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Abstract

In this paper we prove an exponential separation between two very similar and natural SAT

encodings for the same problem, thereby showing that researchers must be careful when designing

encodings, lest they accidentally introduce complexity into the problem being studied. This result

provides a formal explanation for empirical results showing that the encoding of a problem can

dramatically affect its practical solvability.

We also introduce a domain-independent framework for reasoning about the complexity added

to SAT instances by their encodings. This includes the observation that while some encodings may

add complexity, other encodings can actually make problems easier to solve by adding clauses which

would otherwise be difficult to derive within a Resolution-based SAT-solver. Such encodings can be

used as polytime preprocessing to speed up SAT algorithms.

1 Introduction

Satisfiability, or SAT, is the archetypal NP-Complete problem. It has long been known that every
problem in NP can be reduced to SAT using Cook’s Theorem [Coo71]. Since propositional formulas are
very expressive, instances of many problems in NP can also be encoded as SAT instances in a much
more direct and intuitive way than via Cook’s Theorem. This has allowed research into solving these
varied problems to be concentrated on SAT-solving. In fact, many problems have numerous different SAT
encodings to choose from. Building a framework for comparing the effectiveness of competing encodings
is the main focus of this paper.

The strategy of translating problems from other domains to SAT has proved to be fruitful. Neverthe-
less, this technique is not without its dangers. Empirical evidence suggests that natural encodings which
seem to conserve much of the structure of the original problem can actually convert simple instances of
the original problem to very difficult SAT formulas. For example, in [KMS96] numerous approaches for
translating planning problems to SAT are investigated. Some are found to result in formulas which are
much harder to solve than others. This suggests that a great deal of care must be taken in designing
encodings since one cannot assume that they will conserve the simplicity of input instances.

This danger is so well-known to the Propositional Reasoning community that the authors of [KMS97]
list understanding it as one of ten important and challenging open problems in the area. A more recent
follow-up paper [KS03] reaffirms this problem’s importance and notes that although some progress has
been made, there is still much more work to be done.

We address this problem in two ways. Firstly, we provide a formal example of a natural encoding
which translates a trivial instance of the Hamiltonian Cycle problem to an intractably difficult one for
any Resolution-based SAT-solver. We also show that very minor modifications to this encoding can make
it produce easy SAT instances, thereby formally proving an exponential separation between two very
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similar and natural encodings. Secondly, we provide a domain-independent framework for comparing the
effectiveness of competing encodings, in terms of how easy it is to solve their outputs. This framework
relies on the existence of a proof-system hierarchy and the close relationship between SAT-solving and
propositional proof complexity.

This paper is organized as follows: In Sections 2 - 4, we provide examples of two very similar and
natural SAT encodings for the NP-Complete Hamiltonian Cycle problem, and use them to encode a
family of trivially non-Hamiltonian graphs. These encodings are not pathologically designed to create
problems, but rather are very intuitive and straightforward. The result of the first encoding is the family
of formulas from Theorem 3.1, which we show has exponential lower bounds for AC0-Frege proof systems,
which immediately imply exponential lower bounds for Resolution (RES), and all RES-based SAT-solvers,
including Clause Learning.

The result of the second encoding is the family of formulas from Theorem 4.1, which we show to have
polynomial upper bounds for Tree Resolution (T-RES) / DPLL, one of the weakest Resolution-based proof
systems. This shows that the results of these encodings are respectively very hard and very easy to solve
in practice, even though they are very similar and came from the same graph. This result is relevant
to the eighth open problem in [KMS97, KS03] because as already mentioned, Propositional Reasoning
researchers are aware of empirically tested instances where different reductions can have a significant
impact on the complexity of a problem, but this is the first formal example.

In addition, researchers have noted empirically that adding redundant clauses to formulas can trans-
form very difficult instances of SAT into very easy ones. We can further weaken the easy formulas from
Theorem 4.1 to obtain the formulas of Corollary 4.2 which contain the clauses of the hard formula from
Theorem 3.1 as a proper subset and still have T-RES refutations of polynomial size. This provides a
formal example of hard instances which can be converted to easy instances by the addition of redundant
clauses.

In Section 5, we describe a formal domain-independent framework which captures our intuitive notions
of what constitute dangerous and safe reductions, and show that not only can reductions increase the
complexity of problems, but they can beneficially reduce their complexity by applying polytime reasoning
which is unavailable to the target proof system.

For the purposes of this paper, we assume that the reader is familiar with the basics of proof complex-
ity and general complexity theory. We shall use [CK01] as our reference for proof complexity. There is a
very close relationship between proof-complexity lower bounds and lower bounds for their corresponding
algorithms. For example, DPLL is almost identical to the T-RES proof system. Since RES subsumes
T-RES, and since RES has exponential lower bounds for the pigeonhole principle [Hak85], it follows that
T-RES and therefore DPLL must also have exponential lower bounds for the pigeonhole formulas. In
effect, no RES-based SAT-solver will ever be able to solve pigeonhole formulas in polynomial time. Since
almost all SAT-solvers are based on refinements of RES, this gives us immediate lower bounds for al-
gorithms such as DPLL and Clause Learning. We use the framework of proof-complexity to categorize
encodings as being harmful, neutral, or beneficial.

2 A SAT Encoding For The Hamiltonian Cycle Problem

Consider the following Hamiltonian Cycle to SAT reduction: Take a graph G = (V, E) and create a
formula F which enforces a mapping from V to the positions p1, p2, ..., p|V | of a Hamiltonian Cycle
H . Intuitively, H can be thought of as a cyclic ordering on the |V | vertices of G, where vertex i can
be mapped to the jth position in H if i is adjacent in G to the vertices mapped to positions j − 1 and
j + 1. F contains variables of the form mi,j , each of which is interpreted as meaning that element i from
G (the domain) is mapped to position j in the Hamiltonian Cycle H (the range). F partially consists
of clauses which enforce a bijection between V and H . A conjunction of the following groups of clauses
ensure such a bijection:
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Total:

|V |∧

i=1

(

|V |∨

j=1

mi,j) i.e. Every vertex in V maps to at least one position in H.

Onto:

|V |∧

j=1

(

|V |∨

i=1

mi,j) i.e. Every position in H has at least one vertex mapped to it.

1-1:

|V |∧

j=1

|V |∧

i1=1

|V |∧

i2=1

i1 6=i2

(¬mi1 ,j ∨ ¬mi2,j) i.e. At most one vertex maps to each position.

Fn.:

|V |∧

i=1

|V |∧

j1=1

|V |∧

j2=1

j1 6=j2

(¬mi,j1 ∨ ¬mi,j2 ) i.e. Every vertex maps to at most one position.

To ensure that F is satisfiable if and only if G is Hamiltonian, we need only add the following clauses
which place constraints on the bijection corresponding to the structure of G:

Edge:

|V |∧

j=1

|V |∧

i=1

∧

k:(i,k)6∈E

i6=k

(¬mi,j ∨ ¬mk,(j+1) mod |V |)

Informally, the edge constraint clauses are ensuring that for every non-edge (i, k), if vertex i has been
mapped to the jth position in the cycle H , then vertex k cannot be mapped to position j + 1 (mod |V |).
It is not hard to see that the reduction is correct: If G is Hamiltonian, then these edge constraints will
not cause a contradiction with the clauses enforcing the bijection, so F will be satisfiable. Likewise, if F

is satisfiable, then it means that there is a bijection from V to H which respects the constraints enforced
by the edge clauses, so G must be Hamiltonian.

Of course, the total, onto, 1-1, and function clauses are more than enough to ensure a bijection.
In fact, the total and 1-1 clauses by themselves are sufficient, as are the onto and function clauses by
themselves. This leads us to define some notation. Let H(G) be the formula resulting from the above
reduction. To this we add a subscript showing which clause groups were used in its construction. We
abbreviate total as T , onto as O, 1-1 as 1, and function as F . For example, if we used clauses from
the total and 1-1 groups, then the formula is labeled as H(G)T,1. There is no need to specify that edge
clauses were used, because each of the encodings requires them.

An Interesting Family of Graphs

Consider the complete graph on n vertices, Kn. Let K∗
n be Kn with the addition of a single degree-0

vertex. We shall apply the reductions from the previous section to graphs from this family. Since each
K∗

n is disconnected, it is trivially non-Hamiltonian, which in turn means that every formula H(K∗
n) is

unsatisfiable.
We will show that K∗

n is interesting because proofs of H(K∗
n) either have polynomial upper bounds for

T-RES (and therefore all stronger systems), or exponential lower bounds for AC0-Frege (and therefore all
weaker systems), depending on which clauses are used in its construction. This provides us with a formal
example of two very similar and natural encodings whose outputs have drastically different complexities.

3 Exponential Lower Bounds For H(K∗
n)T,1,F

In this section we show that the version of the encoding which uses Total, 1-1, and Function clauses, when
applied to K∗

n graphs, results in a formula which no Resolution-based SAT-solver can efficiently solve,
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even though the K∗
n graphs are trivially non-Hamiltonian. In other words, even though the encoding is

very natural, it injects an exponential amount of unwanted complexity into our original problem instance.

Theorem 3.1. Lengths of AC0-Frege proofs for the unsatisfiability of H(K∗
n)T,1,F formulas have Ω(2

5d√
n)

lower bounds, where d is the depth of the Frege proof, and if there exist size-N AC0-Frege proofs restricted
by mx,n = 1 of H(K∗

n)T,1,F , then there exist size-N + O(n3) proofs of fPHP n
n−2.

Proof: The high-level overview of this proof is as follows: Assume that we have a size-N AC0-Frege proof
of H(K∗

n)T,1,F . We show that this proof can be restricted with a specially-chosen truth assignment α to
get a new, smaller proof of H(K∗

n)T,1,F �α. After unit propagation, this formula becomes fPHP n
n−2 which

is already known to have exponential AC0-Frege lower bounds. For those unfamiliar with AC0-Frege, it
suffices to think of this proof in terms of RES; i.e. any size-N RES proof of H(K∗

n)T,1,F can also be
restricted to yield fPHP n

n−2. Since the lower bound is proved for AC0-Frege proof systems, we show
how to model the unit propagations using O(n3) steps of AC0-Frege reasoning. Therefore, if there exists
a sub-exponential AC0-Frege (resp. RES) proof of H(K∗

n)T,1,F �α, then there exists a sub-exponential
AC0-Frege (resp. RES) proof of fPHP n

n−2, which is a contradiction, since fPHP n
n−2 has exponential

lower bounds [BT88].
The details of the proof are as follows: The restriction that we apply to H(K∗

n)T,1,F is mx,n = 1.
Intuitively, this will guarantee via the edge clauses that we cannot map any vertex to positions n− 1 or
n + 1 because x has no edges incident on it. If we interpret the variables as mappings from pigeons to
holes, we now have two more pigeons than holes. The restriction mx,n = 1 propagates as follows:

• For every function clause of the form (¬mx,n ∨ ¬mx,j), since we have set mx,n to 1, we must set
all of mx,1, mx,2, ..., mx,n−1 as well as mx,n+1 to 0.

• For every 1-1 clause of the form (¬mx,n ∨ ¬mi,n), propagating mx,n = 1 causes us to set all of
m1,n, m2,n, ..., mn,n to 0.

• Finally, for every edge clause of the form (¬mx,n ∨ ¬mk,n+1) where (x, k) is a non-edge in G,
propagating mx,n = 1 causes us to set all of m1,n+1, m2,n+1, ..., mn,n+1 to 0. Similarly, for each edge
clause of the form (¬mi,n−1∨¬mx,n), propagating causes us to set all of m1,n−1, m2,n−1, ..., mn,n−1

to 0.

The effect of these propagations on the various groups is as follows:

• Total Clauses: The restriction mx,n = 1 satisfies the clause (mx,1 ∨ mx,2 ∨ ... ∨ mx,n ∨ mx,n+1).
Combined with this, the propagations mi,n−1 = 0, mi,n = 0, and mi,n+1 = 0 for all i causes the
total clauses to become:
n∧

i=1

(
n−2∨

j=1

mi,j)

• 1-1 Clauses: For each 1 ≤ i ≤ n + 1, i 6= x, there is a clause (¬mx,n ∨¬mi,n). Since every mi,n was
set to 0, every 1-1 clause involving any mi,n will be satisfied and eliminated. Due to the edge clause
propagations, for every i 6= x, every clause involving mi,n−1 or mi,n+1 will also be eliminated. The
1-1 clauses therefore become:
n−2∧

j=1

n∧

i1=1

n∧

i2=1

i2 6=i1

(¬mi1,j ∨ ¬mi2,j)

• Function Clauses: For each 1 ≤ j ≤ n + 1, j 6= n there is a clause (¬mx,n ∨ ¬mx,j). Since every
mx,j was set to 0, every function clause involving any mx,j will be satisfied and eliminated. Due
to edge clause propagations, for every i 6= x, every clause involving mi,n−1 or mi,n+1 will also be
eliminated. Due to the 1-1 clause propagations, for every i 6= x, every clause/ involving mi,n will
also be eliminated. The function clauses therefore become:
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n∧

i=1

n−2∧

j1=1

n−2∧

j2=1

j2 6=j1

(¬mi,j1 ∨ ¬mi,j2)

• Edge Clauses: There are two types of edge clauses, those which contain the literal ¬mx,n, and those
which contain the literal ¬mx,j , j 6= n. Note that this covers all edge clauses because vertex x is
involved in every non-edge of K∗

n. Clauses of the first type are satisfied by unit propagation which
forces the other literal in each such clause to be set to 1. Those of the second type are satisfied by
the mx,j propagations from the function clauses. All edge clauses are therefore eliminated.

These remaining clause groups when simplified by unit propagation are exactly the clauses from
fPHP n

n−2. In effect, the size-N proof of H(K∗
n)T,1,F �mx,n=True has been turned into a proof of

fPHP n
n−2. It is not hard to show that AC0-Frege can perform unit propagations in polynomial size

for some polynomial p(n). This turns our size-N proof of H(K∗
n)T,1,F �mx,n=True to a size N +p(n) proof

of fPHP n
n−2.

Let d be the depth bound imposed on a Frege system. Since AC0-Frege proof systems are closed under

restriction (i.e. restricting a proof yields a smaller proof), and since they have Ω(2
5d√

n) size lower bounds
for fPHP n

n−2 formulas [UF96], we may conclude that the H(K∗
n)T,1,F formulas also require proofs of

size at least Ω(2
5d√

n). Specifically, if there exist size-N AC0-Frege proofs of H(K∗
n)T,1,F �mx,n=True, then

there exist size-N + p(n) proofs of fPHP n
n−2.

Clearly, this result also holds for all formulas such as H(K∗
n)T,1 which are composed of proper subsets

of the clauses from H(K∗
n)T,1,F , because having fewer initial clauses certainly cannot help to find a

shorter proof.

Corollary 3.2. No SAT algorithm based on AC0-Frege nor any weaker proof system can efficiently solve
H(K∗

n)T,1,F formulas (or formulas containing a proper subest of those clauses). This includes DPLL as
well as Clause-Learning based SAT-solver algorithms.

Therefore we have shown that the H(G)T,1,F encoding can convert trivial instances of the Hamiltonian
Cycle problem to intractable SAT instances.

4 Polynomial Upper Bounds For H(K∗
n)T,O,F

In this section we show that the version of the encoding which uses Total, Onto, and Function clauses,
when applied to K∗

n graphs, results in a formula which has short DPLL proofs. This is particularly
interesting because both H(K∗

n)T,O,F and H(K∗
n)T,1,F are natural encodings of the Hamiltonian Cycle

problem, and neither is a subset of the clauses of the other, but H(K∗
n)T,O,F is easy to solve, while

H(K∗
n)T,1,F is intractably difficult.

Theorem 4.1. T-RES proofs for the unsatisfiability of H(K∗
n)T,O,F formulas have O(n2) size upper

bounds, where n is the number of distinct variables contained in the formulas.

Proof: For the following argument, please refer to the T-RES proof template shown in Figure 1. Note
that some of the leaves are labelled with the specific clauses which are falsified at that position. In
addition, to avoid diagramatic clutter, the remaining leaves are labelled with the groups containing the
clauses which are falsified.

We initially branch on mx,1. Since x is an isolated vertex in K∗
n, setting mx,1 = 1 ensures that

assigning any future vertex to position 2 (i.e. setting mi,2 = 1 for any i 6= x) will falsify an edge clause,
and therefore falsify the formula. Setting mx,2 = 1 also falsifies H(K∗

n)T,O,F by falsifying a function
clause, because no vertex may be assigned to more than one position. Finally, setting mi,2 = 0 for
i = 1, 2, ..., n, x will falsify the onto clause requiring that some vertex be mapped to position 2. This
subtree requires 2n + 3 nodes.
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When we set mx,1 = 0, we next branch on mx,2. Clearly, the formula rooted by setting mx,2 = 1,
can be shown to be unsatisfiable with a tree of size 2n + 3 for the same reasons as above.

For each i, after setting mx,i−1 = 0, we branch on mx,i. Each positive branching will result in a
subtree of size 2n + 3 as described above.

The all-negative assignment to every mx,i falsifies the total clause ensuring that vertex x is mapped to
some position, after which all branching is complete. This T-RES proof therefore has size (n+1)(2n+3)+1,
which is O(n2), as required.

mx,1

mx,2

¬mx,1

¬mx,2

¬mx,n

¬mn−1,3
m2,1

¬m1,1m1,1

¬m2,3

m2,3

¬m1,3m1,3

m1,2 ¬m1,2

m2,2 ¬m2,2

mn,2 ¬mn,2

mx,2 ¬mx,2

mn,3

mx,3 ¬mx,3

¬mn,3

¬m2,1
(¬mx,1 ∨ ¬m2,2)

(¬mx,1 ∨ ¬mn,2)

(¬mx,1 ∨ ¬mx,2) (m1,2 ∨ m2,2 ∨ ... ∨ mn,2 ∨ mx,2)

(mx,1 ∨ ... ∨ mx,n ∨ mx,n+1)

F unction Onto

Edge

¬mn−1,1

mn,1 ¬mn,1

mx,1 ¬mx,1

F unction

F unction

T otal

Onto

Onto

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

¬mn−1,2

mx,n+1 ¬mx,n+1

Figure 1: A Template for Polynomially-Sized T-RES Proofs for the Unsatisfiability of H(K∗
n)T,O,F For-

mulas

Clearly, this result also holds for all formulas such as H(K∗
n)T,O,1,F which are composed of proper

supersets of the clauses from H(K∗
n)T,O,F , because having more initial clauses certainly cannot hurt

when finding short proofs:

Corollary 4.2. The size of T-RES proofs for the unsatisfiability of H(K∗
n)T,O,1,F formulas have polyno-

mial upper bounds.

Corollary 4.3. For any H(K∗
n)T,O,F formula (or formula containing a superset of those clauses), there

is a polynomially-bounded DPLL computation which solves it, assuming that the variables to branch on
are chosen in the correct order.

5 Domain Independent Framework for Comparing Encodings

Currently, no system exists to classify encodings according to whether they make problem instances
harder or easier. Such a classification system might prove to be very beneficial for researchers who are
actively using SAT-solvers to tackle NP-Complete problems. It might also prove to be beneficial for
researchers who are interested in studying the phenomenon of dangerous encodings more abstractly with
an eye to finding general principles for predicting which encodings will lead to complexity blow-ups on
certain families of formulas. In this section, we provide a framework for such a system.

Although no such system has yet been devised, much work has gone into classifying the power of proof
systems. These proof systems have been organized into a hierarchy based on polynomial simulations and
exponential separations. Briefly, a proof system α is said to p-simulate another proof system β if for every
unsatisfiable CNF formula f , there exists an α refutation of f which is at most a polynomial factor larger
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than f ’s smallest β refutation. A proof system α is said to be exponentially separated from another proof
system β if there exists some class of formulas F such that for all f ∈ F there exists an α refutation of f

with polynomial size, but the smallest β refutation of f has exponential size. Such a separation clearly
implies that β cannot p-simulate α. If α p-simulates β and is also exponentially separated from β, then
we say that α is strictly stronger than β, and there is always a (nondeterministically chosen) computation
of a SAT-solving algorithm based on the principles of α which will finish within a polynomial factor of
the time it would take any SAT-solver based on the principles of β to finish.

Much work has gone into establishing a proof system hierarchy especially for systems based on the
Resolution rule. Please refer to Figure 2 below for the portion of the hierarchy which is particularly
relevant to propositional reasoning and SAT solving.

(DPLL)

?? ?

Reg. Tree

DFREG

(Pool

(DP)

Resolution)

?

General

Resolution

Clause

Learning

Regular

Resolution

Ordered

Linear

Resolution

AC0−F rege Resolution

Resolution

Figure 2: Part of the Proof Complexity Hierarchy which Relates Various Resolution Refinements

Each node in the diagram represents all of the families of formulas which have polynomial size
refutations in the system labeling the node. Arrows represent p-simulation relationships between systems.
An arrow from system α to system β means that α p-simulates β. A slash through an arrow from α to β

represents an exponential separation between β and α. An arrow labeled with a question mark denotes
an unknown relationship. Systems to the left in the diagram are generally stronger than systems to the
right. Though short refutations exist for larger classes of formulas in stronger systems, finding them
is generally more difficult than finding refutations in weaker systems. Hence SAT-solvers based on the
Resolution rule generally do not have the full power of RES, but instead implement some form of DPLL

which is equivalent to T-RES and is very low in the hierarchy. It is therefore desirable for instances which
we want to solve to exist in nodes that are low down in the hierarchy. This gives us a better chance of
finding a refutation deterministically in a short amount of time.

We can use this hierarchy to judge the quality of SAT encodings. If some input to an encoding is at
one level of the hierarchy and its corresponding output exists only in higher levels, then the encoding is
dangerous with respect to that input since its result requires more power to solve. If the input and output
of an encoding exist in all of the same levels of the hierarchy, then the encoding is neutral with respect
to that input. If some input to an encoding exists nowhere below a certain level in the hierarchy, but its
output does, then that encoding actually makes a potentially exponential contribution towards solving
the instance. Since every encoding only takes polynomial time to compute, such beneficial encodings can
be used as efficient preprocessing steps and identifying them is of great practical interest. We coin the
terms Explosive, Stable, and Implosive to refer to encodings which are harmful, neutral, and beneficial
with respect to certain families of formulas and certain proof systems. These are defined formally below
and examples of each are given.

5.1 Explosivity

Definition 5.1. Let α be a proof system for a language L1, let β be a proof system for a language L2,
and let R : L1 → L2 be a reduction from L1 to L2. If there exists some family of strings X = {x1, x2, ...},
X ⊆ L1 such that for all k and for all xi ∈ X there exists an α-proof P1 of xi, but there exists no β-proof
P2 of R(xi) such that |P2| ≤ |P1|k, then we say that the reduction R is (α, β)-Explosive on the set X.
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This definition corresponds to our intuitive notion of what constitutes a dangerous reduction, and we
can immediately apply it to our main result:

Corollary 5.2. The Hamiltonian Cycle to SAT reduction above which uses the T, 1, and F clauses is
(α,AC0-Frege)-Explosive on the set containing the K∗

n graphs for any non-Hamiltonicity proof system α

which has polynomially-bounded proofs of the K∗
n graphs.

An example of such a non-Hamiltonicity proof system is NHPS, given in [Her06]. This example is
interesting, since tree-like NHPS seems to be weaker than RES, let alone any AC0-Frege system. We
therefore have an example of a reduction that injects enough complexity to send its outputs’ difficulty
several levels up the proof complexity hierarchy.

Another formal example of Explosivity comes from a corollary of the main result of [HU06a] which
proves that the reduction from QBF to Intuitionistic Propositional Logic (IPL) given by Statman in
[Sta79] is probably Explosive:

Corollary 5.3. Unless NP = coNP , Statman’s reduction is (α,LJ[ ~ES ])-Explosive for any QBF proof
system α which has polynomially-bounded proofs for any prenex instance of the law of excluded middle
(i.e. formulas of the form p ∨ ¬p).

Explosivity is caused when an encoding increases the proof complexity of the input instance. In the
case of RES, if a reduction fails to introduce clauses which are needed in order to provide a short RES

proof, then the reduction is Explosive, and there is no hope of solving the translation. The ‘onto’ clauses
discussed in Section 2 are an example of such clauses which have no short RES derivations themselves
and can make an exponential difference to the proof complexity of the reduction’s output.

Those interested in proof complexity will note that Explosivity is trivially associated with exponential
separations between proof systems. Every example of p-simulation between two proof systems on the
same language for which there is a superpolynomial separation implicitly gives an example of (α, β)-
Explosivity. If proof system α p-simulates proof system β, but β does not p-simulate α, then the trivial
reduction of doing nothing is (α, β)-Explosive on the set of formulas which provides the separation. For
this reason, (α, β)-Explosive reductions where α is a strictly stronger proof system than β (for example,
(AC0-Frege, T-RES)-Explosive reductions) are not nearly as interesting as (α, β)-Explosive reductions in
which α is a strictly weaker proof system than β.

5.2 Stability

Definition 5.4. Let α, β, L1, L2, and R be as in Definition 5.1. If there exist constants k1 and k2 and
a family of strings X = {x1, x2, ...}, X ⊆ L1 such that for any α-proof P1 of xi there exists a β-proof P2

of R(xi) where |P2| ≤ |P1|k1 and |P1| ≤ |P2|k2 then we say that the reduction R is (α, β)-Stable on the
set X.

From a proof-complexity point of view, every example of p-equivalence implicitly gives an example of
(α, β)-Stability. If α and β are two p-equivalent proof systems for the same language L, then the trivial
reduction of doing nothing is both (α, β)-Stable and (β, α)-Stable for the entire language L. For this
reason, (α, β)-Stable reductions for p-equivalent proof systems are not nearly as interesting as ones for
proof systems for which there is a superpolynomial separation.

Another interesting example of stability is the relationship between RES and Linear Resolution
(L-RES) shown by Buresh-Oppenheim and Pitassi in [BOP03]. The authors provide a very simple reduc-
tion R which consists of adding trivial clauses of the form (xi ∨¬xi ∨xj) and (xi∨¬xi ∨¬xj) for all pairs
of variables xi, xj in the original formula, and show that for every RES refutation of a formula F , there
exists an L-RES proof of R(F ) which is only polynomially larger. In other words, R is (RES,L-RES)-Stable
on all formulas which have polynomially-bounded RES proofs.

Another example of stability comes from Theorem 4.1 above:
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Corollary 5.5. The Hamiltonian Cycle to SAT reduction above which uses the T, O, 1, and F clauses
is (α,T-RES)-Stable on the set of K∗

n graphs for any non-Hamiltonicity proof system α which has
polynomially-bounded proofs for the K∗

n graphs.

As already mentioned, NHPS from [Her06] is such an α.

5.3 Implosivity

In practical terms, an even more interesting characteristic for encodings is that of Implosivity. Intuitively,
an encoding which takes hard formulas for one proof system and converts them into easy ones for another
is Implosive. In other words, Implosive reductions can make otherwise hard instances more accessible
to SAT-solvers. Examples of such beneficial reductions are already known to researchers. For example,
Kautz and Selman show that SAT encodings of Constraint Satisfiability Problem (CSP) instances can
be optimized with respect to local consistency checking and unit propagation [KS03]. In this case
the reduction from CSP to SAT actually has beneficial properties, namely that it reduces the proof
complexity of its inputs with respect to the consistency conditions. Bailleux and Boufkhad give another
good example in [BB03], where they give an encoding that transforms the parity problem, which for
many years was considered to be a hard DIMACS instance, into formulas that are easy for DPLL-based
solvers.

More formally, the beneficial property of Implosivity is defined as follows:

Definition 5.6. Let α, β, L1, L2, and R be as in Definition 5.1. If there exists some family of strings
X = {x1, x2, ...}, X ⊆ L1 such that for all k and for all xi ∈ X there exists a β-proof P2 of R(xi) but there
exists no α-proof P1 of xi such that |P1| ≤ |P2|k, then we say that the reduction R is (α, β)-Implosive on
the set X.

As with Explosivity, Implosivity is trivially associated with p-simulation. Every example of p-
simulation between two proof systems on the same language for which there is a superpolynomial sep-
aration implicitly gives an example of (α, β)-Implosivity. If proof system β p-simulates proof system α,
but α can not p-simulate β, then the trivial reduction of doing nothing is (α, β)-Implosive on the set
of formulas which gives the separation. For this reason, (α, β)-Implosive reductions where α is strictly
weaker than β (for example, (T-RES, AC0-Frege)-Implosive reductions) are not nearly as interesting as
(α, β)-Implosive reductions in which α is strictly stronger than β.

Again, a non-trivial example of Implosivity comes from the NHPS proof system. Let G n
2

, n
2

be the
graph consisting of two disjoint cliques of size n

2 . These graphs have exponential NHPS lower bounds
[Her06]. However, the formulas resulting from applying the reduction from Section 2 which uses the T,
O, 1, and F clauses have polynomial T-RES upper bounds [HU06b]. In other words, this reduction is
(NHPS, T-RES)-Implosive on the G n

2 , n
2

graphs, which is interesting because the T, 1, F version of the

reduction from Corollary 5.2 is (NHPS,AC0-Frege)-Explosive on the K∗
n graphs. This gives a clear example

of how different inputs to the same system can be simplified or complicated depending on encoding.
An interesting potential example of Implosivity is the L-RES reduction R from [BOP03] mentioned

above. As already stated, R is (RES,L-RES)-Stable on the entire SAT language. However, it is unknown
whether an exponential separation exists between L-RES and RES. If so, then R is (L-RES,L-RES)-
Implosive on the inputs which give the separation. Such examples of reflexive implosivity are good
candidates for beneficial preprocessing.

Generally speaking, non-trivial Implosivity arises when polytime reductions make use of reasoning
which is not available to their target proof system. A polytime reduction in RES might add clauses to the
instance which could not otherwise be derived concisely in RES. Given these clauses, Resolution-based
solvers can easily solve the problem, but without them, they require exponential time. In effect, such
reductions allow solvers to ‘cheat’ and do work that cannot be done by their underlying proof systems.
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5.4 Alternate Hierarchies

Though this the proof system hierarchy may prove to be useful for classifying encodings, we could also
produce alternative hierarchies for which the notions of explosivity, stability, and implosivity could be
used to classify encodings. In order to use the proof system hierarchy for this task we need to perform
a fairly robust analysis of the family of problem instances being studied, as we did in Sections 3 & 4. A
more empirical hierarchy based on the real world performance of specific implementations on families of
inputs may be preferred.

6 Implications for Proof Complexity

Whenever the relationship between two proof systems on different languages is studied, there must
necessarily be a reduction involved. Weak proof systems such as RES and its refinements are not powerful
enough to perform polytime reductions. This necessitates the use of a separate polytime algorithm to
perform the reduction. Since the details of the reduction can affect the proof complexity of its output,
it does not make sense to talk about p-simulation or exponential separation between two weak proof
systems over different languages. Rather, one must talk about p-simulation or exponential separation
with respect to a specific reduction. If a reduction exists which allows one proof system to p-simulate
another, we say that the first proof system effectively p-simulates the second. We formally define this
notion as follows.

Definition 6.1. Let f1 : S∗
1 → L and f2 : S∗

2 → L be proof systems. If there exists a k and a polytime
reduction r : L1 → L2 such that y ∈ L1 if and only if r(y) ∈ L2 and for all x1 ∈ S∗

1 there exists an x2 ∈ S∗
2

such that r(f1(x1)) = f2(x2) and |x2| ≤ |x1|k, then we say that f2 effectively polynomially-simulates f1.
If there also exists a polytime computable function t : S∗

1 → S∗
2 such that for all x ∈ S∗

1r(f1(x)) =
f2(t(x)), then f2 effectively p-simulates f1.

We can just as easily consider this definition applied to two proof systems over the same language.
This yields a generalization of the normal notion of p-simulation. For example, though L-RES is not
known to p-simulates RES, it does effectively p-simulate RES since the polytime reduction in [BOP03] is
(RES,L-RES)-Stable on the entire SAT language.

7 Concluding Remarks

The idea that encodings can inject complexity into a problem is disconcerting. It is worrisome to think
that a reduction from one problem to another can negatively affect the proof complexity of the result
and potentially make the instance difficult for proof systems which are located several levels higher in the
proof complexity hierarchy than the intended system. Furthermore, as we have shown in this paper, this
phenomenon can happen with very natural and even obvious encodings. Even more worrisome is that it
does not seem to be at all obvious which types of reductions have this property. With our example, we
were lucky enough to see that the input graph was translated to a formula which is very similar to the
pigeonhole formulas, but in general we cannot expect to be so lucky. There are probably infinitely many
families of formulas which have no short RES proofs and it would not be easy to identify them lurking
within the output of an encoding. Random formulas, which are very hard to categorize, as well as other
combinatorial problems which have never even been investigated could act very much like the pigeonhole
formulas do in our example. If we do not even know what these formulas look like, then it is probably
very difficult to predict and avoid reductions which might produce them or something similar to them.
Further research is needed in order to characterize which types of reductions have this property.

As a first step towards a characterization, we have outlined a framework for comparing encodings
based on the proof complexity hierarchy. The key idea behind the framework is that encodings can affect
the proof complexity of the result either beneficially or adversely by overcoming the superpolynomial
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separation between two proof systems through the use of reasoning that is unavailable to the proof system
or by requiring the proof system to derive clauses which cannot be derived concisely.
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