. He first shows that

FQBF is true if and only if A+ is intuitionistically provable. Next he proves that A+ is intuitionistically
provable if and only if FIPL is. We are only interested in the forward direction of the first part; the
implicit p-simulation result is given by the proof that FQBF being true implies that A+ is intuitionistically
provable.

The overall idea of the simulation is to take the brute-force BTT proof tree TBTT for FQBF , and by
way of very local transformations, build an exactly analogous cut-free tree-like LJ proof TLJ. In order to
prove this result we shall make use of the following Lemma:

Lemma 3.2. Let A be any intuitionistically valid formula, let l1, ..., ln be a sequence of literals containing
all of the variables in A, and let V be the classical truth assignment which sets all of l1, ..., ln to true. If
A is true under V , then there exists a cut-free, tree-like LJ proof of l1, ..., ln 7→ A, and if A is false under
V , then there exists a cut-free, tree-like LJ proof of l1, ..., ln, A 7→; in either case the size of the proof is
linear in the number of logical particles contained in A, and therefore has size O(n).

The proof is by induction on the number of logical particles in A and is completely straightforward;
the basis consists of axioms, which contain no logical particles, and the induction step has eight cases
to be considered, four for when A is true, and four for when A is false. An interesting corollary to this
Lemma is that the double negation in Statman’s translation is unnecessary, and in fact is better omitted.

This brings us to our p-simulation result:

Theorem 3.3. Cut-free tree-like LJ p-simulates BTT.

Proof: First build TBTT as follows:

1. The root contains `BTT FQBF , where FQBF = Qnxn, ..., Q1x1B0.

2. For every tree node containing `BTT ∀xi, Qi−1xi−1, ..., Q1x1B0, create two new children
`BTT Qi−1xi−1, ..., Q1x1B0[0/xi] and `BTT Qi−1xi−1, ..., Q1x1B0[1/xi].

3. For every tree node containing `BTT ∃xi, Qi−1xi−1, ..., Q1x1B0, create one new child node,
either `BTT Qi−1xi−1, ..., Q1x1B0[0/xi] or `BTT Qi−1xi−1, ..., Q1x1B0[1/xi], depending on which
form makes the formula true.

5

Using TBTT as a template, build TLJ as follows (note that unlike with most LJ proofs which have the
root at the bottom, we are building a proof with the root at the top so as to make the relationship with
BTT as clear as possible):

1. The root contains 7→ A+ (which is Statman’s translation of FQBF from step 1 of the TBTT con-
struction above).

2. For every tree node containing ln, ..., lk+1 7→ (xk ∨¬xk) ⊃ B+

k−1
, introduce the following three new

nodes:

ln, ..., lk+1 7→ (xk ∨ ¬xk) ⊃ B+

k−1

ln, ..., lk+1, xk ∨ ¬xk 7→ B+

k−1

ln, ..., lk+1, xk 7→ B+

k−1
ln, ..., lk+1,¬xk 7→ B+

k−1

Note that this requires only one application of ∨-Left, and one application of ⊃-Right (remember
that we are looking at the proof upside-down). This step corresponds exactly to step 2 of the TBTT

construction above.

3. For every tree node containing ln, ..., lk+1 7→ (xk ⊃ B+

k−1
) ∨ (¬xk ⊃ B+

k−1
), introduce the following

two new nodes:

ln, ..., lk+1 7→ (xk ⊃ B+

k−1
) ∨ (¬xk ⊃ B+

k−1
)

ln, ..., lk+1 7→ lk ⊃ B+

k−1

ln, ..., lk+1, lk 7→ B+

k−1

Note that this requires only one application of ⊃-Right, and one application of ∨-Right. This step
corresponds exactly to step 3 of the TBTT construction above.

This construction halts once we reach the leaves of TBTT. Its 1-leaves correspond to sequents of the
form ln, ..., l1 7→ ¬¬B0 in TLJ, but ln, ..., l1 entail ¬¬B0, so by Lemma 3.2, each of these sequents has a
size-O(n) cut-free, tree-like LJ proof. In effect, there is a series of local transformations which directly
relates the steps in TBTT to the steps in TLJ such that each local step in TBTT grows at most linearly to
become a local step in TLJ. It is therefore easy to see that the size of TLJ is linear in the size of TBTT.
This completes the p-simulation.

In effect, the obvious brute-force BTT proof translates into a brute-force cut-free, tree-like LJ proof.

It is interesting to note that the Disjunction Property of IPL (See section 6) is what allows for this
p-simulation to work. However, it is also the Disjunction Property which allows for the proof of our main
theorem, which ultimately shows that the translation is not feasible. The Disjunction Property therefore
acts as both an aid as well as a hindrance to Statman’s reduction.

3.4 The System LJ[~ES]

Given that we have the definition of LJ[~E] as well as the details of Statman’s translation (the full

version, with extension variables), we may now define the system LJ[~ES]. This is the system which we
will use for our main theorem in Section 7.

6

Definition 3.4. We define LJ[~ES] to be LJ augmented with Statman’s extension axioms for a formula
FQBF = Qnxn, ..., Q1x1B0, where B0 is a quantifier-free prenex formula, and each Qi = ∀ or ∃. More

precisely, ~ES = E0, ..., En, where

• E0 = {¬¬B0 7→ y0, y0 7→ ¬¬B0}

• Ek = {(xk ∨ ¬xk) ⊃ yk−1 7→ yk, yk 7→ (xk ∨ ¬xk) ⊃ yk−1} if Qk = ∀, and

• Ek = {(xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1) 7→ yk, yk 7→ (xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1)} if Qk = ∃

3.5 Manipulating the Result of Statman’s Translation

For the purpose of our main theorem, instead of working with FIPL, the result of Statman’s translation,
we will need to access its innermost extension variable. We therefore need to show that this extension
variable can be efficiently extracted.

Lemma 3.5. Let P be a size-N LJ[~ES]-proof of 7→ FIPL ie. of 7→ B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃

yn))...)), where N is the number of bits required to encode P . We can produce a size-O(N 3) LJ[~ES] proof
P

′

of 7→ yn which contains every possible extension axiom as a sequent.

Proof: First note that although LJ[~ES] does not have the rule of modus ponens, we can simulate it
using cut with nothing more than a polynomial increase in proof-size: Suppose we have proofs of Γ 7→ A,
Γ 7→ A ⊃ B, A 7→ A, and B 7→ B. From these we can produce a proof of Γ 7→ B as follows:

. . .
... . .

.
P1

Γ 7→ A

. . .
... . .

.
P2

Γ 7→ A ⊃ B

.. .
... . .

.
P3

A 7→ A

.. .
... . .

.
P4

B 7→ B ⊃-Left
A, A ⊃ B 7→ B

Cut
Γ, A 7→ B

Cut
Γ ∪ Γ 7→ B

...
Weaken

Γ 7→ B

Therefore, our size-N LJ[~ES] proof P of 7→ B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...)) corresponds to
the proof P2 of Γ 7→ A ⊃ B, so to simulate modus ponens, we need only show that we can create proofs
of the analogs of Γ 7→ A, A 7→ A, and B 7→ B that are short relative to N , the length of P2.

In our case, Γ 7→ A is of the form 7→ B
√

i for some B
√

i . Each B
√

i is associated with an Ek, which contains
two extension axioms, one of the form Formula 7→ V ariable and the other of the form V ariable 7→

Formula. In other words, B
√

i = (F ⊃ v) ∧ (v ⊃ F), and can be proved as follows:

F 7→ v ⊃-Right
7→ F ⊃ v

v 7→ F ⊃-Right
7→ v ⊃ F ∧-Right

7→ (F ⊃ v) ∧ (v ⊃ F)

Therefore we can construct P1 in our modus ponens simulation using a constant-sized proof. Note

that this proof includes both extension axioms associated with B
√

i .

In our case, A 7→ A is of the form B
√

i 7→ B
√

i for some B
√

i . This can be proved by first proving 7→ B
√

i ,

and then using Weakening-L to prove B
√

i 7→ B
√

i . Therefore we can construct P3 in our modus ponens
simulation using a constant-sized proof.

7

The case of B 7→ B is a little more complicated, and is of the form

B
√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...)) 7→ B
√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...)). As
shorthand, we will also refer to this sequent as FIPL 7→ FIPL. The proof P4 of this sequent is constructed
as follows:

7→ B
√

i

.
.

B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...) 7→ B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...)
Weaken

B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...), B
√

i 7→ B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...)
⊃-Right

B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...) 7→ B
√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...))
⊃-Left

B
√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...)) 7→ B
√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...))

Repeat this process at most n times, each time stripping off one B
√

i from each side. This will yield

the first line of P4 to be yn 7→ yn, an axiom. We already showed that 7→ B
√

i has a constant-sized proof,
so the total length of our proof of P4 will be linear in n, but since FIPL occurs in P , n is O(N), so each
P4 adds at most O(N2) to the size of our modus ponens simulation.

Since P1 and P3 have constant size, P2 has size N , and P4 has size-O(N2), every application of modus
ponens adds one P4 and therefore O(N2) to the size of our proof. In order to get at yn, we must apply
modus ponens n times, but as we already said, n is O(N), so our entire proof of 7→ yn requires size-O(N3).

Therefore, if given a size-N proof of 7→ B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

n−1 ⊃ (B
√

n ⊃ yn))...)), we can repeatedly

apply modus ponens with the 7→ B
√

i sequents to produce a size-O(N 3) of 7→ yn. In addition, since each

subproof of 7→ B
√

i contains both extension axioms, and since all 7→ B
√

i s are present, our overall proof
of 7→ yn contains each possible extension axiom, as required.

4 Cut-Elimination

In this section we extend the cut-elimination technique developed by Buss and Pudlák in [BP01] (which

itself was adapted from [BM99]) so that it holds for any system LJ[~E].

4.1 Definitions

We shall make use of the following definitions:

Definition 4.1. The closure of a proof P , denoted cl(P), is the smallest set of sequents which includes
the sequents of P and is closed under both weakening and cut.

Definition 4.2. In a proof P , the direct ancestors of a formula A are all instances of A comprising an
unbroken path towards the leaves of P from A to the first instance where A was introduced.

Definition 4.3. A principal cut is a cut in which at least one of its two input sequents is an extension
axiom.

4.2 Cut-Elimination Theorem

Theorem 4.4 (Cut-Elimination). For any proof P in any system LJ[~E], it is possible to eliminate all
non-principal cuts from P to produce a pseudo-cut-free proof P

′

such that cl(P
′

) ⊆ cl(P).

8

L1
Lk

Cut
Γ1 7→ A ◦ B A ◦ B, Γ2 7→ C

Γ1, Γ2 7→ C

Lower R

Upper R
RmR1

Rj

Lower L

Upper L
Li

Figure 1: The Template For Cut-Elimination

Proof: We will first show the general technique for eliminating a cut on an arbitrary binary logical
connective ◦, and will then provide the details specific to the connectives ⊃,∨,∧. Finally, we will show
how to remove cuts on atoms. While reading this proof, please refer to Figure 1 below.

We wish to eliminate a cut on the formula A ◦ B. Let L be the proof of the left-hand input to the
cut, and let R be the proof of the right-hand input to the cut. Let ‘lower L’ be the portion of L which
contains sequents with direct ancestors of A◦B appearing in the succedent. In other words, each sequent
in lower L is of the form Θ 7→ A ◦ B. At the upper border of lower L, there are k subproofs labeled Li,
each of which introduces A ◦B for the first time along its branch of the proof. More specifically, each Li

proves the sequent Πi 7→ A ◦ B.
Similarly, ‘lower R’ is the portion of R in which the sequents contain the direct ancestors of A ◦B in

the antecedent. In other words, each sequent in lower R is of the form A ◦ B, Θ 7→ X . Along the upper
border of lower R, there are m subproofs labeled Rj , each of which introduces A ◦ B for the first time
along its branch of the proof. More specifically, each Rj proves the sequent A ◦ B, ∆j 7→ Dj .

In order to eliminate the cut on A ◦ B, we perform the following steps:

1. For i = 1 to k create a proof Ri∗ by taking a copy of R and doing the following: modify each Rj

along the entire border between upper and lower R so that instead of proving A ◦ B, ∆j 7→ Dj ,
each Rj now proves Πi, ∆j 7→ Dj . In the case where A ◦ B was introduced by weakening, simply
introduce Πi via weakening instead. In all other cases, take a copy of Li (which is where Πi comes
from) and splice it into each Rj along the entire border in order to replace A ◦ B with Πi (the
details of this splicing depend on which connective is being eliminated, see below). To be clear, we
do this k times; for each of the k separate Ri∗s that we are building, splice each of the k Lis in
once with each of the m Rjs appearing in upper R.

2. Next, to complete the construction of each Ri∗, replace each sequent A◦B, Θ 7→ X in lower R with
the sequent Πi, Θ 7→ X . Each Ri∗ therefore proves Πi, Γ2 7→ C instead of A ◦ B, Γ2 7→ C.

3. Modify L: First, replace each Li in upper L with Ri∗. Now every sequent along the border between
upper and lower L is no longer Πi 7→ A◦B, it is Πi, Γ2 7→ C. Next, replace each sequent Θ 7→ A◦B
in lower L with Θ, Γ2 7→ C. Therefore, instead of proving Γ1 7→ A ◦ B, L now proves Γ1, Γ2 7→ C,
which was precisely the result of our cut, so it has been eliminated.

It is not hard to see that this process of eliminating cuts does not add any new sequents to the
closure of the proof; our cut-elimination produced new sequents in only three ways: Firstly, we created
new sequents while constructing the Ri∗s when we replaced each A ◦ B, Θ 7→ X with the new sequent

9

Πi, Θ 7→ X . However, each Li proves the sequent Πi 7→ A ◦B, and when we cut this with A ◦B, Θ 7→ X ,
we get Πi, Θ 7→ X , showing that it was in the original closure of P .

Secondly, we created new sequents while modifying lower L when we replaced each sequent Θ 7→ A◦B
in lower L with the new sequent Θ, Γ2 7→ C. However, when we cut Θ 7→ A ◦ B with A ◦ B, Γ2 7→ C
(which was the original result of R), we get Θ, Γ2 7→ C, showing that it too was in the original closure
of P .

Finally, we created new sequents during the splicing of the Lis into the Rjs. Below, alongside the
details of how to actually perform the splicing, we will show that each of these new sequents is in the
closure of the original proof.

These were the only types of sequents which we introduced during our cut-elimination of binary
connectives; all others came from the original proof P . Therefore, the cut elimination technique does
not introduce any new sequents to the closure.

All that remains to be shown is how to splice Li into each Rj to turn A ◦B, Γ2 7→ C into Πi, ∆j 7→ Dj

for each binary connective, and that the closure condition is satisfied. Each Li proves the sequent
Πi 7→ A ◦ B, which is itself an extension axiom, or was introduced by weakening or ◦-Right. Similarly,
each Rj proves the sequent A ◦ B, ∆j 7→ Dj , which is itself an extension axiom, or was introduced by
weakening or ◦-Left. We must show how to combine each of these potential Lis with each of the Rjs to
get Πi, ∆j 7→ Dj :

Usually replacing A ◦ B by Πi requires splicing, but in the case where Rj introduced A ◦ B by
weakening, no splicing is required; simply weaken to get Πi rather than A ◦ B. Each of the remaining
combinations is spliced as follows:

Case 1

If both Πi 7→ A ◦ B and A ◦ B, ∆j 7→ Dj are extension axioms of the form yA◦B 7→ A ◦ B and
A ◦ B 7→ yA◦B, simply get yA◦B 7→ yA◦B by using a single principal cut.

Case 2

If Πi 7→ A ◦ B is an extension axiom of the form yA◦B 7→ A ◦ B and A ◦ B, ∆j 7→ Dj was introduced
by ◦-Left, again get yA◦B , ∆j 7→ Dj by using a single principal cut.

Case 3

If Πi 7→ A ◦ B was introduced by ◦-Right and A ◦ B, ∆j 7→ Dj is an extension axiom of the form
A ◦ B 7→ yA◦B, once again get Πi 7→ yA◦B by using a single principal cut.

Case 4

However, if both Πi 7→ A ◦ B and A ◦ B, ∆j 7→ Dj came from introduction rules, then splicing to get

Πi, ∆
α
j , ∆β

j 7→ Dj is somewhat more complicated and depends on what connective ◦ represents.

Case 4a If A ◦ B is the formula A ⊃ B, then Li is of the form

. . .
... . .

.
Li

Πi, A 7→ B
⊃-Right

Πi 7→ A ⊃ B

and Rj is of the form

10

. . .
... . .

.
Rjα

∆α
j 7→ A

. . .
... . .

.
Rjβ

B, ∆β
j 7→ Dj

⊃-Left
A ⊃ B, ∆α

j , ∆β
j 7→ Dj

we may therefore splice them together as follows:

. . .
... . .

.
Rjα

∆α
j 7→ A

.. .
... . .

.
Li

Πi, A 7→ B
Cut

Πi, ∆
α
j , 7→ B

.. .
... . .

.
Rjβ

B, ∆β
j 7→ Dj

Cut
Πi, ∆

α
j , ∆β

j 7→ Dj

to produce Πi, ∆j 7→ Dj , as required. Note that Πi, ∆
α
j , 7→ B is a new sequent that potentially did not

occur in our original proof, but it was produced via cut from sequents from the original proof, so no new
sequents are added to the closure.

Case 4b If A ◦ B is the formula A ∨ B, then Li is of the form

. . .
... . .

.
Li

Πi, 7→ A
∨-Right

Πi 7→ A ∨ B

and Rj is of the form

. . .
... . .

.
Rjα

A, ∆α
j 7→ Dj

. . .
... . .

.
Rjβ

B, ∆β
j 7→ Dj

∨-Left
A ∨ B, ∆α

j , ∆β
j 7→ Dj

we may therefore splice them together as follows:

. . .
... . .

.
Li

Πi, 7→ A

. . .
... . .

.
Rjα

A, ∆α
j 7→ Dj

Cut
Πi, ∆

α
j , 7→ Dj

Weaken
Πi, ∆

α
j , ∆β

j 7→ Dj

to produce Πi, ∆j 7→ Dj , as required (the case involving Πi, 7→ B is entirely similar; just use Rjβ). Note
that Πi, ∆

α
j , 7→ Dj is a new sequent that potentially did not occur in our original proof, but it was

produced via cut from sequents from the original proof, so no new sequents are added to the closure.

11

Case 4c If A ◦ B is the formula A ∧ B, then Li is of the form

. . .
... . .

.
Liα

Πα
i , 7→ A

. . .
... . .

.
Liβ

Πβ
i , 7→ B

∧-Right
Πα

i , Πβ
i 7→ A ∧ B

and Rj is of the form

. . .
... . .

.
Rj

A, ∆j 7→ Dj
∧-Left

A ∧ B, ∆j 7→ Dj

we may therefore splice them together as follows:

. . .
... . .

.
Liα

Πα
i , 7→ A

.. .
... . .

.
Rj

A, ∆j 7→ Dj
Cut

Πα
i , ∆j , 7→ Dj

Weaken
Πα

i , Πβ
i , ∆j 7→ Dj

to produce Πi, ∆j 7→ Dj , as required (the case involving B, ∆j 7→ Dj is entirely similar; just use Liβ).
Note that Πα

i , ∆j , 7→ Dj is a new sequent that potentially did not occur in our original proof, but it was
produced via cut from sequents from the original proof, so no new sequents are added to the closure.

Cases 1 − 3 above introduce only principal cuts, which do not have to be eliminated. Note that each
of the constructions in Case 4 is working to eliminate a cut on a binary connective, but in the process
introduces at least one new cut. However, this is all right, since the only cuts being introduced are on
simpler formulas, so this process when iterated will inevitably result in a proof in which the only cuts
remaining are on atoms. As our last case, we must therefore show how cuts on atoms may be removed
without introducing any new cuts at all:

The Atomic Case

The atomic case is fairly simple, and does not involve notions such as upper and lower L or R. Suppose
we wish to eliminate a cut on an atomic formula x such as in

. . .
... . .

.
L

Γ1 7→ x

. . .
... . .

.
R

x, Γ2 7→ C
Cut

Γ1, Γ2, 7→ C

Note that x could be a normal variable, or an extension variable yA◦B . All axioms in L are either
of the form x 7→ x or A ◦ B 7→ yA◦B, and every sequent in L is of the form Θ 7→ x. The atomic
cut-elimination proceeds as follows: First, take L, and replace each sequent Θ 7→ x by Θ, Γ2 7→ C. The
result is a proof of Γ1, Γ2 7→ C in which all of the leaves are either x, Γ2 7→ C or A ◦ B, Γ2 7→ C.

For each leaf of the form x, Γ2 7→ C, simply place a copy of R, which proves x, Γ2 7→ C, on top of it.
It is not hard to see that the closure of the proof is not affected; we introduced the sequents Θ, Γ2 7→ C

12

by modifying Θ 7→ x, but when we cut Θ 7→ x with x, Γ2 7→ C (which was the original result of R), we
get Θ, Γ2 7→ C, showing that it too was in the original closure of P .

For each leaf of the form A ◦B, Γ2 7→ C, rather than adding R on top, add the following subproof on
top instead:

A ◦ B, 7→ yA◦B

. . .
... . .

.
R

yA◦B , Γ2 7→ C
P.Cut

A ◦ B, Γ2 7→ C

The cut is a principal cut, so it will not have to be eliminated. In addition, the axiom A ◦B, 7→ yA◦B

which we introduced is not new; it was the original sequent which we modified in order to require this
subproof in the first place, and therefore is not a new addition to the closure.

In effect, we can eliminate cuts on atoms such that no new non-principal cuts are introduced, thereby
concluding the proof that cuts can be eliminated even in the presence of extension axioms.

5 The Proof Closure Property

In this section we formally prove the Proof Closure Property which is stated but never proved in
[BM99] and [BP01]. Informally, the Proof Closure Property guarantees that any sequent in the closure

of an LJ[~ES] proof P can be derived via a polynomial number of cuts and weakenings from the sequents
in P . This property is strongly related to resolution involving Horn clauses. For more information on
these topics, please refer to [Sch89].

Definition 5.1. A Horn clause is a clause in which at most one literal is positive. A Horn formula is
one in which every clause is a Horn clause.

Lemma 5.2. Every unsatisfiable Horn formula F has a size-O(n) regular input resolution refutation,
where n is the number of distinct variables in F .

Proof: An important fact to note is that every unsatisfiable Horn formula F has at least one clause
containing just a single positive literal. To see this, consider a Horn formula in which every clause
contains one or more negative literals; setting every variable to false therefore satisfies it, since it sets
every clause to true. The fact that F contains a positive unit clause will allow us to build a short DLL
refutation tree. Let {x1} be F ’s unit clause. Build a DLL tree based on x1; the branch where x1 is set
to false terminates immediately, and the other branch gives us the formula F �x1=T , which is clearly
still an unsatisfiable Horn formula since restrictions cannot add positive literals. Therefore F �x1=T

contains a positive unit clause, call it {x2}. Simply repeat this process of building the DLL tree, each
time branching on the positive unit variable. Since there are only n variables, and since one branch
always terminates immediately, this process yields a size-O(n) DLL tree. This tree can easily be turned
into a resolution refutation by turning it upside down. It is not hard to see that since DLL trees are
regular, this refutation is also regular, and since every resolution step involves an input clause, it is also
an input resolution, as required.

Corollary 5.3. Given any set of Horn clauses Σ and any Horn clause H such that Σ `RES H, there
exists a size-O(N) regular input resolution derivation of D ⊆ H from Σ, where N is the number of bits
required to encode Σ.

Proof: Let φ be any minimal truth assignment which sets H to false. Since Σ |=RES H , we know that
Σ �φ is unsatisfiable. Therefore, by Lemma 5.2, Σ �φ has a size-O(n) regular input resolution refutation,

13

call it R, where n is the number of distinct sentence letters in Σ �φ. All of the literals in H were
eliminated, so this resolution refutation never resolves on H ’s literals. It is therefore easy to see that if
we create R

′

by replacing every clause in R that came from Σ �φ with its corresponding clause in Σ, the
literals from H are present and will simply be carried down the proof so that instead of proving ∅ like
R did, R

′

proves D ⊆ H , and its size is clearly bounded by O(n). Since n is bounded above by N , the
size of R

′

is bounded by O(N), as required.

Lemma 5.4 (Proof Closure Property). Let P be a size-N LJ[~ES] proof, where N is the number of
bits required to encode P . If Γ 7→ A ∈ cl(P) then there exists a size-O(N 2) tree-like and a size-O(N)

DAG-like LJ[~ES]-proof of Γ 7→ A.

Proof: It is easy to see that sequents are very similar to Horn clauses. A singular right-side sequent
Γ 7→ A is interpreted as meaning that a conjunction of all the formulas in Γ implies A. A Horn clause
(¬x1 ∨ ¬x2 ∨ ... ∨ ¬xi ∨ xj) is equivalent to (x1 ∧ x2 ∧ ... ∧ xi ⊃ xj). This gives rise to the following
translation between sequents and Horn clauses: if given a sequent A1, A2, ..., Ai 7→ Aj where the As are
formulas or negated formulas, we convert this sequent to the Horn clause by replacing each Ai with a
variable xi to give (¬x1 ∨ ¬x2 ∨ ... ∨ ¬xi ∨ xj). It is easy to see that a sequent with no formula on the
right-hand side corresponds to a Horn clause containing no positive literal. Furthermore, a cut on two
sequents corresponds to the resolution of two Horn clauses.

Therefore, suppose that we have an LJ[~ES] proof P of size N and we know that Γ 7→ A ∈ cl(P). As
shown above, translate the sequents S1, S2, ..., Sk in P to Horn clauses. These clauses comprise our initial
set of clauses Σ upon which we will resolve. Let H be the Horn clause corresponding to the sequent
Γ 7→ A. Since Γ 7→ A ∈ cl(P), we know by Corollary 5.3 that there is a size-O(N) linear input resolution
derivation R of D ⊆ H from Σ. Translate the clauses in R back into sequents. This corresponds to a
size-O(N) derivation of Γ 7→ A from the sequents S1, S2, ..., Sk in P using cut. To complete the proof,

simply weaken D to get H . If our LJ[~ES] proof is required to be tree-like, then add a proof of each
S1, S2, ..., Sk immediately above it. Each of these proofs is a sub-proof of P , and therefore has size at
most O(N). Since there are at most O(N) Sis, this gives an overall size-O(N 2) LJ[~ES]-proof of Γ 7→ A

for tree-like proofs. If our LJ[~ES] proof can be DAG-like, then these proofs are not necessary, and we

have an overall size-O(N) LJ[~ES]-proof of Γ 7→ A.

6 The Disjunction & Implication Properties

Normally the Disjunction Property in intuitionistic propositional logic states that if Γ contains no
formula containing ∨, then Γ `IPL A∨B implies that Γ `IPL A or Γ `IPL B. However, this form of the
Disjunction Property fails when applied to certain extension axioms (for example, just take an extension
axiom with Γ = y on the left where y is an extension variable, and any formula containing ∨ as the
major logical particle on the right). We must therefore prove a weaker form of the Disjunction Property
that is still strong enough to help us prove our main result:

Lemma 6.1 (Modified Disjunction Property). If P is a LJ[~ES]-proof of the sequent l1, ..., lk 7→ A∨B
such that the only cuts in P are principal cuts, l1, ..., lk are literals which do not include any y extension
variables, then there either exists a proof P

′

of l1, ..., lk 7→ A or of l1, ..., lk 7→ B in which all cuts are
principal cuts such that cl(P

′

) ⊆ cl(P).

Proof: Suppose that P is a LJ[~ES]-proof of the sequent l1, ..., lk 7→ A ∨ B such that the only cuts in P
are principal cuts and l1, ..., lk are literals which do not include any y extension variables as above. Since
P does not contain normal cuts, l1, ..., lk 7→ A ∨B could only have come from one of the following rules:

1. ∨-Right

14

2. Weaken-Right

3. Weaken-Left

4. Contraction-Left

5. APrincipalCut

In the first case, the penultimate line in P was either l1, ..., lk 7→ A or l1, ..., lk 7→ B, so we are done.
In the second case, the penultimate line in P was l1, ..., lk 7→, which can be weakened to get what we
want, and again we are done.

The next three cases are more complicated. In the weakening-left case, the only difference is that
the left-hand side of the previous sequent contained one fewer literal. In the contraction case, the only
difference is that the left-hand side of the previous sequent contained one more duplicated literal. In our
final case, if l1, ..., lk 7→ A ∨ B came from a principal cut, then this cut must have been on the sequent
l1, ..., lk 7→ y and the extension axiom y 7→ A ∨ B. The sequent l1, ..., lk 7→ y could only have come from
one of the following rules:

1. Weaken-Right

2. Weaken-Left

3. Contraction-Left

4. APrincipalCut

In the first case, the previous line was l1, ..., lk 7→, which can be weakened to l1, ..., lk 7→ A, and we are
done. The weakening and contraction cases are similar to the ones before; each just affects the number
of literals on the left by one. Finally, if l1, ..., lk 7→ y came from a principal cut, then this cut must have
been on the sequent l1, ..., lk 7→ A∨B and the extension axiom A∨B 7→ y, which brings us back to what
we started with.

Therefore, in order to avoid the cases in which we are done, let us assume that P contains no ∨-Right
or Weaken-Right rules. Hence, P has l1, ..., lk 7→ A∨B as its last line, preceeded by 0 or more weakenings
and contractions on the left, preceeded by a principal cut on the sequent l1, ..., lj 7→ y, which itself was
preceeded by 0 or more weakenings and contractions on the left, and a principal cut on l1, ..., li 7→ A∨B,
as shown here:

...

...
l1, ..., li 7→ A ∨ B A ∨ B 7→ y

P.Cut
l1, ..., li 7→ y

...
0 or more Weaken-L or Contraction-L

...
l1, ..., lj 7→ y y 7→ A ∨ B

P.Cut
l1, ..., lj 7→ A ∨ B

...
0 or more Weaken-L or Contraction-L

...
l1, ..., lk 7→ A ∨ B

15

However, this pattern cannot go on indefinitely, since proofs are only finitely long. Note that every
sequent P must therefore have either y or A ∨ B on the right-hand side. P cannot begin at a sequent
l 7→ A ∨ B, since we said that none of the l literals are y extension variables, so l 7→ A ∨ B cannot be
an axiom. Similarly, the proof cannot begin at a sequent l 7→ y. Alternatively, P cannot contain the
sequents 7→ A∨B or 7→ y as axioms, since these are not axioms. Therefore P cannot contain any axioms,
a contradiction. In other words, P must contain an application of ∨-Right or Weaken-Right, so the line
preceeding this application allows us to easily show that l1, ..., lk 7→ A ∈ cl(P) or l1, ..., lk 7→ B ∈ cl(P),
as required.

Lastly, we need one final lemma that is very similar to the Modified Disjunction Property:

Lemma 6.2 (Implication Property). If P is a LJ[~ES]-proof of the sequent l1, ..., lk, (xk+1∨¬xk+1), ..., (xj∨
¬xj) 7→ A ⊃ B such that the only cuts in P are principal cuts, and l1, ..., lk are literals which do not

include any y extension variables, then there exists a proof P
′

in which all cuts are principal cuts of
l1, ..., lk, (xk+1 ∨ ¬xk+1), ..., (xj ∨ ¬xj), A 7→ B such that cl(P

′

) ⊆ cl(P).

Proof: The proof is almost identical to that of Lemma 6.1 with A ⊃ B replacing all instances of A∨B,
and the rule ⊃-Right replacing all instances of ∨-Right.

7 Main Result

We are now ready to prove our main result.

Theorem 7.1 (Main Theorem). Let FProp = A(x1, ...xn) be any arbitrary classical propositional

tautology containing n distinct variables, and consider the formula F
′

Prop = A(x1, ...xn) ∨ ¬A(x1, ...xn).

Let FQBF be the prenex QBF translation of F
′

Prop where each quantifier is ∀, and let FIPL be Statman’s

translation of FQBF . If there exists a size-N DAG-like LJ[~ES] proof of FIPL, where N is the number of

bits required to encode FIPL, then FProp has a DAG-like classical LK[~ES] proof of size-O(N4).

Proof: Since F
′

Prop = A(x1, ...xn) ∨ ¬A(x1, ...xn), the quantified form is ∀xn, ..., ∀x1A(x1, ...xn) ∨
¬∀xn, ..., ∀x1A(x1, ...xn). In order to turn this formula into prenex form, we have to rename the
variables in ¬A(x1, ...xn). Therefore, FQBF = ∃x2n, ..., ∃xn+1, ∀xn, ..., ∀x1B0, where B0 = F

′

Prop =
A(x1, ...xn) ∨ ¬A(xn+1, ...x2n) Applying Statman’s translation yields

FIPL = B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

2n−1 ⊃ (B
√

2n ⊃ y2n))...)).

The extension axioms associated with FIPL that we will need are:

• y0 7→ ¬¬B0

• yk 7→ (xk ∨ ¬xk) ⊃ yk−1 for k ≤ n (these are the ∀ axioms).

• yk 7→ (xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1) for n + 1 ≤ k ≤ 2n (these are the ∃ axioms).

Suppose that there exists a size-N LJ[~ES] proof P of 7→ FIPL. We will now show how to build a

DAG-like classical LK[~ES] proof of FProp. By Lemma 3.5, there exists a size-O(N 3) proof of 7→ y2n.
Note that this proof contains every extension axiom. Cut this sequent with the extension axiom y2n 7→
(x2n ⊃ y2n−1) ∨ (¬x2n ⊃ y2n−1) to get 7→ (x2n ⊃ y2n−1) ∨ (¬x2n ⊃ y2n−1), and call this entire proof P1.

By Theorem 4.4, we can eliminate all non-principal cuts in P1 to produce P2 such that cl(P2) ⊆ cl(P1).
Note that P2 may be exponentially large. Since all cuts in P2 are principal cuts, Lemma 6.1 applies, so

16

there exists a proof P3 of 7→ x2n ⊃ y2n−1 or of ¬x2n ⊃ y2n−1. Let l2n be the literal such that P3 proves
7→ l2n ⊃ y2n−1, and note that cl(P3) ⊆ cl(P2). Furthermore, note that all cuts in P3 are principal cuts.

By Lemma 6.2, there exists a proof P4 of l2n 7→ y2n−1 in which all cuts are principal cuts such that
cl(P4) ⊆ cl(P3). Cut this sequent with the extension axiom y2n−1 7→ (x2n−1 ⊃ y2n−2)∨(¬x2n−1 ⊃ y2n−2)
to get l2n 7→ (x2n−1 ⊃ y2n−2) ∨ (¬x2n−1 ⊃ y2n−2). Call this proof P5. Since cl(P4) ⊆ cl(P3) ⊆
cl(P2) ⊆ cl(P1), we know that cl(P4) ⊆ cl(P1). Furthermore, since P1 contains every extension axiom,
cl(P5) ⊆ cl(P1).

Now simply repeat this process. After another iteration, we will have a proof P6 of l2n, l2n−1 7→ y2n−2

such that cl(P6) ⊆ cl(P1). We can repeat this n times in total for all of the ∃ extension axioms to get a
proof P7 of l2n, l2n−1, ..., ln+1 7→ yn such that cl(P7) ⊆ cl(P1), and all cuts in P7 are still principal cuts.

We now continue cutting with all of the ∀ extension axioms: Cut l2n, l2n−1, ..., ln+1 7→ yn with yn 7→
(xn ∨ ¬xn) ⊃ yn−1 to get l2n, l2n−1, ..., ln+1 7→ (xn ∨ ¬xn) ⊃ yn−1, and call this proof P8. Note that all
cuts in P8 are principal cuts, and cl(P8) ⊆ cl(P1).

By Lemma 6.2, there exists a proof P9 of the sequent l2n, l2n−1, ..., ln+1, (xn ∨¬xn) 7→ yn−1 such that
cl(P9) ⊆ cl(P1).

Repeat this process. After another iteration, we will have a proof P10 of ln, l2n−1, ..., ln+1, (xn ∨
¬xn), (xn−1 ∨ ¬xn−1) 7→ yn−2, where cl(P10) ⊆ cl(P1). We can repeat this n times in total for all of
the ∀ extension axioms to get a proof P11 of l2n, l2n−1, ..., ln+1, (xn ∨¬xn), ..., (x1 ∨¬x1) 7→ y0 such that
cl(P11) ⊆ cl(P1).

Finally, cut this sequent with y0 7→ ¬¬B0, where B0 = A(x1, ...xn) ∨ ¬A(xn+1, ...x2n). This gives us
a proof P12 of l2n, l2n−1, ..., ln+1, (xn ∨ ¬xn), ..., (x1 ∨ ¬x1) 7→ ¬¬(A(x1, ...xn) ∨ ¬A(xn+1, ...x2n)) such
that cl(P12) ⊆ cl(P1).

Since cl(P12) ⊆ cl(P1), we know that l2n, l2n−1, ..., ln+1, (xn ∨¬xn), ..., (x1 ∨¬x1) 7→ ¬¬(A(x1, ...xn)∨
¬A(xn+1, ...x2n)) ∈ cl(P1). Therefore by Lemma 5.4, since P1 is a proof of size-O(N3), there exists a size-
O(N4) DAG-like proof P13 of the sequent l2n, l2n−1, ..., ln+1, (xn∨¬xn), ..., (x1∨¬x1) 7→ ¬¬(A(x1, ...xn)∨
¬A(xn+1, ...x2n)).

Recall that every LJ proof is an LK proof. Therefore P13 is a size-O(N4) DAG-like classical LK[~ES]
proof. Restrict P13 by setting all of the literals l2n, l2n−1, ..., ln+1 to true, and make all obvious simplifica-
tions. Since A(x1, ...xn) is a tautology, ¬A(xn+1, ...x2n) is unsatisfiable. This leaves us with a size-O(N 4)
proof P14 of the sequent (xn ∨ ¬xn), ..., (x1 ∨ ¬x1) 7→ ¬¬A(x1, ...xn). Since 7→ xi ∨ ¬xi is essentially an
LK axiom for each i, we can simply introduce n such axioms, one for each i, and repeatedly cut with
(xn ∨ ¬xn), ..., (x1 ∨ ¬x1) 7→ ¬¬A(x1, ...xn) to get an O(N4) proof P15 of the sequent 7→ ¬¬A(x1, ...xn).

Finally, remove the double negation as follows:

. . .
... . .

.
P15

7→ ¬¬A(x1, ...xn)

. . .
... . .

.
Px

A(x1, ...xn) 7→ A(x1, ...xn)
¬-Right

7→ A(x1, ...xn),¬A(x1, ...xn)
¬-Left

¬¬A(x1, ...xn) 7→ A(x1, ...xn)
Cut

7→ A(x1, ...xn)

It is easy to show that any sequent of the form A(x1, ...xn) 7→ A(x1, ...xn) has a size-O(n) DAG-like

LK proof Px. Since n is O(N), 7→ A(x1, ...xn) has a classical size-O(N4) DAG-like LK[~ES] proof, where
A(x1, ...xn) = FProp is any arbitrary classical tautology on n variables, as required.

17

8 Immediate Implications

Our main result implies that if Statman’s translation maps trivial instances of the law of excluded
middle in QBF to IPL instances which have polynomially-bounded proof complexity, then LK[~ES] is a
super proof system. This leads to some immediate corollaries:

8.1 Conditional Separation Between Classical & Intuitionistic Logic

The most important implication of our main result is that under the assumption that LK[~ES] is not

super, there is a superpolynomial separation between LK[~ES] and LJ[~ES]:

Corollary 8.1. The FIPL formulas have size-O(n) LK[~ES] proofs, where n is the number of distinct

variables in FIPL, but unless LK[~ES] is super, there are no LJ[~ES] proofs of FIPL with polynomial upper
bounds.

Proof:Our main result shows that unless LK[~ES] is super, there are no LJ[~ES] proofs of FIPL with

polynomial upper bounds. All that remains to be shown is the polynomial LK[~ES] upper bounds. The
proof is straightforward, so we shall omit the details; all that is required is to take the size-O(n) LK proof
Px from Theorem 7.1. This gives us A(x1, ...xn) 7→ A(x1, ...xn). A few simple steps gives us 7→ ¬¬B0, and
from there we can easily build FIPL in another O(n) steps by doing little more than repeatedly cutting
with extension axioms to produce 7→ y2n, and then repeatedly applying Weaken-Left and ⊃-Right.
Since FIPL is valid both Classically and Intuitionistically, we have a conditional separation between
LK[~ES] and LJ[~ES].

An interesting point of note is how powerful LJ[~ES] really is. LJ and LK are very similar, and LJ[~ES]

is strictly stronger than LJ. But LK with cut is p-equivalent to any Frege system, and LJ[~ES] has cut.
All of these things together suggest that it is a fairly powerful system.

8.2 Dangerous Reductions

The second implication of our main result is that Statman’s reduction is ‘dangerous’ in the sense that
unless LK[~ES] is super, it translates some trivial formulas from QBF to very difficult formulas in IPL.
In order to formalize this notion, we take the formal definitions of what constitute dangerous and safe
proof complexity reductions from [HH06]. Note that LJ[~ES] is a strictly stronger proof system than LJ.

Definition 8.2. Let α be a proof system for a language L1, let β be a proof system for a language L2,
and let R : L1 → L2 be a reduction from L1 to L2. If there exists some family of strings X = {x1, x2, ...},
X ⊆ L1 such that for all k and for all xi ∈ X there exists an α-proof P1 of xi, but there exists no β-proof
P2 of R(xi) such that |P2| < |P1|k, then we say that the reduction R is (α, β)-Explosive.

Applying this definition to our main result, we get the following Corollary:

Corollary 8.3. Unless LK[~ES] is super, Statman’s reduction is (α,LJ[~ES])-Explosive for every proof
system α for QBF which has polynomially-bounded proofs for every prenex instance of the law of excluded
middle.

The complement to the above concept of explosive reductions is that of a stable reduction:

Definition 8.4. Let α, β, L1, L2, and R be as in Definition 8.2. If there exists a k such that for all
x ∈ L1 and any α-proof P1 of x there exists a β-proof P2 of R(x) where |P2| < |P1|k, then we say that
R is (α, β)-Safe.

18

Corollary 8.5. If Statman’s reduction is (α,LJ[~ES])-Safe for some QBF proof system α which has

polynomially-bounded proofs for every prenex instance of the law of excluded middle, then LK[~ES] is a
super proof system.

9 Open Problems

This work has highlighted a few interesting open problems:

The first open problem is to prove superpolynomial LJ lower bounds which do not depend on any
assumptions.

This may or may not solve the second open problem, namely showing a superpolynomial or even
exponential separation between LK and LJ which does not depend on any assumptions. Another way
of phrasing this is as follows: Statman’s translation is probably explosive, but perhaps some other safe
translation is possible. Does a safe translation exist, or are all reductions from QBF to IPL explosive?
Since IPL is believed to be weaker than QBF , it is reasonable to conjecture that no safe translation
exists. However, if a safe translation does exist, then it almost certainly isn’t as natural or intuitive as
Statman’s.

The third open problem has to do with the reduction in the reverse direction: Does a safe translation
from IPL to QBF exist? Finding such a translation appears to be difficult, but it is reasonable to
conjecture that the answer is yes.

References

[BM99] S. R. Buss and G. Mints. The Complexity of the Disjunction and Existential Properties in
Intuitionistic Logic. Annals of Pure and Applied Logic, 99:93 – 104, 1999.

[BP01] S. R. Buss and P. Pudlák. On The Computational Content of Intuitionistic Propositional Proofs.
Annals of Pure and Applied Logic, 109:49 – 64, 2001.

[HH06] A. Hertel and P. Hertel. Formalizing Dangerous Reductions. 2006.

[Pud99] P. Pudlák. On The Complexity of Propositional Calculus, Sets and Proofs. In Logic Colloquium
’97, pages 197 – 218. Cambridge University Press, 1999.

[Sch89] U. Schöning. Logic For Computer Scientists. Birkhäuser, Berlin, 1989.

[Sta79] R. Statman. Intuitionistic Propositional Logic is Polynomial-Space Complete. Theoretical Com-
puter Science, 9:67 – 72, 1979.

[Sza69] M.E. Szabo. The Collected Papers of Gerhard Gentzen. North-Holland Publishing Company,
Amsterdam, 1969.

19

