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1 Introduction

Propositional proof complexity is the study of the lengths of propositional proofs in various different
proof systems and is ultimately aimed at settling the open problem of whether the complexity classes
NP and coNP are equal. Although the history of logic and proofs dates back to antiquity, the formal
study of proof complexity is relatively new. Tseitin published the first major proof complexity paper in
1966 [Tse70]. This work predated complexity theory by a few years, but Tseitin nevertheless included
many of the fundamental ideas of modern proof complexity. After Cook’s seminal 1971 paper [Coo71]
which established complexity theory, he and Reckhow did the groundbreaking work [CR74, Rec76, CR79]
which also established proof complexity as an important field of research. We will follow their definitions
closely.

1.1 Motivation

If the P vs. NP question is the most important open problem in theoretical computer science, then
the NP vs. coNP question (ie. whether NP is closed under complement) is probably the second most
important one. However, the motivation for studying propositional proof systems goes beyond the NP
vs. coNP question and could potentially affect both of these open problems. If NP 6= coNP , then
P 6= NP . The proof is immediate: P is closed under complement, so if NP is not, then they cannot be
the same sets. These would of course be major results.

In addition, the results in proof complexity can translate into lower bound results for algorithms.
Creating better SAT solvers has turned into an industry, and many of the algorithms used in practice
have corresponding proof systems for which exponential lower bounds have been proven. These lower
bounds give us a sense of the inherent limitations of the current implementations.

1.2 Definitions & Terminology

Propositional proof systems have been traditionally defined by logicians in a very structural way. For
instance, one way to define a proof system is to provide a set of simple logical axioms together with a
set of inference rules. The Cook-Reckhow definition of a propositional proof system (with good reason)
is somewhat different:

Definition 1.1. A proof system for a language L ⊆ Σ∗ is a poly-time computable onto function

f : Σ∗

p → L where Σp is some alphabet.

Intuitively, Σp is an alphabet of ‘proof symbols’, and f maps proofs to the elements in L which they
prove. One advantage of this definition is that it immediately brings propositional proof systems into
the realm of computer science by formally requiring f to be computable. Even more importantly, the
words ‘poly-time computable’ enforce our intuitive notion that when given a proof, we should be able to
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tell (compute) what exactly it is that the proof is trying to prove within a feasible amount of time. This
rules out the possibility of absurd proof systems which map arbitrary strings to elements in L.

Regardless of whether we follow the Cook-Reckhow definition or the traditional structural definition,
proof systems must be sound; for example, a proof system for tautologies should not be able to prove
a non-tautology. Similarly, proof systems must be complete; for example, a proof system for unsatisfi-
ability must be capable of proving the unsatisfiability of every possible unsatisfiable formula. Another
characteristic of the Cook-Reckhow definition is that it implicitly demands soundness and completeness.
Soundness is guaranteed because in practice f is also total, since syntactically incorrect proofs are usually
all mapped to a dummy element in L. In other words, no proof is mapped outside of L. The fact that
f is onto guarantees completeness.

Loosely speaking, complexity theory is focused on the study of the complexity class NP whereas proof
complexity is focused on the study of its complement, the complexity class coNP . The following are
equivalent definitions of NP :

Definition 1.2. NP = {L | L is decidable by a NTM in polynomial time}

Definition 1.3. NP = {L | Each x ∈ L has a poly-length certificate that can be verified by a DTM in

polytime}

For our purposes, the latter definition is more intuitive because certificates are synonymous with
proofs. The other major class that we are interested in is coNP. It is defined as containing the comple-
ments of the languages in NP :

Definition 1.4. coNP = {L | L ∈ NP}

1.3 Polynomially Bounded Proof Systems & coNP

By the definition of NP , we know that every language in NP has polynomial-length certificates
(proofs). However, it is totally unclear whether the same can be said for the languages in coNP. This
leads us to another fundamental definition:

Definition 1.5. The proof system f : Σ∗

p → L is said to be polynomially-bounded if for all y ∈ L
there exists an x ∈ Σ∗

p such that y = f(x) and |x| ≤ p(|y|), where p(x) is some polynomial.

So for example, SAT, the canonical NP-Complete language, does have a polynomially-bounded proof
system: just take f to map (F, α) to F , where F is a satisfiable formula and α is the truth assignment
which satisfies it. All invalid proofs are mapped to an arbitrary formula in SAT, say the sentence letter p.
In contrast, nobody knows whether SAT’s complement, SAT has a polynomially-bounded proof system;
proofs that a formula is not satisfiable seem to be inherently longer than proofs for satisfiability. Note that
in practice, we are not actually interested in the language SAT , but rather we are interested in UNSAT.
There is a subtle distinction between these languages. Technically speaking, since the complement of
a language L is defined to be Σ∗ − L, SAT contains many strings that do not even encode formulas.
UNSAT is SAT without these ‘garbage’ strings; ie. it contains only the unsatisfiable formulas. In any
case, these ‘garbage’ strings are decidable by a DTM in polytime, so this is not a problem.

The two coNP-Complete languages that we are most interested in are UNSAT and TAUT. Just as
SAT is NP-Complete, so is UNSAT coNP-Complete. FALSIFIABILITY (FAL for short), the language
consisting of all falsifiable formulas, is another NP-Complete language. Its counterpart in coNP is
TAUT, the language consisting of all logical tautologies. TAUT and UNSAT are the most studied
coNP-Complete languages, and most propositional proof systems in existence were devised for proving
tautologies or refuting unsatisfiable formulas. The relationship between these languages is shown in the
Venn diagram in Figure 1 below.
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Falsifiable Formulas (FAL)Satisfiable Formulas (SAT)

TAUT UNSAT

Figure 1: The relationship between SAT, FAL, UNSAT, and TAUT

One of the fundamental theorems of propositional proof complexity formalizes the relationship between
the NP vs. coNP problem and polynomially-bounded proof systems:

Theorem 1.6. NP = coNP if and only if there exists a polynomially-bounded proof system for some

coNP-Complete language.

A proof that there are no polynomially bounded or ‘super’ proof systems for TAUT would therefore
immediately imply that NP 6= coNP , and would as already stated therefore also imply that P 6= NP .
In contrast, a positive answer to the NP vs. coNP question would not necessarily imply that P = NP ,
since it may be the case that all tautologies have short certificates, but they may take exponentially long
to find (similarly, all formulas in SAT have short certificates, but they may take exponentially long to
find in the worst case).

2 A Description of Major Proof Systems

Many propositional proof systems have been studied and categorized into a hierarchy based on their
strengths as proof systems. This hierarchy is shown in Figure 2 and is based on the concept of p-
simulation, which allows us to objectively compare two proof systems.

Definition 2.1. Let f1 : Σ∗

1 → L and f2 : Σ∗

2 → L be proof systems for L. If for all x1 ∈ Σ∗

1, there exists

an x2 ∈ Σ∗

2 such that f1(x1) = f2(x2) where |x2| ≤ p(|x1|) for some polynomial p, then we say that f2

weakly p-simulates f1.

In addition, if there exists a polytime computable function t : Σ∗

1 → Σ∗

2 such that for all x ∈ Σ∗

1,

f1(x) = f2(t(x)), then we say that f2 strongly p-simulates f1.

Proof systems that strongly p-simulate each other are said to be p-equivalent.

The distinction between weak p-simulation and strong p-simulation is that strong p-simulation is
more constructive in that it requires a ‘proof translating function’ g. Since it is therefore a stronger
form of simulation, it is seen more often in positive results, whereas weak p-simulation is seen when
referring to negative results. When the adjectives ‘strong’ and ‘weak’ are omitted, by default we mean
strong p-simulation. Although the definition above requires the two proof systems to agree on the same
language, proof systems for different languages can also p-simulate each other. We shall see examples of
this when we discuss ‘non-propositional’ proof systems.
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The following diagram gives a preview of the proof systems to be discussed as well as their relative
strengths. An arrow from proof system A to proof system B indicates that A p-simulates B. Whenever
a slash appears on an arrow, it means that there is an exponential separation between the two systems.
Question marks indicate open problems, and when multiple proof systems appear in the same box, it
means that they belong to the same p-equivalence class.

(DAG-Like)

Truth Tables
Tree-Like Cut-Free

Gentzen

Analytic Tableaux

DLL

Tree ResolutionOrdered Resolution

DP

Natural Deduction

Gentzen With Cut

Frege Systems

AC0−Frege

?

(DAG-Like)

Regular Resolution

(DAG-Like)

General Resolution

Substitution Frege

Extended Frege

Exponential Lower Bounds Known

Extended Resolution

Hajós Calculus

No Super-Polynomial Lower Bounds Known

Cut-Free Gentzen

?

Cutting Planes

Figure 2: The Proof System p-Simulation Hierarchy
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2.1 Truth Tables

Truth tables (TT) are perhaps the most obvious way of proving formulas to be tautologies (logically
true) or unsatisfiable (logically false). A truth table for a formula F on n sentence letters is simply a
table in which each row contains one of the 2n possible truth assignments along with the truth value
of F under that assignment. The disadvantage of TT is that as a proof system they can be extremely
inefficient. Since a formula of length n can contain up to O(n) sentence letters, truth tables can require
Ω(2n) rows. In effect, TT cannot weakly p-simulate any proof system that has polynomially-bounded
proofs for some family of formulas in which the number of sentence letters grows linearly with the length
of the formula. As such, this proof system is considered to be one of the weakest.

2.2 Analytic Tableaux

Also called ‘truth trees’, Analytic Tableaux (AT) is another ‘weak’ proof system. It is a refutation
system that is typically used to show that formulas in conjunctive normal form (CNF) are unsatisfiable.
When dealing with CNF formulas, it is equivalent and often simpler to view the formula in question as a
set of clauses. The underlying structure of AT is a tree, and the basic idea is to choose a clause at each
node in the tree and branch on it such that each child is labeled with one of the literals of that clause.
The root node is unique in that it does not contain any literals. As soon as a node v contains a literal
such that its negation is found in one of its ancestors in the tree, then the branch ending in v is closed off
and becomes a leaf. Once all the paths from the root to the leaves are closed off, the proof is complete.
The tree that is produced is called a ‘tableau’.

The size of a tableau refutation is defined to be its number of interior nodes. It should be noted that
in a tableau refutation of minimal size, no branch contains repeated literals. The pruning technique used
to eliminate duplicate literals is described in [Urq95].

Exponential lower bounds for AT are due to Cook [Coo75], and further described in [APU01, Urq95].
The idea is to build sets of contradictory clauses based on complete binary trees. These clauses force
any tableau refutation to contain an enormous amount of necessary repetition.

A testament to the weakness of AT is that it cannot p-simulate TT [Urq95]. Similarly, TT cannot
p-simulate AT.

2.3 Resolution

Resolution in all of its many forms is perhaps the best-studied propositional proof system. Much like
AT, Resolution is a refutation system for unsatisfiable CNF formulas. The resolution rule is quite simple:
given two clauses (A ∨ x) and (B ∨ x), we resolve on the variable x to derive the new clause (A ∨ B). A
resolution refutation of a contradictory set of clauses consists of the application of a sequence of resolution
steps until the empty clause ∅ is derived. This proof can be written as a sequence of clauses in which
each is either an initial clause or follows by the resolution rule from two previous ones. It is also possible
to represent a resolution proof as a directed graph instead of as a sequence of clauses. The vertices of
these graphs are labeled with clauses. Initial clauses have in-degree 0, whereas all other clauses have
in-degree 2, with the edges indicating which clauses they were derived from.

The size of a Resolution refutation is sometimes used to refer to its length encoded as a string, and
is sometimes used to refer to the number of clauses it contains.

2.3.1 Tree Resolution

If the underlying graph of a resolution proof is a tree, then we say that the proof is ‘tree-like’. Intuitively,
this implies that each clause may only be resolved on once, so if a clause needs to be used again, it must
be re-derived. Tree Resolution (T-RES) is Resolution in its weakest form, and its exponential lower
bounds are easily understood.

One particularly intuitive way of proving T-RES lower bounds is through a ‘Prover / Delayer’ game,
described in [BSIW04]. The Prover / Delayer game is an adversarial game that is played using an
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unsatisfiable CNF formula F . The prover’s goal is to prove that the formula is unsatisfiable, whereas the
delayer’s goal is to delay the prover for as long as possible. The game proceeds in a number of rounds.
The prover chooses a variable and queries the delayer for its value. The delayer has three possible
responses: ‘true’, ‘false’, and ‘you choose’, at which point the prover is allowed to assign the value. The
delayer wins a point whenever ‘you choose’ is said, and the game ends as soon as a clause is falsified.
This game provides lower bounds on T-RES size according to the following theorem:

Theorem 2.2. Given an unsatisfiable CNF formula F , if the delayer has a strategy which is guaranteed

to score at least r points, then the number of clauses in the smallest T-RES refutation of F is at least 2r.

This is a useful tool, since it allows T-RES lower bounds to be proved under the intuitive setting of
the game. Numerous examples of formulas requiring exponential T-RES proofs are known.

As already mentioned, there is considerable interest in SAT solvers. One such algorithm, called DPLL

after its authors [DLL62], is widely-used and successful. It turns out that the DPLL algorithm corresponds
almost exactly to T-RES as a proof system. DPLL works by building a tree in which the root contains
the original formula, each edge corresponds to a restriction, and every other node corresponds to the
resulting restricted formula. DPLL terminates once every leaf contains a clause that has been falsified.
It is not hard to see that with at most a little bit of pruning, the tree built by the DPLL algorithm forms
an inverted T-RES proof for exactly the same formula. Lower bounds for T-RES therefore translate
directly into algorithmic lower bounds for DPLL. This is a good example of the interaction between
proof complexity and algorithms.

2.3.2 Ordered Resolution

In Ordered Resolution (O-RES), each variable x is systematically eliminated by performing all possible
resolutions involving it. The problem is therefore reduced from containing n to n − 1 sentence letters.
Whereas the graph structure underlying T-RES is a tree, the graph structure underlying O-RES is a
directed acyclic graph (DAG). This means that clauses may be used as inputs for any arbitrary number
of resolutions. The algorithmic implementation of O-RES is called DP, again after its authors [DP60]. As
a SAT solver, it motivated the invention of DPLL, and the exponential lower bounds for O-RES correlate
to algorithmic lower bounds for DP.

2.3.3 Regular Resolution

Let C1, C2, ..., Ck−1, Ck be a path within a branch of a Resolution refutation where each C is a clause.
If C1 and Ck contain a variable x but C2, ..., Ck−1 do not, then that path is said to be an ‘irregularity’, and
the refutation is said to be irregular. Regular Resolution (R-RES) is resolution in which the underlying
structure is a DAG, but irregularities are disallowed. In what was to become the first major proof
complexity lower bound, Tseitin proved superpolynomial lower bounds for R-RES [Tse70]. This lower
bound is based on families of formulas that are constructed using odd-charged square grid graphs. These
graphs and their corresponding formulas are described particularly well in [Urq87]. Galil used similar
arguments involving bipartite expander graphs to improve this lower bound to exponential [Gal77].

In much the same way that no branch in an AT refutation contains a repeated literal, all T-RES refuta-
tions of minimal size are regular. That is to say, given an irregular T-RES refutation, it is always possible
to remove the irregularity while shortening the proof [Urq95]. Similarly, O-RES systematically eliminates
variables one at a time, and therefore trivially produces R-RES proofs. In effect, R-RES subsumes both
T-RES and O-RES, so exponential R-RES lower bounds immediately translate into exponential lower
bounds for the other two Resolution systems.

2.3.4 General Resolution

General Resolution (RES) is DAG-like resolution without any restrictions such as regularity. For many
years, researchers tried unsuccessfully to apply the Tseitin and Galil techniques in order to extend the
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R-RES lower bounds to RES. The breakthrough was made in [Hak85] by Haken. Instead of using graphs
to build contradictory formulas, Haken used the pigeonhole principle (PHP). The PHP is a combinatorial
principle which states that it is impossible to put n pigeons into n − 1 holes such that no two pigeons
share the same hole. The formula encoding the negated PHP is called PHP n

n−1, and its variables are of
the form mi,j , with the intended meaning that mi,j being set to true means that pigeon i is mapped to
hole j. The formula PHP n

n−1 consists of the following clauses:

n∧

i=1

(

n−1∨

j=1

mi,j) i.e. The mapping is total; every pigeon maps to at least one hole.

n−1∧

j=1

n∧

i1=1

n∧

i2=1

i1 6=i2

(¬mi1,j ∨ ¬mi2,j) i.e. The mapping is 1-1; no hole has more than one pigeon mapped to it.

Since the PHP is clearly true, the formula PHP n
n−1 must be unsatisfiable. Haken showed that any RES

proof of PHP n
n−1 requires exponentially many clauses. Although ingenious, his argument was somewhat

complicated. It has since been simplified and improved by Beame & Pitassi [BP96] as well as Urquhart
[Urq03]. A third very clear simplified exposition is given in [Sab02]. Although slightly improved, Haken’s
result remains essentially the same:

Theorem 2.3. For sufficiently large n, any RES proof of PHP n
n−1 requires at least 2

n
20 clauses.

At a high-level the proof is relatively straightforward: first prove that every Resolution refutation
of PHP n

n−1 contains a clause with at least 2
9n2 literals. Define a ‘large’ clause as being one that has

at least 1
10n2 literals. Assume that there exists a refutation of PHP n

n−1 that contains fewer than 2
n
20

clauses. Repeatedly restrict this proof so as to eliminate all large clauses. The resulting restricted proof
is a refutation of PHP n′

n′
−1, but 2

9n′2 equates to a little bit more than 1
10n2, so the resulting proof must

contain a large clause. However, we eliminated all large clauses, a contradiction.

Variations of the PHP also exist; for example, we can insist that the mapping from pigeons to holes be
a function. The formula encoding the functional PHP is denoted fPHP n

n−1 and includes the following
clauses in addition to those mentioned above:

n∧

i=1

n−1∧

j1=1

n−1∧

j2=1

j1 6=j2

(¬mi,j1 ∨ ¬mi,j2) i.e. The mapping is a function; no pigeon is mapped to more than one hole.

The onto PHP includes all of the above clauses, but also requires that the mapping be onto [CK01].
It is denoted ontoPHP n

n−1 and includes the following clauses:

n−1∧

j=1

(

n∨

i=1

mi,j) i.e. The mapping is onto; every hole has at least one pigeon mapped to it.

Intuitively, since they contain more clauses and these clauses could only help when trying to find
shorter proofs, the functional PHP and onto PHP should be easier for proof systems to deal with. Never-
theless, Haken’s original proof generalizes easily to show that even the onto PHP requires exponentially
long RES proofs.

Exponential lower bounds did not close the book on RES research. In [Urq87], Urquhart applied ideas
from Haken’s argument in order to find essentially optimal graph-based exponential lower bounds for
RES, thereby completing the line of research started by Tseitin.
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Considerable research has also gone into optimizing the separation between the different versions of
Resolution. In [BSIW04], Ben-Sasson et. al. use pebbling graphs to prove a near-optimal separation of
T-RES and RES. Pebbling graphs are directed graphs which contain the additional vertex subsets S and
T . Each vertex has at most in-degree 2, and one can think of pebbling graphs as circuits where the
vertices represent gates. The idea with pebbling graphs is to place a pebble on some target node in T
according to the following rules: we have an unlimited number of red and blue pebbles. We may remove
a pebble at any time, and we may place a pebble on any source node in S at any time. For every other
node not in S, we may pebble it only if both of its predecessors have pebbles on them. The pebbling
number PG(S, T ) for a graph G with source and terminal sets S and T is the minimum number of pebbles
required in order to place a pebble on some vertex in T .

The colours of the pebbles come into play when translating a pebbling graph into its corresponding
formula PebG,S,T . The variables are of the form xv,c, which are interpreted as meaning vertex v has a
pebble of colour c on it. For each s ∈ S, we create a clause saying that it either has a red or blue pebble
on it. For every other vertex v, we create clauses saying that if both of their predecessors are pebbled
(it does not matter what colours the pebbles are), then v either has a red or blue pebble on it. Finally,
we create two singleton clauses for each t ∈ T which together state that t neither has a red nor a blue
pebble on it. It is not hard to see that the resulting formula is unsatisfiable.

Ben-Sasson et. al. use the Prover / Delayer game to show that for every pebbling graph G, S, T , the
size of the smallest T-RES refutation of PebG,S,T is 2PG(S,T ). Combined with the result that there exist
pebbling graphs with pebbling numbers at least Ω(n/log n) [CPT77], this yields a T-RES lower bound of
2Ω(n/log n). T-RES has an O(n log log n

log n ) upper bound for the pebbling formulas, and RES has an O(n)
upper bound, proving a near-optimal separation.

2.3.5 Limited Extension

One final concept relevant to Resolution is ‘Limited Extension’. Apart from his superpolynomial
R-RES lower bound, Tseitin’s other major contribution in [Tse70] was Limited Extension. It is not
hard to see that refutation proof systems for TAUT can easily be turned into systems for UNSAT (and
vice-versa) by simply negating the formula in question. For example, Resolution can be used to prove
tautologies, even if they use logical connectives that Resolution cannot handle; just take a tautology
F and negate it to produce an unsatisfiable DNF formula ¬F . Convert this formula to its equivalent
CNF form, and Resolution will be able to refute it, thereby proving that the original formula F was a
tautology. Unfortunately, some formulas grow exponentially when converted to CNF. Tseitin realized
that this problem can be overcome by turning ¬F into a new formula F ′ that is not equivalent to ¬F ,
but rather is satisfiable if and only if ¬F is. The trick is to introduce a new ‘Limited Extension’ variable
for every subformula of ¬F . For example, let us assume that we want to use Resolution to show that
the biconditional tautology F = (p ≡ (q ≡ (p ≡ q))) is in fact a tautology. First we negate it to get
¬(p ≡ (q ≡ (p ≡ q))). Next we recursively create extension variables, one for each subformula:

1. a ≡ (p ≡ q)

2. b ≡ (q ≡ a)

3. c ≡ (p ≡ b)

4. ¬c

Finally, we turn each of these equivalences into clauses by observing that x ≡ (y ≡ z) is logically
equivalent to (x∨y∨z)∧ (x∨y∨z)∧ (x∨y∨z)∧ (x∨y∨z). Of course, ¬c remains a singleton clause. By
taking a conjunction of all these clauses we have produced the desired CNF formula which is only linearly
longer than F . We therefore have a feasible translation procedure that allows us to use Resolution to
prove arbitrary tautologies, regardless of the basis. Of course, the introduction of extension variables is
by no means restricted to Resolution.
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2.4 Gentzen’s System PK

Gentzen systems refer to the logical proof systems due to Gerhard Gentzen. Originally published in
German, his work has since been translated into English. Good overviews can be found in both [Coo02]
and [CK01]. Gentzen’s original system, called LK, was formulated for predicate logic. We are interested
in LK’s propositional fragment, called PK. PK is called a sequent calculus because every line in a PK

proof is a ‘sequent’. A sequent is a logical implication of the form Γ 7→ ∆ where Γ and ∆ are sets of
formulas. Sequents are interpreted as meaning that a conjunction of all the formulas on the left imply a
disjunction of all the formulas on the right. For example, if Γ = {A1, A2, ..., Ak} and ∆ = {B1, B2, ..., Bk}
then Γ 7→ ∆ is equivalent to the formula (A1 ∧ A2 ∧ ... ∧ Ak) ⊃ (B1 ∨ B2 ∨ ... ∨ Bk).

PK is typically used as a proof system for TAUT, and its axioms are all sequents of the form p 7→ p,
where p is some sentence letter. The following are the standard PK inference rules:

weakening:

left
Γ 7→ ∆

A, Γ 7→ ∆
and right

Γ 7→ ∆

Γ 7→ ∆, A

exchange:

left
Γ1, A, B, Γ2 7→ ∆

Γ1, B, A, Γ2 7→ ∆
and right

Γ 7→ ∆1, A, B, ∆2

Γ 7→ ∆1, B, A, ∆2

contraction:

left
Γ1, A, A, Γ2 7→ ∆

Γ1, A, Γ2 7→ ∆
and right

Γ 7→ ∆1, A, A, ∆2

Γ 7→ ∆1, A, ∆2

¬ introduction:

left
Γ 7→ ∆, A

¬A, Γ 7→ ∆
and right

A, Γ 7→ ∆

Γ 7→ ∆,¬A

∧ introduction:

left
A, B, Γ 7→ ∆

A ∧ B, Γ 7→ ∆
and right

Γ 7→ ∆, A Γ 7→ ∆, B

Γ 7→ ∆, A ∧ B

∨ introduction:

left
A, Γ 7→ ∆ B, Γ 7→ ∆

A ∨ B, Γ, 7→ ∆
and right

Γ 7→ ∆, A, B

Γ 7→ ∆, A ∨ B

cut:

Γ 7→ ∆, A A, Γ 7→ ∆

Γ 7→ ∆

Although PK is normally formulated over the basis ∧,∨,¬, it is possible to formulate a Gentzen
system which includes rules for any logical connectives. Much like Resolution, PK can be characterized
as being either DAG-like or tree-like depending on whether derived sequents are allowed to be reused or
not. Unlike Resolution, however, tree-like and DAG-like PK are p-equivalent, provided that they both
include the cut rule [CK01, p.267]. If the cut rule is not included, then the picture changes dramatically.
PK with cut is p-equivalent to Frege systems, whereas cut-free DAG-like PK can be p-simulated by RES,
and cut-free tree-like PK is very weak; it is only p-equivalent to AT. Whether cut-free PK can p-simulate
RES is an open problem.
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2.5 Frege Systems

Frege systems (Frege), also called Hilbert-style systems, are a group of robust proof systems that are of
particular interest in the area of proof complexity. Any sound and complete proof system that includes
a finite number of axiom schemes instead of axioms is considered to be a Frege system. Axiom schemes
are axiom templates that allow for a simultaneous and uniform substitution of any arbitrary formulas
for sentence letters. For example, if a Frege system has an axiom scheme of the form p → p, then a
substitution of the formula (q ∨ r) for p yields the formula (q ∨ r) → (q ∨ r), which can be introduced at
any point in a proof. In effect, Frege systems have an infinite number of axioms. Much like Gentzen’s
system PK with cut, tree-like and DAG-like Frege systems are p-equivalent [CK01, p.372]. It appears that
tree-like proof systems are weaker than their DAG-like counterparts only in the weaker proof systems.

It turns out that Frege systems are a bit of a misnomer; Frege’s original system did not use axiom
schemes, but rather defined axioms and explicitly allowed for substitution into those axioms by way of
a substitution rule. Ironically, his original system was therefore not technically a Frege system. The use
of axiom schemes rather than the substitution rule is attributed to Von Neumann [CR79].

Related to Frege systems, Natural Deduction systems (ND) are sound and complete proof systems
that include the ‘deduction theorem’ as an inference rule. The deduction theorem takes the form, If
Γ ∪ A ` B then Γ ` A ⊃ B, where ‘⊃’ is standard implication, or some logically equivalent form.

In his Ph.D. thesis [Rec76], Reckhow proves that all Frege systems and ND systems as well as Gentzen’s
system with cut are p-equivalent.

Frege systems and their p-equivalents are quite powerful, and no superpolynomial (let alone expo-
nential) lower bounds are known. These systems are widely believed to have exponential lower bounds,
and proving them is a major open problem.

2.6 Bounded-Depth Frege Systems

We do have lower bounds for a special class of Frege systems, however. When we place a restriction
on Frege systems requiring that all formulas can have a depth of at most a constant d, we create a new
class of proof systems called Bounded-Depth Frege systems (AC0-Frege).

Definition 2.4. The depth of a formula F is the minimum height among all unbounded fan-in circuits

equivalent to F .

For example, all CNF and all DNF formulas have depth 2.

Bounded-Depth Frege systems are alternatively called AC0-Frege Systems because constant depth
circuits comprise the class AC0. Exponential lower bounds for AC0-Frege Systems were proved using
techniques based on circuit complexity lower bounds for parity. The relationship between these results
is chronicled in [CK01] and [UF96].

The key idea is that of a switching lemma, which allows us to efficiently convert a restricted formula
from DNF to CNF and vice-versa. H̊astad’s switching lemma, published in [H̊as87], but described
particularly clearly in both [Bea94] and [Ala02], is stated as follows:

Lemma 2.5. Let F be any arbitrary DNF formula on n variables with terms of length at most r. Then

for all s ≥ 0, all p ≤ 1
7 , and all l = pn,

|Bl
n|

|Rl
n|

< (7pr)s

Where Rl
n is the set of all restrictions on n variables that leave l unset, and B l

n is the subset of Rl
n

such that each α ∈ Bl
n causes the canonical decision tree of F �α to have height ≥ s.
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Intuitively, the switching lemma is saying that the number of ‘bad’ restrictions in B is insignificant
when compared with the total number of restrictions, so there are many ‘good’ length n − l restrictions
β ∈ Rl

n − Bl
n which allow us to convert F �β from DNF to CNF according to the following argument:

Since paths in the canonical decision tree of F �β leading to 0-leaves correspond to falsifying assignments
of F �β’s terms, these paths tell us the terms in the DNF of ¬F �β . If we push another negation through
this formula, we are left with F �β in CNF. In effect, the height of the tree is a bound on the length of
the terms in the DNF of ¬F �β as well as the length of the clauses in the CNF of F �β . By controlling
the height of the tree, we control the lengths of the terms and clauses.

H̊astad’s switching lemma can be applied to prove that parity has no bounded-depth circuits [Bea94],
which as already stated was the inspiration for the proof of AC0-Frege exponential lower bounds.

3 More On Powerful Proof Systems

We conclude our survey with a few remarks about proof systems that appear to be even more powerful
than Frege systems as well as a few comments on ‘non-propositional proof systems’.

3.1 Extended Frege Systems

Frege systems can be augmented to create proof systems that are potentially even more powerful. One
way of augmenting Frege systems is to add an extension rule that is similar to Tseitin’s idea of Limited
Extension, except that it can be applied arbitrarily to any formula at any point in the Frege proof. More
specifically, extension allows for the arbitrary introduction of the formula p ≡ G, where p is a sentence
letter not found in G, nor any previous location in the Frege proof, nor in the conclusion. Intuitively,
the extension rule allows for formulas to be abbreviated. The proof systems resulting from augmenting
Frege systems with extension are called Extended Frege (E-Frege) systems, and they trivially p-simulate
Frege systems. Much like Frege systems, all E-Frege systems are p-equivalent [Rec76].

3.2 Substitution Frege Systems

Another augmented class of Frege systems are called Substitution Frege (S-Frege) systems. These
systems are simply Frege systems augmented with a substitution rule which allows us to take any formula
F in the proof and uniformly substitute any arbitrary formula G for all occurrences of an arbitrary
sentence letter p in F . This rule is written as

F
F (G/p)

In effect, S-Frege systems regard every newly derived formula as being an axiom scheme. Again,
S-Frege systems trivially p-simulate Frege systems. Reckhow also proved that S-Frege systems p-simulate
E-Frege systems [Rec76]. E-Frege systems were later shown to p-simulate S-Frege systems [CK01, p.396],
thereby showing that they are in the same equivalence class.

3.3 Extended Resolution

Another powerful proof system, Extended Resolution (E-RES) is RES with the extension rule. E-RES

was formulated by Tseitin in his landmark paper [Tse70]. The distinction between E-RES and Resolu-
tion with Limited Extension is that while the latter only allows for the use of extension variables on
subformulas in the formula to be refuted, E-RES allows extension to be used on any subformulas within
the proof. E-RES is p-equivalent to E-Frege and S-Frege [Urq95].
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3.4 Non-Propositional Proof Systems

As it turns out, the phrase ‘Propositional Proof Complexity’ has become a bit of a misnomer because
proof systems are not necessarily proof systems for propositional logic. For example, Cutting Planes (CP)
is a proof system for refuting inconsistent systems of linear inequalities [BP01, CK01]. Similarly, different
algebraic proof systems such as Nullstellensatz (NS) and Polynomial Calculus (PC) [CK01, p.306] are
of interest to proof complexity researchers. Exponential lower bounds are known for all of these proof
systems.

Another interesting non-propositional proof system is the Hajós Calculus (HC). It is a graph theoretic
proof system for non-3-colourability, which is coNP-Complete. Its complexity was an open problem for
many years before Pitassi and Urquhart showed that as a proof system it surprisingly belongs in the
same equivalence class as E-Frege [PU95].
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