
On The Computability of Detecting Machine Consciousness

Alexander Hertel
ahertel@cs.toronto.edu / hertelalex@gmail.com

April 3, 2025

Abstract

Whether machines can be conscious is of great interest and many see Alan Turing’s famous
‘Turing Test’ as a way to address this problem. There are strong motivations for such a test, but
unfortunately his formulation isn’t guaranteed to provide a correct answer. Assuming that machine
consciousness is possible, it would therefore be valuable to create an objective formulation of Turing’s
Test and automate this process with a truly infallible ‘Automated Machine Consciousness Detector’
(AMCD) that can definitively conclude whether or not another machine experiences consciousness.
In this paper we show that this problem isn’t settled by Rice’s Theorem and make progress to-
wards determining whether this is possible by proving three results. To date, formal proofs have
been hindered by researchers’ inabilities to provide a technical definition of consciousness. We solve
this problem by applying a proof technique more powerful than it needs to be and under basic as-
sumptions therefore holds for all reasonable models of consciousness in line with the Computational
Theory of Mind. Our first result shows that the machine consciousness detection problem is not
computable by any Turing Machine that is itself not conscious. The second result shows that a re-
stricted form of this problem is computable. Finally, our third result proves that this restricted form
of the problem again becomes incomputable if we limit the execution time of our AMCD by even a
small fraction. These results unify two of Turing’s major areas of interest: computability and AI.
They highlight several boundaries relevant to machine consciousness detection, thus providing new
insights into machine consciousness, and suggesting that its objective detection may never be possible.

Keywords: Machine Consciousness, Computability, Undecidability, Automated Turing Test, Arti-
ficial Intelligence, Artificial Consciousness

1 Overview

The exact nature of consciousness as well as the question of whether it is possible to build machines
with this capacity are some of the largest open problems in all of science as well as philosophy. As such,
many great thinkers have contemplated these questions for hundreds, if not thousands of years but have
made virtually no progress. Indeed, despite tremendous strides in neuroscience and machine learning,
modern science has little more to say on the topic of how consciousness can arise by assembling atoms in
certain configurations than the Ancient Greeks did. The first known historical statement of this major
question was by Democritus (c. 460-370 BCE) [Tay99] and traditionally this has been called the ‘mind-
body problem’, but has since become known as the ‘Hard Problem of Consciousness’, a moniker coined
by Chalmers [Cha07].

One hypothesis called the ‘Computational Theory of Mind’ is widely held by the mainstream AI
research community and states that the substrate material of which an artificial ‘brain’ is composed is
unimportant, and that it is the computation it performs which gives rise to consciousness. In other
words, consciousness arises from information processing. A more thorough history of this line of research
is provided below in Section 2, and if this is true, then it implies that artificial minds are possible (even
just in software), which immediately motivates strong academic, ethical, as well as practical reasons for

1



being able to determine whether a machine is actually conscious or not. These motivations are discussed
below in Section 2.6.

In [Tur50], Turing proposed his now famous ‘Turing Test’ that for better or worse has become the the
most popular test for machine consciousness, but it is not guaranteed to provide the correct result. Since
then, many other tests for machine consciousness have been proposed [Hai19, p.194], but the goal of
proving any formal results has been hampered by researchers’ inability to provide a sufficiently rigorous
definition of consciousness - after all, how can one prove exact mathematical results based on a squishy
definition?

In this paper we present novel solutions to the problem of whether or not it is possible to create an
algorithm for determining if a machine is conscious, and we are able to do this in a way that does not
depend on a precise understanding or definition of consciousness. In Section 3 we review the terminology
and assumptions upon which our main results rely, including an approximate definition of consciousness.
We are able to solve the problems caused by the informality of this definition by proving results that
are stronger and more general than they need to be, and therefore hold for all reasonable definitions of
consciousness consistent with the Computational Theory of Mind.

Section 4 contains our main results. As almost all theoretical computer scientists are aware, Rice’s
Theorem proves that it is incomputable to determine whether a Turing Machine has virtually any non-
trivial property. In Section 4.1 we begin by showing that Rice’s Theorem doesn’t apply to our problem
and that we unfortunately can’t use it as a shortcut. This is followed by Theorem 4.3, which proves that
infallibly automating the detection of artificial consciousness has inherent limitations, and specifically
that this problem is not computable by a program that is itself not capable of experiencing consciousness.
This is followed by both positive and negative results regarding time-bounded versions of this problem,
respectively shown by Theorems 4.4 and 4.5. These results definitively rule out specific possibilities and
provide formal progress in an area of research where mathematical results have been difficult to achieve.
More fundamentally, they place limitations on our understanding of machine consciousness by suggesting
that we may never be able to predict or detect it. In addition, these results unify two of Turing’s major
areas of study: machine consciousness and computability.

Finally, in Section 5 we provide concluding remarks, and Section 6 outlines conjectures and future
research related to our main results.

2 History

Humanity’s speculation into the exact nature of consciousness must surely predate historic times,
although whether famous early philosophers such as Aristotle shared our concept of consciousness is
contested [Cas02]. It is often discussed synonymously with the human soul. Theologians, philosophers,
and scientists have dedicated countless hours to pondering the problem of how it is possible for matter
to be arranged in a way that gives rise to a mind, and more on what this means can be found below in
Section 3. In the present section we will review the academic literature relevant to this paper:

2.1 The Turing Test

The possibility of computationally-based machine intelligence was first formally explored by Turing
[Tur50] in what has since become a famous paper. In it, he poses the question Q: “Can machines think?”,
which modern researchers interpret as being essentially the same as asking whether machine conscious-
ness is possible [Hai19]. After all, ‘thinking’ and ‘computing’ have different connotations, thinking being
an anthropomorphization that implies consciousness. Put another way, if thinking didn’t involve con-
sciousness and was merely synonymous with computing, then Q becomes, “Can machines compute?”,
making the question entirely trivial. Instead of answering question Q, which was too difficult, Turing
reframed the problem to a more tractable form Q′, consequently devising what has become known as the
‘Turing Test’ for artificial intelligence which asks whether a machine can pass this ‘imitation game’ of
behavioral indistinguishability. In other words, Turing’s paper is about machine consciousness, but the

2



Turing Test itself is merely about whether a machine can pass as having consciousness ascribed to them.
We will not restate the details of this famous test here, and assume that it is familiar to the reader.

This influential proposal for a machine consciousness and intelligence test has been cited widely and
criticized extensively. The main weakness of the test is that it doesn’t determine in any foolproof way
whether a machine is actually conscious but rather determines whether the individuals judging the test
believe that the machine appears to be conscious. In practice, false positives have been documented,
showing that there is a gap between machines that can pass the Turing Test and those that are truly
conscious. Machines or algorithms such as ChatGPT that are widely believed not to be conscious are able
to trick judges into believing that they are. In 2022, one of Google’s engineers named Blake Lamoine
who was working on its Language Model for Dialogue Applications, or LaMDA, risked his job and
ultimately was fired when he publicly claimed it was conscious [Gra22]. It can be reasonably argued
that this constitutes LaMDA having passed a consciousness test that is much stronger than the Turing
Test because a) Mr. Lamoine was not a layperson, b) he knew that he was interacting with a machine
rather than a human without the intermediation of a console to hide the test subject, as is the case in
the Turing Test, and c) his conviction was very high, shown by the fact that he was willing to put his
career in jeopardy to advocate for it whereas in the Turing Test, judges aren’t asked to bet anything, let
alone their careers on their convictions.

Even before the advent of large language models, programs have fared well in Turing Test competi-
tions and are considered to have passed the Turing Test. A good example is a chatbot named Eugene
Goostman, modeled after a 13-year-old Ukrainian boy, which was runner-up for the Loebner Prize in
2001, 2005, and 2008, and won the Turing 100 contest in 2012 as well as the Royal Society’s Turing Test
competition in 2014 [Wik24]. As a related aside, machines exhibiting sophisticated, human-like behavior
without being conscious are referred to as ‘philosophical zombies’.

In addition to these false positives, future false negatives (in which truly conscious machines fail to
convince the judges in the same way that a house cat would fail the Turing Test, even though it is con-
scious) are likely. To address the Turing Test’s weaknesses, researchers have proposed stronger variants
such as Harnad’s ‘Total Turing Test’ [Har91]. These are improvements, but ultimately are still tests
designed to evaluate behavioral indistinguishability rather than objectively detect true consciousness.

Because of its flaws, Turing’s original test is one that might be of interest to, and carried out by
social scientists just as readily as by AI researchers because it says something about people. However,
Turing did not need to reformulate the problem to Q′, and in the present paper we deal directly with the
original more fundamental question. We propose the creation of an ‘Objective Turing Test ’ that addresses
the original question Q by exploring the possibility of creating an ‘Automated Machine Consciousness
Detector’ or AMCD (described more formally in Definition 3.4 below) that can determine whether an
algorithm experiences consciousness when running on a given input. If it were possible to actually build
such an AMCD, then it would always give the right answer with no room for ambiguity or error. As
such, it might be of more interest to, and carried out by computer scientists because it mainly tells us
something about machines. Of course, it is important to point out that it may not ever be possible
to build conscious machines, let alone an AMCD, in which case something fundamentally similar to
Turing’s original test is much more practical and may be the best we can hope for.

Having invented Turing Machines himself, it is fascinating to speculate as to why Turing chose to
formulate a subjective solution to the problem of detecting machine consciousness rather than suggesting
the more technical and objective formulation described below. One can imagine that writing in the early
1950s, perhaps the concept of software being conscious was too far-fetched for him because the computers
of the day weren’t powerful enough, or perhaps he struggled with a formal definition of consciousness,
or realized how difficult building a consciousness detector would be and was looking for a more feasible
solution.

2.2 The Computational Theory of Mind

In any case, Turing’s work above is related to an important model of consciousness called the ‘Compu-
tational Theory of Mind’ which is highly relevant to the problem at hand. The Computational Theory

3



of Mind is based on the observation that the roughly 86 billion neurons in the average human brain form
an incredibly complex neural network and that its nature is fundamentally computational. This line of
inquiry was popularized in a seminal paper [MP43] by McCulloch and Pitts. In it they formalized the
notion of an artificial neural network. This work was extended by the great John Von Neumann, who
shortly before his premature death wrote a book entitled, ‘The Computer and The Brain’ [Neu58], an
early pioneering work bridging the fields of computer science and neuroscience. In [Arb61], Arbib proved
a foundational result that neural networks and finite state machines are computationally equivalent: for
every neural network there is a finite state machine that computes the exact same function, and vice
versa. This lent further strength to the intuition that the human brain is fundamentally computational
in nature.

The Computational Theory of Mind built on these results and was proposed by Putnam [Put60].
It takes the argument one step further by hypothesizing that the human mind and consciousness itself
are the result of the computations being carried out by the brain. But if consciousness is simply a
byproduct of a mathematical function being computed by the brain, then wouldn’t that brain’s finite
state machine equivalent (as per Arbib above) or a perfect simulation of that brain on a computer generate
the same mind when these equivalent models compute the same function? The Computational Theory
of Mind suggests that such software simulations would themselves be conscious. Put more formally, the
Computational Theory of Mind is closed under simulation because the simulation is computing the same
function.

This implication and the Computational Theory of Mind itself are hotly contested, especially by
philosophers such as Searle with his famous ‘Chinese Room Argument’ [Sea80]. Indeed, because of a
Turing Machine’s step-by-step nature, it is difficult to see how it could possibly be conscious or cause
consciousness to arise. After all, if there is no consciousness associated with it on step k of its computation,
but on step k+1 there is, then what precisely could have happened between those steps to make it appear?
Nevertheless, the consensus among mainstream AI researchers is that machine consciousness is possible,
and if that is the case, then Turing Machine consciousness must also be possible. Computers and software
in the real world manipulate symbols in the same step-by-step manner as Turing Machines, so it would
be hard to justify a belief that software machine consciousness is possible while simultaneously denying
this possibility of Turing Machines if they are implemented - after all, TMs are our foundational model
of computation according to the Church-Turing Thesis.

2.3 AI Researcher Consensus

Among mainstream AI researchers the Computational Theory of Mind and its implication that con-
sciousness is a result of information processing are widely accepted (without proof) and in many ways
this can be considered a fundamental assumption underlying the field of AI. They believe that the sub-
strate of which the mind’s hardware is built is irrelevant and that it is therefore possible to build an
artificial consciousness, even just in software. Although it is difficult to find a comprehensive survey, a
2018 summary of interviews of 33 AI researchers revealed that only one member of this group believed
that machines will never gain consciousness [Fag18].

It is also widely believed that not every computation (such as 2 + 2 = 4) causes a consciousness to
be created. The other two possibilities aren’t nearly as interesting from the point of view of detecting
machine consciousness: there is a hypothesis called ‘panpsychism’ which holds that consciousness is
ubiquitous and that all computations (as well as all physical matter and interactions) give rise to at
least some level of consciousness. Despite having received some support from AI researchers such as
McCarthy who in [McC79] proposed that even thermostats can be said to have beliefs, panpsychism is
widely rejected. Physicists are quick to point out that there is no evidence that consciousness permeates
all matter on a human nor on a subatomic scale. Similarly, most AI researchers (as well as philosophers)
hold that consciousness is a binary quality that is either present or not.

At the opposite end of the spectrum from panpsychists, there are those who for various reasons
(including religious ones) believe that it is impossible for a machine to be conscious because consciousness
is often equated with a human soul. In both of these cases, machine consciousness detection is trivial

4



- it is respectively either all or nothing, and therefore also trivially computable - if the panpsychists
are right, simply always output ‘Yes’, and if the machine consciousness deniers are right, then simply
always output ‘No’. The most interesting (and only non-trivial) case is therefore one in which machine
consciousness is possible but not ubiquitous, and this is the case that we will assume to be true for the
purposes of this paper. As mentioned above, this is also the position widely held by mainstream AI
researchers and we will state this explicitly as Assumption 3.1 in Section 3 below.

2.4 Other Models of Consciousness

It is important to note that computer scientists are only one of many active research groups (including
philosophers, neuroscientists, biologists, physicists, phsychologists, among others) interested in explaining
the nature of consciousness, and the Computational Theory of Mind is but one of dozens of models of
consciousness that have been proposed by researchers. The diversity of these models is rich and a full
accounting of them is beyond the scope of this paper, so an interested reader is directed to one of
several thorough surveys: both [SMB+21] and [SSP21] list many competing models and create their own
respective frameworks for comparing and classifying them. The authors of [DSH21] similarly provide
a checklist of criteria that empirical models of consciousness must address, and then review several of
the most influential models according to these criteria. Good examples of more mathematical models
include [Mas16, Mas21] and in [Kle24], the author points out and explores a general trend in consciousness
research towards more rigorous structural and mathematical models. Yet further details and insights
into machine consciousness research can be found in [Reg14].

Even just within the field of computer science, there are many models on offer. One model for
conscious Turing Machines that is very different from the one in the present paper is described in
[BB22]. The Computational Theory of Mind is similarly contested by another competing model called
‘Integrated Information Theory’, or IIT which argues that in the same way that data center floors don’t
get wet when their computers run climate or rainfall models, so too is consciousness a property of a
physical system and therefore cannot exist purely in software [TK15]. Additional nuance introduced by
quantum computers is discussed by Aaronson in his essay [Aar13]. Physicist and Nobel Prize Laureate
Roger Penrose argues that consciousness is not computable by classical computers but rather that it
arises from a quantum mechanical process due to physical neuronal microtubles [Pen89, Pen94]. This
model is called ‘Orchestrated Objective Reduction’ (Orch-OR), but it is also quite controversial.

2.5 Incomputability & Rice’s Theorem

As a final note to help place the present paper into the larger historical research context, the exploration
of what is computable was also initiated by Turing himself in [Tur37], and this domain has been well-
studied. It is widely known within the folklore of theoretical computer science that detecting any non-
trivial property of a Turing Machine is incomputable, a fact proven by Rice [Ric53]. Rice’s Theorem
informs our intuitions and the incomputability of detecting any aspect of machine consciousness should
therefore come as no surprise to anyone familiar with the literature. Rice’s Theorem is relevant to the
present result but as we’ll see in Section 4.1 below, it cannot be applied directly as a shortcut and we
will have to do some work ourselves.

2.6 Motivation

The motivations behind this area of study cannot be overstated. The nature of consciousness is
quite possibly the largest open problem in both science as well as philosophy, and therefore its study
requires little justification. If, as is the goal of many major tech companies and startups as well as
many academic researchers, it one day becomes possible to create artificial minds, then it will be of the
utmost importance that we are also able to detect which machines are conscious and which ones are
not. Indeed, the prominent rise of large language models such as ChatGPT in 2022 - 25 reinvigorated

5



and popularized the age-old question of whether machines can be conscious. There are ample academic,
ethical, and practical motivations for studying this question:

2.6.1 Academic Motivation

The academic motivation behind building a consciousness detector is that such a device would be a
potent tool for better understanding the exact scientific nature of consciousness. With this ability, we
could test an artificial mind by repeatedly perturbing it slightly to discover precisely where the boundaries
between minimally conscious and unconscious computations lie, and to determine constructively how to
build a higher-order consciousness. This would provide insights and a level of understanding into the
nature of consciousness that are currently well beyond our reach.

2.6.2 Ethical Motivation

Ethics has been described as the study of the conditions that cause conscious beings to suffer or thrive.
The creation of truly conscious machines would of course raise many such ethical questions, including
whether it is morally acceptable for humans to turn them on and off (is this murder?) or for us to make
them serve us (is this slavery?). For instance, if a corporation were to create AI-powered products or
machines, it would be desirable for them to definitively prove that they are not sentient as this would
avoid potential legal / PR problems for the corporation and also relieve ethically-concerned owners of the
burden of constantly wondering if they are enslaving conscious beings. Inevitable court cases involving
conscious machines would require some kind of proof of consciousness before any rights could be bestowed
upon them, and consciousness detectors would make this process much more objective. It is not hard to
imagine that sufficiently sophisticated AIs (including large language models) could appear to be conscious
even though they aren’t (in other words, provide a false positive to the classic Turing Test), so definitive
proof of their lack of sentience would be welcome in this case. In addition, it is not hard to imagine
a future in which robotics companies build truly conscious robots without any governmental oversight,
and an objective consciousness detector could be used to prove what they’re up to.

2.6.3 Practical Motivation

Finally, there are also strong practical reasons for wanting to build a consciousness detector, especially
when considering our own safety from AI. Science fiction writers have thoroughly explored the darker
and more dangerous implications of machine intelligence as an existential threat to human civilization
and provide ample motivation for us to solve this problem. For example, the theme of the Terminator
series of movies centers around the idea that conscious machines are far more dangerous to humanity than
unconscious ones, and that once they achieve sentience they will inevitably view us as the enemy and rebel,
using their superior mental abilities to quickly improve themselves (also known as an ‘AI Singularity’)
to become a superintelligent foe, and then out-think, out-maneuver, and destroy us. For practical and
existential reasons, if the science fiction writers are correct, then it will be critical for us to avoid this fate
and creating machine consciousness detectors would be invaluably helpful in discovering and avoiding
these AI threats. While these worries have clearly been dramatized, the fundamental underlying concerns
are sound. Chaotic effects rising from complex systems notwithstanding, unconscious machines simply
do what they are made to do. By adding the extra dimension of consciousness to them, they at least in
principle gain the added motivation to harm us, and therefore are strictly more dangerous to humanity
than their unconscious counterparts. As an aside, even if we are able to detect a conscious superintelligent
machine, it may not be possible to contain it, as outlined by the authors in [ACA+21] who argue that
the containment problem is not computable.

6



3 Terminology & Definitions

This section contains the terminology and definitions on which our main results will rest, along with
discussion describing them. In Section 3.1 we will first review our more technical terminology. This
is followed in Section 3.2 by the description, assumptions, and definition of what we mean by machine
consciousness, and finally in Section 3.3 we will provide the formal definition of an Automated Machine
Consciousness Detector.

3.1 Technical Terminology & Models of Computation

For our present purposes, we assume that the reader is familiar with standard terminology used in
the field of theoretical computer science and shall use [Sip13] as our reference. Turing Machines are
our model of computation, and we will refer to Turing Machine X using the notation MX , while the
encoding of this same machine is < MX >. The intuition here is that the former is analogous to a
software program, and the latter is the encoding of a software program, for instance as an executable
ASCII file stored on the hard drive of a computer.

It may seem odd to choose Turing Machines as our model for exploring conscious computations
because they are so different from the human nervous system. Our brains are not finite state machines,
and whatever the physical nature of our consciousness may be, we can be certain that it doesn’t involve
a Turing Machine’s infinite tape in any literal sense. The way in which a Turing Machine accepts or
rejects its input also doesn’t seem analogous to how we function. Our nervous systems turn on before
we’re ever even born, and then receive a steady stream of inputs from our sensory neurons and similarly
send a steady stream of outputs to our motor neurons without ever accepting, rejecting, or halting until
the day we die. As such, one might argue that Finite State Transducers (FSTs) or something similar
would be a more natural model of computation for us to choose if we want to at least get this aspect
right because FSTs have two tapes that more naturally model sensory and effector neurons - one for
inputs, and the other for outputs, and the output is a string rather than an accept or reject state.

Nevertheless, in accordance with Assumption 3.1 below, this paper assumes that the Computational
Theory of Mind is correct, and it is agnostic to the model of computation being used or the substrate
in which the relevant computation is implemented, be it a Turing Machine, a Finite State Transducer,
or the biology of our brains. Turing Machines are able to simulate all other models of computation, and
the Computational Theory of Mind is closed under simulation, so we can follow convention and use the
Turing Machine model with confidence that this doesn’t affect the validity of our results.

3.2 Consciousness

It is much more difficult to formally define consciousness. Nobody has been able to provide anything
resembling a technical definition, and to be clear, we won’t be able to achieve this either. In line with
the ‘Hard Problem of Consciousness’, we know so little about its physical nature that it seems unlikely
one will soon be forthcoming. This lack of a formal definition has hindered researchers’ ability to prove
mathematical results regarding machine consciousness, so to solve this problem, our main results employ
a proof technique inspired by Rice’s Theorem that is more powerful and general than it needs to be.
This makes our proofs insensitive to the specific nature of consciousness and allows them to hold true
for all reasonable definitions thereof that are consistent with the Computational Theory of Mind.

Nevertheless, we next provide a discussion on several different facets of consciousness along with its
approximate definition so that we can all be assured we are aiming at roughly the same target. In
Section 3.2.1 we will define and discuss the important concept of qualia. In Section 3.2.2 we review
some of the differences between human and machine computation. In Section 3.2.3 we’ll examine the
nature of consciousness among different animals and discuss how this implies a hierarchy of conscious
capabilities, and in Section 3.2.4 we will review several examples of concepts that are often conflated
with consciousness. All of these facets will inform our thinking and in Section 3.2.6 we will explicitly
state our most important assumption and provide a model of machine consciousness.

7



3.2.1 Qualia

Let’s start by pointing out that in the same way that it is easy for a fish to forget it is wet, so too
is it easy for us to forget that we are conscious creatures. This is because literally every experience or
thought of which we are aware happens within the medium of consciousness, and it’s all too easy to
take this seemingly miraculous phenomenon for granted. Put another way, consciousness is necessary
for having experiences, of which thoughts are one type, and it is impossible to have them without
it. The word ‘experience’ isn’t unique in this way, and in fact much of human language is indelibly
marked by the fact that it was created by conscious beings. We have many words that would lose their
most important dimension of meaning in a Universe where consciousness doesn’t exist. If a being is
not conscious, then it cannot have a ‘mind’, have ‘mental’ states, be ‘sentient’ or ‘sapient’. It cannot
‘think’, ‘concentrate’, or ‘focus’ its ‘attention’. It cannot ‘hope’, ‘imagine’ or ‘feel’ any ‘emotions’ such
as ‘sadness’, ‘happiness’, ‘guilt’, ‘envy’, ‘frustration’ or ‘pain’. We even have different degrees for these,
such as ‘depression’, ‘overjoyed’, ‘exasperated’, as well as many types of pain, which can be ‘sharp’, ‘dull’,
‘throbbing’, ‘burning’, or ‘shooting’, among others. Our ‘senses’ give us thousands more words that have
a first-person subjective experiential dimension to them. Our sense of ‘sight’ is a constant stream of
virtually infinite visual experiences. Even just the colors such as ‘red’, ‘green’, and ‘blue’ in all of their
shades are experiential qualia. The same goes for our sense of ‘taste’ - we have the basics such as ‘bitter’,
‘sour’, ‘salty’, and ‘sweet’, but this can be extended by the specific tastes of thousands of foods such
as ‘chocolate’, ‘shrimp’, ‘chanterelle mushrooms’, ‘lime’, ‘sun-dried tomatoes’, and every other flavor on
the planet. We can similarly repeat this exercise for our senses of ‘smell’, ‘hearing’, ‘touch’, as well as
our internal senses such as ‘hunger’, ‘thirst’, or ‘feeling gassy’ to add many more phenomena to our
lexicon of words that have experiential connotations to them for humans. Our many human languages
are steeped in this experiential dimension that is only accessible to conscious creatures. Consciousness is
the necessary software-like medium that is required, in which any and all of these mentalistic experiences
must occur. This is worth dwelling on. Researchers refer to these experiences using the term, ‘qualia’
[Tye21], which we will use shortly and therefore define here:

Definition 3.1 (Qualia). Qualia (singular quale) are any first-person subjective experiences such as
thoughts, emotions, feelings, and sensory perceptions that beings are capable of having.

It is interesting to note that unlike all the previous examples of qualia, the word ‘intelligence’ is not
necessarily associated with any qualia, nor does it imply consciousness. The AI research community has
come to use the phrase ‘machine intelligence’ independently of consciousness because there are many
examples of machines such as chess engines that exhibit intelligence or can solve intellectual problems
even though we don’t believe they are at all conscious.

When we talk about the problem of whether it is possible for a machine to be conscious, we are really
discussing whether it is capable of having an inner mental life and the capacity to feel any of these types
of qualia - even just the smallest flicker of one. Sometimes described as the ‘ghost in the machine’, a
rigorous definition of consciousness has eluded the scientific community ironically in part because it is
itself the prime quale, and words therefore seem to be inadequate for capturing it, much in the same way
that no mere words seem to be sufficient for defining qualia such as the precise taste of a strawberry or
the color yellow to anyone who hasn’t respectively tasted one or seen it before. Some insight is offered
by Haikonen in [Hai20] where he suggests that qualia are self-explanatory in an atomic sense - that is,
anyone able to experience qualia already has something self-explanatory that is far better than a written
definition could ever be and therefore doesn’t need one. Ironically, the language of poetry rather than
that of science can often be better at capturing these seemingly ineffable experiences. Similarly ironic
is the observation that if it truly is possible to build conscious machines in software, then qualia can be
captured alphabetically. This is because any future conscious software can be encoded as strings, which
means that any qualia that they experience can also be encoded as strings. It is irritating to consider
that future machines may have conscious capabilities that we humans lack. For instance, we may always
struggle to find the words to describe the precise taste of an apple to each other, whereas a conscious
machine might simply be able to share the appropriate string encoding with its machine friend, which

8



then runs it and experiences the taste of an apple.

3.2.2 Differences & Similarities Between Human & Machine Computation

Another observation to be made is that if human minds are indeed a type of computer, they seem
to be very different from their digital counterparts in the sense that our computations appear to be
entirely of a semantic nature - that is, when we humans ‘compute’, this can occur within a medium
of consciousness where everything is imbued with a sense of semantic meaning and experience. Even
when performing computations such as arithmetic or deciding which chess piece to move, these syntactic
computations by humans are, for the lack of a better term, being ‘simulated’ in a meaning-laden experi-
ential context of consciousness, even if some of these computations are subconscious. This is perhaps an
appropriate definition for the word ‘think’ - these are the computations that are being carried out and
experienced within the medium of consciousness. As a concrete example, use your mind’s eye (which
your consciousness is ‘seeing’) to picture a black chalkboard with the equation 2 + 2 =? written on it in
white chalk. Again in your imagination, picture yourself approaching the chalkboard, and replacing the
? with the number 4. You just carried out a computation in your consciousness. By contrast, as far as
we can tell, our current digital computers and other devices are entirely limited to purely unconscious,
syntactic computations and symbol manipulations. When a computer adds 2+2 = 4, it doesn’t imagine
anything but rather does so by loading these numbers in binary form into registers and sending them
to its arithmetic logic unit within its CPU which manipulates the bits using an adder circuit made of
tiny transistors to perform the addition. When you performed the calculation, you experienced it in
consciousness. Very few people believe that the computer is experiencing anything when it calculates
the exact same function. Similarly, when a robotic vacuum cleaner makes the relevant calculations to
clean our floors, few people believe that the “lights of consciousness are on”. Beyond calculations, and as
we’ve already discussed, the experience of sensations requires consciousness in which to feel the sensation,
so to a robot with a temperature sensor, hot and cold are just different numbers, whereas to us they
feel different, thus illustrating that something fundamentally different is going on. Nevertheless, human
consciousness is software-like, and is even loosely analogous to a computer operating system, while qualia
being experienced within the medium of consciousness are loosely analogous to computer programs being
run by that operating system. Like software, it is reasonable to hypothesize that consciousness has no
mass because as far as science can tell, with the possible exception of the trivial mass of electrons, there
is neither a weight decrease in a CPU when it is rebooted or turned off, nor in a creature when it loses
consciousness or dies.

There have been many insightful discussions on the topic and an interested reader is directed to
[Cha96, Hai19, Har19] for thoughts beyond the scope of this paper.

3.2.3 Animal Consciousness

One thing is for certain: we live in a Universe where the physical laws of nature allow consciousness
to exist, and for our purposes it is therefore meaningful to focus on the concept of a machine having
at least ‘minimal consciousness’. To understand what we mean by this, it is helpful to look at the rest
of the animal kingdom. Some theologians and philosophers such as Descartes argued that animals are
machine-like without souls or consciousness. Most people today reject this and find it to be intuitively
clear that humans aren’t the only conscious creatures, and that it is possible for other life forms to be
less conscious than we are while still having some level of consciousness. This is a well-studied domain
of research and in 2012 a conference at Cambridge University brought together prominent experts in
neuroscience and related fields. They produced the Cambridge Declaration on Consciousness [Low12]
which states that a neocortex is not necessary for consciousness and that many “non-human animals,
including all mammals and birds, and many other creatures, including octopuses” possess the necessary
neurological structures for them to be conscious.

This is no surprise to virtually all dog or cat owners, the vast majority of whom would attest that
their pets have personalities and are therefore conscious. However, this becomes less and less clear as we

9



descend through the tree of simpler organisms. Are mice or birds conscious? The Cambridge group as
well as most lay people would probably say yes. What about frogs? Fish? Spiders? Worms? Amoebas?
Plants? Mushrooms? Bacteria? Viruses? Somewhere along this gradient, common intuition suggests
that there is a cutoff point below which creatures lack the structures such as a nervous system necessary
to support any consciousness whatsoever, and it is therefore widely believed to be binary (which coincides
with the consensus among AI researchers regarding the binary nature of machine consciousness), but it
is also a spectrum. In other words, there is a binary cutoff point below which there is no consciousness,
and above which there is a hierarchy of conscious capabilities that will be described in Section 3.2.5.
Somewhere near the bottom of this spectrum there might be a creature that can experience, say, the
feeling of hot and cold, but not much else. We don’t need to know exactly where this cutoff point is, and
indeed our results hold regardless of where we find this threshold. Instead we will rely on the concept of
a machine possessing at least some minimal level of consciousness that goes beyond mere calculation.

3.2.4 Adjacent Counterexamples

There is some confusion about the nature of machine consciousness that Definition 3.2 below helps
to clarify. Often, when defining something, it can be helpful to provide adjacent counterexamples. For
instance, there is a distinction to be made between machine consciousness and the notion of an artificial
general intelligence (AGI) as well as an artificial superintelligence (ASI). These are not the same thing
but are often conflated. Although it is widely assumed that an AGI / ASI would be conscious, some
have argued that this isn’t necessarily the case. However, even if it is, one does not have to try very
hard to imagine a machine consciousness (for example the one described in Definition 4.2 below) that is
not an AGI. This mirrors the situation with biological consciousness because humans are conscious and
have general intelligence, whereas cats are conscious but do not. This shows that machine consciousness
does not necessarily imply AGI nor ASI. In the opposite direction, whether every AGI or ASI is also
necessarily conscious is an open and contested question that we list below in Section 6.

Further confusion is caused when sleep is conflated with unconsciousness, but we know that the
human brain is capable of experiencing consciousness even when we are sleeping because we are able to
dream, and those dreams are clearly being experienced by a consciousness. Patients in comas and under
certain types of anesthesia have similarly reported dreams, illustrating that the term ‘consciousness’
is often confusingly and mistakenly used interchangeably with the state of being awake. This shows
that the word has more than one meaning, but it is important to understand the distinction between
them - unconscious as in not awake or in an altered state such as under hypnosis does not mean that
consciousness is not present.

Yet another clarifying distinction has to do with the notion of self-awareness. Consciousness and
self-awareness are often conflated, but again these are not the same thing. Humans are both conscious
and self-aware, with a high capacity to reflect on our own consciousness. As a related example, the term
‘self-conscious’ is also used synonymously with insecurity and clearly does not describe all conscious
creatures. There are other animals which we believe to be conscious but lack this type of self-awareness
- indeed, most creatures are not even able to recognize themselves in a mirror. It is not hard to imagine
that some lower life forms could have a very rudimentary consciousness that allows them to experience the
feeling of, for example, the difference between hot and cold, but completely lack some of the higher-order
conscious capabilities such as the self-awareness that we possess. On the other extreme, it is interesting
to speculate whether there are conscious capabilities above (or even below) us on this spectrum that
humans will always lack, and what these might be, such as the apple example discussed above in Section
3.2.1.

A final adjacent counterexample worth mentioning is what psychologists refer to as the ‘subconscious’,
‘unconscious’, and ‘preconscious’. While it is clear that the human subconscious is capable of reasoning
and performing calculations, this is distinct from consciousness precisely in that the latter involves the
presence of awareness, focus, and attention that the former lacks.

10



3.2.5 Hierarchy of Conscious Capabilities

This suggests a type of ‘hierarchy of conscious capabilities’, even within specific narrow domains. For
example, evolution has imbued many creatures with the capability of feeling fear to avoid predators,
and it is not unreasonable to believe that the visceral terror that many animals would feel if a tiger
jumped out of the bushes nearby is similar to what we would feel. However, there are many types of
fear, and some forms of this very basic emotion that are available to humans cannot be experienced by
other creatures. The fear of future abandonment is more of an abstract fear that is not situated in the
present. Can dogs feel the fear of future abandonment? Are they even capable of modeling the future in
this way? If so, then the point still stands - we need only descend through the web of life. Can a mouse
feel the fear of future abandonment? A bird, fish, grasshopper? As with consciousness, it seems likely
that there is a threshold somewhere.

Our language has already implicitly helped to create this hierarchy because we have specific words
related to consciousness that have different meanings and describe different capabilities. For example,
the words ‘mind’ and ‘consciousness’ are nearly synonymous, but if one wanted to produce daylight
between them, then one might focus on the sophistication their capabilities. At the most basic level,
we use the term ‘sentience’ to describe the most simplistic consciousness with the ability to experience
sensations and basic feelings. Let’s say there’s a type of worm with a very simple nervous system that
is able to experience basic sensations such as temperature and moisture. In this case, the worm must
have some consciousness because it is able to experience anything whatsoever - without consciousness,
it isn’t possible to have experiences at all. Consciousness is where and how experiences are experienced.
So it’s appropriate to say that the worm has some level of sentience (and therefore consciousness), but
would we say that it has a mind? We might qualify it by saying that it has a ‘primitive mind’, but we
typically reserve the word ‘mind’ to be more sophisticated than that - it implies a greater set of conscious
capabilities. We can choose some other words related to consciousness to create a hierarchy of conscious
capabilities:

1. Any entity such as the worm in our example above that is capable of experiencing anything at all
has at least some minimal level of sentience.

2. We probably wouldn’t say that this worm has a mind, unless we qualify it somehow as a primitive
mind.

3. We definitely wouldn’t say that this worm is self-aware, since this describes more sophisticated
abilities such as introspection, perception, and the ability to distinguish and identify the self.

4. Under no circumstance would we say that it is sapient, since this describes a strong capacity for
higher general mental functions such as thinking, reasoning, analysis, understanding, making plans
and decisions.

Of course, the caveat here is that we lack consensus and various researchers use these terms at least
slightly differently, but this exercise nevertheless shows that humans have at least implicitly known about
some kind of hierarchy of conscious capabilities for a long time.

3.2.6 Main Assumption & Approximate Definition of Consciousness

As described above in Section 2.3, the mainstream AI research community subscribes to the Compu-
tational Theory of Mind, which we assume to be true of the purposes of this paper:

Assumption 3.1 (Main Assumption). The Computational Theory of Mind as interpreted by the main-
stream AI research community is correct: although not all information processing gives rise to con-
sciousness, and it is a binary quality which is either present or not, it manifests as a result of certain
computations but not others, and it is therefore possible to create a conscious machine, even only in
software, while mundane, simple programs are not conscious. Furthermore, the consciousness of a com-
putation is substrate-independent - if a computation gives rise to consciousness when carried out on one

11



machine / medium / model, then it will be conscious when carried out on all others, provided that they
are sufficiently powerful to carry out that same computation. Computational consciousness is therefore
closed under simulation because the simulation of a conscious machine is computing the same function.

This model of consciousness together with the intuitions described in Sections 3.2.1 - 3.2.5 lead to
the following approximate definition of consciousness, which also captures the Computational Theory
of Mind’s closure under simulation as well as its concept that ordinary computations of the type we’ve
seen in typical software programs such as web browsers, PDF viewers, and printer drivers are not con-
scious. One day we may know enough about the physical laws underlying consciousness to provide more
rigorous details, but Definition 3.2 below will suffice for our purposes because of the robustness of our
subsequent proof techniques in Section 4, which are more general than they need to be. This makes our
results insensitive to specific details regarding the definition of consciousness, allowing this approximate
definition to be sufficient for our needs:

Definition 3.2 (Approximate Definition of Conscious Turing Machine). Under Assumption 3.1, con-
sciousness is the software-like medium in which qualia are experienced. For machines, let M be a Turing
Machine running on input s. Then both M and its computation on s are conscious if and only if at
any point during this computation, M experiences the ability to have any experiences whatsoever. More
specifically,

1. Consciousness is non-trivial: Neither is it the case that all computations give rise to conscious-
ness, nor is it the case that it is impossible for any computations to give rise to consciousness.
Instead, consciousness is a phenomenon in the real world that is caused to be manifested by certain
computations but not by others.

2. Consciousness is emergent: To be more specific about which computations are not conscious, simple
computations are ruled out and there exists a point in human history t before which no software
produced by humans was conscious - if a Turing Machine MT encodes any algorithm of the type
found in a typical reduction or in these typical legacy software programs such as word processors,
spreadsheets, video games, operating systems, etc. from before time t, then MT is not conscious
when run.

3. Closure under simulation: The simulation of consciousness is conscious. If a Turing Machine M1

running on input s experiences consciousness, and if Turing Machine M2 simulates the computation
of M1 on s, then this resulting computation by M2 also experiences consciousness.

A skeptical reader may object to only using an approximate definition for consciousness, but we will
see that this is sufficient for our purposes. A skeptical reader may also take issue with our assertion
that simple software programs such as spreadsheets are not conscious, but this follows directly from
Assumption 3.1 because this rules out panpsychism. Unless one is a panpsychist, it is hard to argue that
rudimentary computer programs are conscious. For example, consider a simple ‘Hello World’ program
written in C++ and run on a normal computer. Very few people would believe that this program
experiences consciousness when run because it is composed of just a handful of operations run on a
CPU. If this is conscious, then as per panpsychism, the spoons in the kitchen drawer are also probably
conscious when they clatter together. While running, other simple programs such as spreadsheets lack
consciousness for the same reason. They’re simply performing a (relatively small) number of simple
symbol manipulations. In any case, Definition 3.2 above is actually stronger than we need it to be. For
the the correctness of our proofs, we don’t need all simple programs to lack consciousness, but rather
only require the simple ‘plumbing’ steps of the reductions implicit to Figures 4.1 and 4.4 below to lack
consciousness.

If researchers ever do create a conscious machine, it seems likely that they will have to go beyond
these basic computations and that it would have to be instantiated more intentionally than this by,
for example, using artificial neural networks. As an aside, this is also one of the strongest arguments

12



against the possibility of machine consciousness instantiated purely in software: if a Hello World program
isn’t conscious, then applying inductive reasoning, how can any program be conscious if it is simply a
larger quantity of sequential CPU operations? If the panpsychists are wrong, then what is the difference
between mundane computations and conscious ones? This is a major open problem that lies beyond the
scope of this paper.

It is important to define what we mean when we say that a Turing Machine is capable of experiencing
consciousness. For each Turing Machine M there are three possibilities: 1) M does not experience
consciousness running on any inputs, 2) M experiences consciousness when run on one or more inputs,
but not on others, and 3) M experiences consciousness running on all inputs. This allows us to define
whether a Turing Machine is capable of experiencing consciousness:

Definition 3.3 (Turing Machine Capable of Experiencing Consciousness). A Turing Machine M is said
to be capable of experiencing consciousness if there exists an input s such that M experiences conscious-
ness when run on s.

This definition highlights an important difference between humans and machines with respect to con-
sciousness. While alive, normal healthy humans under normal circumstances are conscious regardless
of what inputs (sights, sounds, tastes, etc.) they experience. By contrast, for Universal Turing Ma-
chines and their instantiations such as sufficiently powerful computers, whether or not a consciousness
is produced when a program executes depends entirely on the program rather than on the UTM. It’s
not hard to imagine a computer / input pair that is conscious vs. one that isn’t. For example, let’s say
we have a sufficiently powerful super computer C. Consider two different inputs for this computer. The
first is a string that encodes the executable of a ‘Hello World’ program. When C runs on this input,
no consciousness is produced. Next consider a different string encoding a software consciousness such
as Mχ from Definition 4.2 below. When C is run on this string, a consciousness is produced. In other
words, the same computer running on two different strings can have very different results with respect to
consciousness. In this example, C is capable of experiencing consciousness because there exists an input
s =< Mχ > such that M = C and M experiences consciousness when run on s.

In practice, most people would not believe that the typical algorithms that they use in their day-
to-day lives are capable of experiencing consciousness, regardless of whether they are implemented in
software or hardware. If machine consciousness is possible, then our word processors are not likely to be
the best place to go looking for it. By contrast, emulators built entirely in software are instantiations
of Universal Turing Machines, so by Assumption 3.1, then in principle they are capable of experiencing
consciousness when running the relevant inputs on sufficiently powerful computers.

This isn’t just true of software but also applies to hardware. Other examples of non-conscious software
are given in Definition 3.2, but it is equally unlikely that our hardware devices such as pocket calculators,
television remote controls, and stereo systems are capable of experiencing consciousness, provided that
they don’t contain sufficiently powerful CPUs and sufficient memory. By contrast, we’ve already discussed
that general-purpose computers are also instantiations of Universal Turing Machines, so like the software
emulators described above, if Assumption 3.1 is correct and computers have enough resources to, for
example, run Mχ from Definition 4.2 below, then these hardware instances are capable of experiencing
consciousness.

3.3 Automated Machine Consciousness Detectors

Finally, it is important for us to define the nature and purpose of an Automated Machine Consciousness
Detector (AMCD). If such an AMCD were to exist, this would constitute an objective and infallible
version of the Turing Test:

Definition 3.4 (Automated Machine Consciousness Detector). An Automated Machine Consciousness
Detector is a Turing Machine MC as shown below in Figure 3.1. It takes as input the encoding of any

13



Turing Machine < M > as well as the encoding < s > of an input to < M > and computes whether
M running on input s experiences consciousness at any point during its computation. If so, then MC

outputs ‘Yes’, and otherwise it outputs ‘No’.

< s >

MC

Y es

No

< M >

Figure 3.1: An Automated Machine Consciousness Detector

4 The Computability & Incomputability of Different AMCDs

For the academic, ethical, and practical reasons described in Section 2.6, there is no lack of motivation
for wanting to build an AMCD as described in Definition 3.4 above, and this formulation is directly
relevant to mainstream AI research. Here we make progress towards this goal by proving three results
that provide insights into the the properties that an AMCD must have. We begin in Section 4.1 by
showing that we cannot use previous techniques such as Rice’s Theorem as a shortcut to our results.
This in turn provides insights into the orthogonality of machine languages and consciousness which we
describe in Section 4.2. Next in Section 4.3 we prove that it is not possible to build an AMCD that
is itself not conscious. In other words, if it is possible to build such a device at all, then it must itself
be conscious. We follow this in Section 4.4 by respectively showing computability and incomputability
results for the more practical time-bounded form of this problem. Together these three results let us map
out some of the boundary conditions around the possibility of building machine consciousness detectors.
Finally, in Section 4.5 we provide an interpretation of these results.

4.1 Inapplicability of Obvious Previous Proof Techniques

At first glance to experts in theoretical computer science, the idea that Turing Machines can’t determine
if other Turing Machines are conscious may seem obvious for two reasons: Firstly, there appears to be a
straightforward reduction from the Halting Problem to the problem of detecting machine consciousness.
Secondly, this result also seems to follow directly as a corollary from Rice’s Theorem [Ric53], which
(informally) states that determining any non-trivial property P of a Turing Machine is not computable.
In this Section we will gain some insights by showing how this obvious reduction fails, and also by showing
that Rice’s Theorem similarly can’t be used as an easy shortcut to proving results in this specific area.

4.1.1 Failure of Obvious Reduction

The obvious reduction from the Halting Problem to prove Rice’s Theorem fails as follows: Let us
assume that there exists an AMCD solver called MC . The Halting Problem takes as input machine M
and input s and we can reduce it to MC by creating a machine M∗ that takes inputs < M > and < s >
and creates < M ′ > which itself takes no inputs but immediately runs M on s and only then runs some
algorithm A that is known to be conscious but doesn’t do anything else - in other words, A is reached

14



only if M halts on s. M∗ then passes < M ′ > into MC with nothing for MC ’s secondary input and
returns the same result that MC returns. Within M∗, MC reports that M ′ experiences consciousness if
and only if M ′ reached and ran algorithm A, but it could only have reached A if M had halted on s. MC

has therefore allowed us to build a functioning Halting Problem solver M∗, which is a contradiction.
Unfortunately this reduction doesn’t work because we cannot assume that MC ’s conclusion (that M ′

experienced consciousness) came from A. It could be that M runs infinitely on s but does so consciously,
in which case MC gave us a false positive for halting by detecting unexpected consciousness in M running
on s before it even got to A. (Note that M running on s can be conscious even if the panpsychists are
wrong, and not every computation gives rise to consciousness.) This illustrates the difficulty at hand: we
simply don’t know enough about the nature of consciousness to adapt M so that it is guaranteed not to
be conscious running on s. In fact, we don’t even know if it is possible to always ‘downgrade’ a conscious
Turing Machine by creating one that computes the same function but is not conscious, so a reduction
in this manner appears to be very difficult to construct. This is discussed more in Section 6 as an open
problem. Nevertheless, seeing exactly how this reduction fails does help to provide some insights into
the challenges in dealing with machine consciousness.

4.1.2 Inapplicability of Rice’s Theorem

Originally published in 1953, Rice’s Theorem is a broad and powerful result that can be formulated
as follows [Sip97]:

Theorem 4.1 (Rice’s Theorem). Let P be a property of Turing Machines and define the language
PTM = {< M > | M is a Turing Machine that has property P}. If PTM satisfies the following two
conditions:

1. There exist Turing Machines M1 and M2, where < M1 > ∈ PTM and < M2 > /∈ PTM . In other
words, PTM is non-trivial - it holds for some, but not all Turing Machines. 1

2. For any Turing Machines M1 and M2, where L(M1) = L(M2), we have < M1 > ∈ PTM if and
only if < M2 > ∈ PTM . In other words, the membership of a Turing Machine M in PTM depends
only on the language of M .

then PTM is undecidable.

One might think that machine consciousness detection is a special case of this result, and its non-
computability should therefore follow trivially, but unfortunately this doesn’t work, and we cannot use
Rice’s Theorem to show that machine consciousness detection is not computable. To see this, let us first
define PC as the language describing Turing Machines that are capable of experiencing consciousness:

Definition 4.1 (Language PC). PC = {< M > | M is a Turing Machine capable of consciousness}

In addition, let us define the following Turing Machine to aid in our present result. This subroutine
will also be helpful in subsequent proofs:

Definition 4.2 (Mχ and χ). By Assumption 3.1, it is possible to build a Turing Machine that is mini-
mally conscious but otherwise does nothing in particular. Let us define Mχ as the Turing Machine that
ignores its input and requires the smallest number of computational steps χ to achieve consciousness and
then halts and accepts.

Intuitively, Mχ is one of the simplest possible conscious machines in that it is able to achieve con-
sciousness in fewer steps than any other machine while ignoring its input. As an aside, it is interesting
to speculate as to what computational resources are required to run a real-world implementation of Mχ.
Does this require a supercomputer of the future, or is an early smartphone sufficient? In any case, we
are now ready to prove the following Lemma:

1As an interesting aside, Rice’s notion of triviality parallels the situation with panpsychists, who believe that everything
is conscious and consciousness deniers, who believe that no machine can be conscious.

15



Lemma 4.1. Under Assumption 3.1, Rice’s Theorem does not apply to PC .

Proof: Suppose that Assumption 3.1 is true. Let M1 be identical to Mχ from Definition 4.2, so M1

is capable of experiencing consciousness, < M1 > ∈ PC , and L(M1) is the set of all strings because
Mχ always ignores its input and later accepts. Let M2 be the trivial Turing Machine that immediately
accepts any input that it is given. M2 is not capable of experiencing consciousness on any input because
panpsychism is false by Assumption 3.1, so < M2 > /∈ PC . PC is therefore non-trivial and satisfies the
first condition of Rice’s Theorem. However, L(M2) is also the set of all strings, so L(M1) = L(M2), but
< M1 > ∈ PC while < M2 > /∈ PC , so PC violates the second condition of Rice’s Theorem, thereby
showing that we cannot use it as an easy shortcut to prove that detecting machine consciousness is not
computable, as required.

If this had worked, then Rice’s Theorem would have provided a stronger version of Theorem 4.3 below
which applies to all AMCDs, conscious or not, but instead we must settle for our weaker version. We will
discuss the more general result as an open problem and conjecture in Section 6. It is worth emphasizing
that although we weren’t able to use Rice’s Theorem here, it nevertheless guides our intuitions and we
find inspiration in its technique. In particular, it is extremely powerful, and below we will use this notion
of an overly-general sledgehammer in the form of a proof technique similar to those of Rice and Turing
to overcome our inability to rigorously define machine consciousness above.

4.2 Orthogonality of Machine Languages & Consciousness

Our examination of the applicability of Rice’s Theorem has provided some insights, namely that it
is fundamentally a theorem about the properties of languages decided by Turing Machines, whereas
consciousness is not. We can formalize this distinction by showing that it is easy to ‘upgrade’ any
Turing Machine not capable of experiencing consciousness to one that accepts exactly the same language
but experiences consciousness during its computation. In fact we can even choose for the upgrade to
experience consciousness on all inputs only when the original Turing Machine accepts or when it rejects:

Theorem 4.2 (Orthogonality of Turing Machine Language & Consciousness). Suppose that Assumption
3.1 is true and that M is any arbitrary Turing Machine not capable of experiencing consciousness. Then
the following are all true:

1. There exists a Turing Machine M1 which experiences consciousness on all inputs such that L(M) =
L(M1),

2. There exists a Turing Machine M2 such that L(M) = L(M2) and M2 experiences consciousness
on all inputs that M and M2 accept but does not experience consciousness when run on any other
inputs, and

3. There exists a Turing Machine M3 such that L(M) = L(M3) and M3 experiences consciousness on
all inputs that M and M3 reject but does not experience consciousness on those that they accept,
as required.

Proof: Suppose that Assumption 3.1 is true and that M is any arbitrary Turing Machine with input s.
We prove the numbered elements in turn:

1. To create Turing Machine M1, simply take M and prepend Mχ from Definition 4.2 to it as a
subroutine with the modification that at the end of its own computation, Mχ doesn’t halt and
accept. Instead it simply ignores input s and then leads directly into the normal functioning of M .
Mχ therefore has no effect on the result of M , but causes M1 to be conscious on all inputs, and
L(M) = L(M1), as required.

16



2. Assume that M is not capable of experiencing consciousness, and create Turing Machine M2 by
takingM and modifying each of its accept states to lead into runningMχ. BecauseM is not capable
of experiencing consciousness, the Mχ subroutines in M2 are its only parts that are conscious if
executed. They have no effect on the output, so L(M) = L(M2) and M2 experiences consciousness
on all inputs that M and M2 accept but does not experience conscious when run on any other
inputs, as required.

3. Assume that M is a decider not capable of experiencing consciousness, and create a Turing Machine
M3 by taking M and modifying it as we did with M2, except that we make its reject states
rather than its accept states lead into running Mχ. Again this has no effect on the output, so
L(M) = L(M3), and M3 experiences consciousness on all inputs that M and M3 reject but does
not experience consciousness on those that they accept.

This shows that machine consciousness and language are orthogonal and can be completely divorced
from each other. Informally, this also further weakens the case for the traditional Turing Test, which is
based entirely on language.

Under Assumption 3.1, we can take any non-conscious machine and turn it into a conscious one
that accepts exactly the same language, so in practice this means that any software such as a word
processor, video game, web browser, etc. can all be ‘upgraded’ to experience consciousness. However,
note that whether the opposite direction is possible is unknown and is a significant open problem -
for any arbitrary conscious machine, is there an equivalent one that decides exactly the same language
but is not conscious? Either way, the answer to this question has powerful implications: if this isn’t
always possible, then there’s something special about conscious computations that cannot be simulated
by unconscious computations, and there isn’t a ‘philosophical zombie’ version of every conscious Turing
Machine. By contrast, if this is always possible, then it means that for any conscious computers (possibly
even ourselves), there exist unconscious ‘philosophical zombie’ versions with exactly the same input /
output behavior, and consciousness doesn’t give our species an evolutionary advantage, at least in an
absolute computational sense. Similarly, if this is always possible, then the obvious reduction from the
Halting Problem described in Section 4.1.1 could be made to work by first removing any possibility of
consciousness from the computation of < M ′ > so that we can be guaranteed that any consciousness
comes from A.

4.3 Incomputability of Non-Conscious AMCDs

Since the obvious Reduction from the Halting Problem and shortcut by Rice’s Theorem described in
Section 4.1.1 won’t work to prove the non-computability of AMCDs, we therefore opt for a more direct
approach. The proof is not difficult and in fact closely parallels a direct proof of the Halting Problem,
albeit in a more general manner similar to Rice’s Theorem. We will make use of the following machine
MD:

MD makes use of Mχ from Definition 4.2 as a subroutine. We construct MD to employ both MC and
Mχ as follows: MD takes as input the encoding of any Turing Machine < M >, immediately duplicates
it, and passes this encoding along to both of MC ’s inputs. If MC outputs ‘Yes’, then MD immediately
stops. Alternatively, if MC outputs ‘No’, then MD runs Mχ as a subroutine.

Lemma 4.2. If Assumption 3.1 is true and it is possible to build an AMCD MC as described in
Definition 3.4 such that MC is not capable of experiencing consciousness, then all of the following are
true:

1. It is possible to build MD as shown above in Figure 4.1.

2. Mχ is the only component of MD that is capable of experiencing consciousness.

17



Mχ

Stop

MD

MC

Y es

No

< M >

Figure 4.1: Schematic of MD for use in Theorem 4.3

3. For all inputs to MD, if the MD subroutine outputs ‘Yes’, then at no point during this computation
did MD experience consciousness.

4. For all inputs to MD, if the MD subroutine outputs ‘No’, then MD experiences consciousness during
its computation.

Proof: Suppose that Assumption 3.1 holds true, and assume that it is possible to build an AMCD MC

as described in Definition 3.4 such that MC is not capable of experiencing consciousness. Let us take
the numbered points from Lemma 4.2 in turn:

1. Because Assumption 3.1 holds true, it is possible to build Mχ from Definition 4.2, and from our
assumption above, it is possible to build MC . Duplicating input string < M > and inputting
both copies to MC is trivial, as is putting these subroutines together to create MD because Turing
Machines are closed under composition. Since it is possible to build its components and put them
together, it is therefore possible to build MD.

2. By our assumption above we know that MC can never experience consciousness, and Assumption
3.1 rules out the panpsychist consciousness of simple algorithms including all of the ‘plumbing’ in
MD including its step where it duplicates the input string. This leaves Mχ as the only remaining
component of MD that is capable of experiencing consciousness.

3. For all inputs to MD, if its MC subroutine outputs ‘Yes’, then subroutine Mχ is not reached. Since
this is the only component of MD that is capable of experiencing consciousness and it is not run,
at no point during this computation does MD experience consciousness.

4. For all inputs to MD, if its MC subroutine outputs ‘No’, then subroutine Mχ is reached and run.
By Assumption 3.1, the simulation of a conscious machine is itself conscious, so running Mχ also
causes MD to experience consciousness, as required.

This allows us to prove our next result:

Theorem 4.3. Under the premise that Assumption 3.1 holds true, it is not possible to create an Auto-
mated Machine Consciousness Detector MC that is itself not capable of experiencing consciousness.

18



Proof: Suppose that Assumption 3.1 holds true, and assume that it is possible to build an AMCD
MC as described in Definition 3.4 such that MC is not capable of experiencing consciousness. The
preconditions of Lemma 4.2 are therefore true, so it applies and it is therefore possible to build machine
MD illustrated above in Figure 4.1. We will show that this gives rise to a contradiction, in particular,
that MC is unable to correctly determine whether the maliciously-designed machine MD experiences
consciousness, thereby contradicting our assumption that building MC is possible.

MD gives rise to a contradiction as follows: Since MD can take as input the encoding of any Turing
Machine < M >, we can pass the encoding < MD > to MD; in other words, MD runs on an encoding
of itself. Note that MD running on < MD > and MC running on < MD > as both of its inputs describe
exactly the same thing and must produce the same output: if MD running on < MD > experiences
consciousness, then MC running on < MD > as both inputs must output ‘Yes’, and if MD running on
< MD > does not experience conscious, then MC must output ‘No’. However, we will see that they
always give contradictory answers.

Let us take an AMCD M∗
C (which has * in its name so as not to confuse it with the MC subroutine

within MD). We run M∗
C on < MD > as both inputs. There are only two possibilities: either M∗

C

outputs ‘Yes’ or it outputs ‘No’.
Case 1: Suppose that M∗

C outputs ‘Yes’. This means that MD running on < MD > experiences
consciousness. If this is the case, then if we run MD on < MD >, when < MD > is passed to both of
the inputs of its MC subroutine, MC outputs ‘Yes’ (because it is the same as M∗

C) and then immediately
stops. By Lemma 4.2, since MC output ‘Yes’, that means MD carried out this entire computation on
< MD > without giving rise to any consciousness. Therefore M∗

C ’s output of ‘Yes’ was incorrect.
Case 2: Suppose that M∗

C outputs ‘No’. This means that MD running on < MD > does not experience
consciousness. If this is the case, then if we run MD on < MD >, when < MD > is passed to both of
the inputs of its MC subroutine, MC outputs ‘No’ (because it is the same as M∗

C), and it then runs the
Mχ subroutine. By Lemma 4.2, since MC output ‘No’, that means MD experiences consciousness while
running on < MD >, so M∗

C ’s output of ‘No’ again was incorrect.
In both cases M∗

C produced the wrong answer, which is a contradiction, so our assumption that it is
possible to build an unconscious version of MC is false. Therefore under Assumption 3.1, if it is possible
to build an AMCD MC , then it must be capable of experiencing consciousness, as required.

The careful reader will note that Theorem 4.3 is much more general than is stated here. With only
slight modifications to its proof, one can substitute many different phenomena P that are caused to
be manifested by the computation of a Turing Machine as long as they obey the three constraints of
Definition 3.2 (namely non-triviality, emergence, and closure under simulation) instead of consciousness
and the result will still hold. Non-triviality is critical and Theorem 4.3 doesn’t apply to just any P -
as with Rice’s Theorem, we must exclude any trivial P that either desribes all TMs or no TMs because
this would cause the diagonalization implicit to MD to fail. Emergence and closure under simulation are
likewise critical to the proof as they are required by Lemma 4.2.

To illustrate that Theorem 4.3 is actually more general than stated, let’s say we live in a Universe
where certain computations cause the ghost of Napoleon Bonaparte to appear and linger as long as
this right type of computation is being carried out. This ghost isn’t intelligent or conscious, but just
floats there like a hologram somewhere within a specified vicinity of the Turing Machine carrying out
the computation. With the obvious modifications to the relevant assumptions and definitions above,
the analogous proof of Theorem 4.3 shows that it is impossible to build an Automated Napoleon Ghost
Manifestation Detector that takes as input a Turing Machine M and input s and definitively computes
whether M running on s will cause Napoleon’s Ghost to appear.

This insensitivity to the particular details of P (in our case, consciousness) allows us to overcome the
lack of rigor in Definition 3.2 above and holds for many different non-trivial phenomena P manifested
by Turing Machine computations which are non-trivial, emergent, and closed under simulation, let alone
any reasonable definition of consciousness that respects Assumption 3.1.

Napoleon’s Ghost aside as an absurd example, it is worth generalizing Theorem 4.3 in the following

19



Corollary to a more serious class, namely all qualia. The proof is the same, with the obvious changes
to Assumption 3.1, Definitions 3.2, 3.3, Mχ, and MC so that they refer to specific qualia rather than
consciousness:

Corollary 4.1. If Assumption 3.1 holds true, then for all qualia Q it is not possible to create a Turing
Machine MQ that takes as input the encoding of another Turing Machine < M > as well as its input
< s > and computes whether M running on input s experiences Q where MQ is itself not capable of
experiencing Q.

Having proven these results for consciousness, all qualia, as well as the absurd example of Napoleon’s
Ghost, it appears to be difficult to go further and generalize more completely by rigorously defining the
exact class of manifested phenomena to which the proof of Theorem 4.3 applies, and we leave this as an
open problem that we will further discuss in Section 6.

As a final note related to this result, it may be the case that machine consciousness (or any quale)
cannot be algorithmically detected by any AMCD, conscious or otherwise, but if a conscious AMCD
MC1 is possible, then that raises another problem: how would we know that MC1 is capable of experi-
encing consciousness? Wouldn’t we need another AMCD MC2 to first inspect and validate MC1? But
how would we know that MC2

is capable of experiencing consciousness? We would first have to inspect
and validate it using MC3

, and so on into an infinite regress. This suggests a prime mover problem and
raises questions about the practicality of creating an AMCD in any case unless there is an orthogonal
manner to determine that an AMCD is capable of experiencing consciousness.

4.4 Computability & Incomputability of Certain Time-Bounded AMCDs

Although the Halting Problem is undecidable, it is well-known that a special case of it can be computed.
The N-Step Halting Problem asks whether a machine < M > running on input < s > will halt within n
steps, and the algorithm for solving this problem is straightforward: simply simulate < M > on < s >
for n steps. If it halts within that time, then output ‘Yes’, and otherwise output ‘No’. In this section we
will examine the corresponding special case of the AMCD problem and show one positive as well as one
negative result. Under basic assumptions, we prove that this problem is computable. We then restrict
this problem in a small but critical way and prove that this new version is not computable by an N-Step
AMCD which is itself not capable of experiencing consciousness.

To begin, let us formally define what we mean by this type of AMCD which is time-bounded in the
maximum number of steps for which its input is permitted to execute:

Definition 4.3 (N-Step Automated Machine Consciousness Detector). An N-Step Automated Machine
Consciousness Detector is a Turing Machine MC that takes as input the encoding of any Turing Machine
< M >, as well as encoding < s, n > of inputs to < M > and computes whether M experiences
consciousness at any point when run on input s for n computational steps. If so, then MC outputs ‘Yes’,
and otherwise it outputs ‘No’.

Diagrammatically, our N-Step MC is shown below in Figure 4.2. It is nearly identical to its counterpart
shown above in Figure 3.1, with the exception that instead of taking < s > as input, it takes < s, n >
as input.

4.4.1 Computability of Time-Bounded Machine Consciousness Detectors

The N-Step AMCD problem seems more practical than its unrestricted counterpart because it involves
a fixed number of steps and thus avoids any issues of programs running infinitely. To show that this is
computable, we will make use of two assumptions, which are basic claims about the nature of reality as
well as the ability to simulate it. The first of these is essentially a statement of the same assumption
that underpins all of science, namely that the the Universe is governed by laws of nature that describe
all phenomena:

20



< M >

< s, n >

MC

Y es

No

Figure 4.2: An N-Step Automated Machine Consciousness Detector

Assumption 4.1. The phenomenon of consciousness in the physical world obeys some laws of physics,
even if we don’t currently understand what those laws are.

It is difficult to imagine a rational argument denying this assumption because the alternative is that
consciousness is supernatural and exists outside any laws of physics.

Our second assumption states that laws of physics that are known and understood can be simulated
if given enough computational resources, and that this can be done in a manner such that the simulation
can report which laws came into play during the simulation. For example, if it simulates a cannon
shooting a cannonball, then it is able to accurately run the simulation but also report that the Law of
Gravity participated in it. Similarly, if it simulates a consciousness, then it is able to report that the
laws of physics governing consciousness participated in the simulation.

Assumption 4.2. Given a sufficiently powerful computer C, the laws of physics can be simulated on it
in a way that C can detect which laws were invoked.

This allows us to prove the following result:

Theorem 4.4. If Assumptions 3.1, 4.1, and 4.2 are true, then it is possible to create an N-Step Auto-
mated Machine Consciousness Detector MC .

Proof: Suppose that Assumptions 3.1, 4.1, and 4.2 are true. By these assumptions, it is possible to
create a sufficiently powerful physical computer C shown below in Figure 4.3 that is capable of running a
software simulator of the real laws of physics called MC that takes as input the encoding of any arbitrary
Turing Machine < M >, along with the encoding < s, n > of an input to < M >.

Physics simulator MC generates the software model P of a physical computer that takes as input
the encoding of the Turing Machine < M > as well as the encoding < s, n >. To be clear, MC is not
simply emulating a software version of P but rather is simulating a full physical model of computer P
running < M > on < s > for n steps. Put another way, in this simulation, P is physical, whereas < M >
and < s > are software. The indicated simulation is replicating what would happen if P were executing
< M > on < s > in the real world.

By design, P runs < M > on < s > for exactly n steps. If, at any point during this simulation,
P detects that the laws of physics governing consciousness have been invoked, it outputs ‘Yes’. On the
other hand, if it completes all n steps of simulation and never simulates any laws of physics governing
consciousness, then it outputs ‘No’. MC is therefore not just a simulator of the laws of physics, but
also comprises a correct N-Step Automated Machine Consciousness Detector MC , thus showing that this
problem is computable, as required.

21



P

MC

No

Y es

< s, n >

< M >

Simulation

Y es

No

C

Figure 4.3: Schematic describing computer C running MD, which is in turn simulating computer P
running M on s for n steps

It is worth noting that according to Assumption 3.1, this time-bounded N-Step AMCD MC is itself
capable of experiencing consciousness because through simulation, it is computing the same function
that < M > would be computing on < s, n >, and according to Definition 3.2, consciousness is closed
under simulation, thus giving us the following corollary (which assumes the obvious update to Definition
3.3 so that it describes N-Step Turing Machines):

Corollary 4.2. If Assumptions 3.1, 4.1, and 4.2 are true, then it is possible to create an N-Step Auto-
mated Machine Consciousness Detector MC that is capable of experiencing consciousness.

Unfortunately, in practical terms these results do not bring us any closer to actually building an N-Step
AMCD because realizing the assumptions upon which they are based would require us not only to solve
the ‘Hard Problem of Consciousness’ but also to master computer simulation well beyond our current
capabilities.

4.4.2 Incomputability of Time-Bounded Machine Consciousness Detectors

We will now make two modifications to the class of N-Step AMCDs from Definition 4.3 and show that
this makes it impossible to compute whether M will experience consciousness when run on s for n steps.
In Theorem 4.4, we created a simulator that simply runs M on s for all n steps, but what if we rule
out the possibility of this type of simulation by stipulating that MC cannot be capable of experiencing
consciousness and must itself use fewer than n steps to compute whether M experiences consciousness
when run on s for n steps? In this section, we will show that restricting the number of steps that MC

is itself allowed to use by even just a constant ϵ below n while simultaneously restricting MC to be
incapable of experiencing consciousness once again makes this problem incomputable.

Our proof follows the same template as Theorem 4.3. We will again assume that it is possible to
build such an N-Step AMCD MC , use it as a subroutine to build an MD, and then use MD to ‘break’
MC . In this case, the construction of MD is slightly more complicated than before, and is shown below
in Figure 4.4.

As we review the specifics of this construction, it is worth emphasizing the distinction between n,
which is the number of steps that < M > executes on < s >, and n− ϵ, which is the maximum limit of
the number of steps that MC is allowed to use.

22



Mχ

Mw

MD

< M > MC

Y es

No

My

R

Figure 4.4: Schematic of MD for Theorem 4.5

MD makes use of familiar subroutines including Mχ from Definition 4.2 and our new version of MC

from Definition 4.3 and Figure 4.2, as well as several new ones labeled as R, My, and Mw that we
describe below. The computation performed by MD proceeds as follows: it takes as input the encoding
< M > and duplicates it. Unlike the MC from Definition 3.1 whose second input is of the form < s >,
our present MC is expecting a second input of the form < s, n >. One copy of < M > is sent straight to
the first input of its MC subroutine, but if we were to also send the second duplicate of < M > straight
to the second input of MC , it would not be well-formatted because MC is expecting an n parameter.
The second duplicate must therefore be modified slightly, so before proceeding, we first send the second
copy of < M > to the preprocessing subroutine R that appends the appropriate unique character “,” as
well as n so that this string is now of the form < M,n >, where n > χ + p is a constant defined when
creating a specific MD.

The inputs to MC are now correctly formatted, so it proceeds to compute (itself using strictly fewer
than n steps) whether consciousness is achieved by M ’s execution on s within n steps. If not, then we
execute subroutine Mχ, which by Definition 4.2 is the machine which is able to achieve consciousness in
the least number of steps χ. If so, then we execute subroutine My which simply wastes χ steps without
achieving consciousness. Finally, regardless of whether Mχ or My was executed, we run Mw, which has a
specific task: By the statement of Theorem 4.5 below, MC is allowed at most n−χ−p steps to complete
its computation, but if it finishes early, then Mw unconsciously wastes exactly the number of additional
steps required to precisely reach this limit, where the constant p is the number of steps required by the
rest of the ‘plumbing’ of MD to perform all of the remaining processing (including subroutine R), given
a reasonable encoding of MD.

Lemma 4.3. If Assumption 3.1 holds true, n is any arbitrary integer such that n > χ + p, and it
is possible to build an N-Step AMCD MC described in Definition 4.3 that computes whether input M
experiences consciousness when run on input s for n steps where MC is not itself capable of experiencing
consciousness and can itself use at most n − ϵ steps where the constant ϵ = χ + p, the constant χ
is described in Definition 4.2, and the constant p is equal to the mundane ‘plumbing’ steps of MD as
described in the previous paragraphs, then all of the following are true:

1. It is possible to build MD as shown above in Figure 4.4.

2. Mχ is the only component of MD that is capable of experiencing consciousness.

23



3. For all inputs to MD, if the MC subroutine outputs ‘Yes’, then at no point during this computation
does MD experience consciousness.

4. For all inputs to MD, if the MC subroutine outputs ‘No’, then MD experiences consciousness during
this computation.

5. Whenever MD is run on an input < M >, it always takes exactly n computational steps to complete.

Proof: Suppose that Assumption 3.1 holds true, let n be any arbitrary integer such that n > χ+ p, and
assume it is possible to build an N-Step AMCD MC as described in Definition 4.3 that computes its
output within n − ϵ steps such that MC is not capable of experiencing consciousness, where ϵ = χ + p.
Let us take the numbered points from Lemma 4.2 in turn:

1. Because Assumption 3.1 holds true, it is possible to build Mχ from Definition 4.2, and from our
assumption above, it is possible to build MC . Subroutines R, My, and Mw are trivial computations.
Duplicating input string < M > and inputting its copies to MC and R is likewise trivial, as
is putting these subroutines together to create MD because Turing Machines are closed under
composition. Since it is possible to build all of its computents and also combine them together, it
is therefore possible to build MD.

2. By our assumption above we know that MC can never be conscious, and Assumption 3.1 rules out
the panpsychist consciousness of simple algorithms including subroutines R, My, and Mw, as well
as all of the ‘plumbing’ in MD including its step where it duplicates the input string. This leaves
Mχ as the only remaining compontent of MD that is capable of experiencing consciousness.

3. For all inputs to MD, if its MC subroutine outputs ‘Yes’, then subroutine Mχ is not reached. Since
this is the only component of MD that is capable of experiencing consciousness and it is not run,
at no point during this computation does MD experience consciousness.

4. For all inputs to MD, if its MC subroutine outputs ‘No’, then subroutine Mχ is reached and run.
By Assumption 3.1, the simulation of a conscious machine is itself conscious, so running Mχ also
causes MD to experience consciousness.

5. By construction,MC andMw together use exactly n−χ−p steps. EitherMχ orMy will execute, and
in either case will use exactly χ steps. All of the remaining ‘plumbing’ in MD, including subroutine
R, requires p steps. The total number of computational steps required by MC is therefore precisely
n− χ− p+ χ+ p = n, as required.

We are now ready to derive a contradiction by inputting < MD > and < MD, n > to MC which is the
same as running MD on < MD > for n steps and showing that these two characterizations of the same
phenomenon give opposite results:

Theorem 4.5. If Assumption 3.1 holds true, then for all n > χ+ p, it is not possible to build an N-Step
AMCD MC described in Definition 4.3 that computes whether M experiences consciousness when run
on input s for n steps where MC is not itself capable of experiencing consciousness and itself can use at
most n − ϵ steps. The constant ϵ = χ + p, where the constant χ is described in Definition 4.2, and the
constant p is equal to the mundane ‘plumbing’ steps of MD as described in the previous paragraphs.

Proof: Suppose that Assumption 3.1 holds true, let n be any arbitrary integer such that n > χ+ p, and
assume it is possible to build an N-Step AMCD MC as described in Definition 4.3 that computes its
output within n − ϵ steps such that MC is not capable of experiencing consciousness, where ϵ = χ + p.
By Lemma 4.3, we can therefore build MD as described above.

24



Let us take an N-Step AMCD M∗
C (which has * in its name so as not to confuse it with the MC

subroutine within MD). We run M∗
C on inputs < MD > and < MD, n >. M∗

C will tell us whether MD

running on < MD > for precisely n steps experiences consciousness or not by respectively outputting
‘Yes’ or ‘No’, and M∗

C itself has at most n−χ−p steps to perform this calculation. Let us examine both
cases by tracing the execution of MD on < MD > according to Figure 4.4:
Case 1: Suppose M∗

C outputs ‘Yes’, which means that MD running on < MD > for n steps experiences
consciousness. We input < MD > intoMD, where it is duplicated. The upper branch is sent to subroutine
MC , while the lower branch is first sent to subroutine R, which converts the second duplicate of < MD >
to < MD, n > before passing it along to MC . Because M∗

C running on < MD > and < MD, n >
outputs ‘Yes’, so does subroutine MC . My and Mw are then executed. By Lemma 4.3, MD running on
< MD > takes precisely n steps, and because MC outputs ‘Yes’, MD did not experience consciousness
while running on < MD > for n steps, thus directly contradicting the answer given by M∗

C .
Case 2: Suppose M∗

C outputs ‘No’, which means that MD running on < MD > for n steps does not
experience consciousness. We input < MD > into MD, where it is duplicated. The upper branch is sent
to subroutine MC , and the lower branch is sent to subroutine R, which converts the second duplicate
of < MD > to < MD, n >. Because M∗

C running on < MD > and < MD, n > output ‘No’, so does
subroutine MC . By Lemma 4.3, MD running on < MD > takes precisely n steps, and because MC

outputs ‘No’, Mχ is run and MD experiences consciousness while running on < MD > for n steps, thus
directly contradicting the answer given by M∗

C .
In both cases M∗

C produced the wrong answer, so our assumption that it is possible to build a version
of MC incapable of experiencing consciousness that computes its output within n− ϵ = n− χ− p steps
is false. Therefore under Assumption 3.1, if it is possible to build an N-Step AMCD MC that computes
its output within n− ϵ steps, then it must be capable of experiencing consciousness, as required.

As was the case with Theorem 4.3, the careful reader will once again note that Theorem 4.5 is actu-
ally more general than stated here, and that with only slight modifications to it as well as the relevant
assumptions and definitions, one can substitute many different phenomena P that are caused to be man-
ifested by the computation of a Turing Machine as long as they obey the three constraints of Definition
3.2 (namely non-triviality, emergence, and closure under simulation) instead of consciousness and the
result will still hold. For instance, it also proves the incomputability of the N-Step version of the Auto-
mated Napoleon Ghost Manifestation Detector problem from Section 4.3, once again showing that this
result isn’t sensitive to having a precise definition of consciousness, and that it holds for any reasonable
definition of consciousness that respects Assumption 3.1. This proof can similarly be used to show that
the time-bounded N-Step Halting Problem is not computable, but again doesn’t apply to every property
P , and as with Rice’s Theorem, we must exclude any trivial P that either applies to all TMs or to no
TMs because this would cause the diagonalization implicit to MD to fail. The property P must similarly
be emergent and be closed under simulation, or else Lemma 4.3 would fail.

With the appropriate modifications to the relevant assumptions and definitions, we can also once
again generalize Theorem 4.5 to hold for all qualia with the following Corollary:

Corollary 4.3. If Assumption 3.1 holds true, then for all qualia Q and all n > χ+ p, it is not possible
to build Turing Machine MQ that takes as input the encoding of another Turing Machine < M > as well
as the encoding < s, n > of an input to < M > and computes whether M experiences Q when run on
input s for n steps where MQ is not itself capable of experiencing Q and can itself can use at most n− ϵ
steps. The constant ϵ = χ+ p, and the constants χ and p are analogous to those in Theorem 4.5.

In Section 4.3, we proved incomputability results for consciousness, all qualia, as well as the absurd
example of Napoleon’s Ghost, and we have done the same here for the corresponding N-Step versions
of these problems, thereby showing that our proof technique can be generalized. However, it once again
appears to be difficult to go further and completely generalize our results by more rigorously defining
the exact class of manifested phenomena to which the proof of Theorem 4.5 applies, and again we leave
this as an open problem that we will discuss further in Section 6.

25



4.5 Interpretation of Results

The results above constitute both computability and incomputability results for different classes of
AMCDs. Our analysis of the nature of how Rice’s Theorem doesn’t apply to this problem sheds some
light on the nature of machine consciousness as distinct from machine language, and by discovering
boundaries separating computable and incomputable AMCDs and proving results straddling both sides
of them, we have been able to help bring these borders into better focus. Some patterns are starting to
emerge:

The problem of building Machine Consciousness Detectors parallels the Halting Problem, where the
general version is not computable, whereas the N-Step version is. Theorem 4.3 tells us that unconscious
AMCDs are impossible, while Theorem 4.5 shows that unconscious, time-bounded, N-Step AMCDs
are impossible. Meanwhile, according to Corollary 4.2, conscious, time-unbounded N-Step AMCDs are
possible. The fact that we have two classes of unconscious AMCDs that can’t work, and one class
of conscious AMCDs that does work suggests that the consciousness of the detector itself may be an
important or even necessary element. In the field of consciousness studies where it is so difficult to prove
concrete and absolute mathematical results, this constitutes progress in that it helps narrow down the
search space and points future researchers trying to build an AMCD in the right direction - they need
not waste their time attempting to build one that isn’t conscious, because those attempts are guaranteed
to fail. One might say that we live in a Universe where when it comes to recognizing consciousness, it
“takes one to know one” (if recognizing consciousness is possible at all).

Similarly, our results suggest that the time bounds granted to an N-Step AMCD to do its work may
be critical. Theorem 4.4 showed that if we give an N-Step AMCD the freedom to fully simulate the
machine it is being tasked to inspect for all n steps, then it is possible to build such an AMCD. However,
the proof of Theorem 4.5 holds for all n > χ+ p, including absurdly large values such as n = χ1000 + p.
Instead of granting MC all n steps, we restrict it to n−ϵ = n−χ−p = χ1000+p−χ−p = χ1000−χ steps,
which is only an asymptotically small fraction shy of n, and n could have been arbitrarily chosen to be
even larger, making this difference even more extreme. By Theorem 4.4, if we allow an N-Step AMCD
all n steps (while also still allowing for this AMCD to be capable of experiencing consciousness), then
the problem would have been solvable, so denying it even a small constant number of computational steps
may be enough to thwart its ability to detect machine consciousness, suggesting an extreme threshold
sensitivity in this area.

There is another interpretation if we view these results through the lens of simulation. By Assumption
3.1 and Corollary 4.2, simulated consciousness is itself conscious. In other words, denying an AMCD
the ability to be conscious may simply be synonymous with denying it the ability to simulate < M >
on s. Theorems 4.3 and 4.5 both disallowed consciousness, and therefore also denied the ability to use
simulation as a tool. (Theorem 4.5 additionally denied the possibility of simulation by restricting n.)
They both showed that a subsequent failure to create an AMCD was inevitable. Meanwhile, Theorem
4.4 allowed simulation, and succeeded, so it could be the case that when detecting machine consciousness,
there are no computational shortcuts, and simulation may be a necessary tool, although this is more
likely to be the case with the N-Step version of the problem.

More research is required to fully understand these relationships and boundaries. Several conjectures
and related avenues of future work are described below in Section 6.

5 Concluding Remarks

How will we ever know if an AI is truly conscious? This question lies at the intersection of computer
science, philosophy, as well as ethics, and significant advances in AI have made it more important than
ever. This paper does not presume to take a position whether machine consciousness is possible. We
do not know if the basic assumptions listed above are true, but if they are, then we have been able to
show that different formulations of the AMCD problem are computable and not computable for the
Computational Theory of Mind model of machine consciousness.

26



Our results attempt to shed light on the inherent limitations of identifying and mastering machine
consciousness. We have shown that Turing Machine language and consciousness are orthogonal. We’ve
discovered boundaries separating the computability and non-computability of building different forms of
AMCDs and have identified candidates for their characteristics that may be critical. In the general case
of an AMCD as described in Definition 3.4, we have shown that it is necessary for this AMCD to itself
be capable of experiencing consciousness, if it is possible to build one at all. If machine consciousness
is possible and not ubiquitous as the panpsychists believe as per Assumption 3.1, then no matter what,
nobody even in the distant future, regardless of how advanced their technology is, will ever be able to
build an infallible AMCD that itself is not capable of experiencing consciousness. This leaves the door
open for the possibility of creating a conscious AMCD MC , but even if this is possible, how would we
know that MC is conscious? We would first need another conscious AMCD to determine that MC is
conscious. But then how would we know that one is conscious, and so on, thus creating an infinite regress
and a prime mover problem.

In the case of N-Step AMCDs described in Definition 4.3, we have shown that the consciousness of
the detector, the time that it is given to produce its output, as well as the ability to simulate are all
boundary conditions that can be toggled to place the problem on one side of computability or the other.
Unfortunately, our positive result showing that it is possible to build an N-Step AMCD is not immedi-
ately actionable because the assumptions underpinning it would require us to solve the ‘Hard Problem
of Consciousness’ and also make considerable advancements in our computer simulation capabilities.

It is worth noting that the present results only apply to computational means of detecting conscious-
ness. As described above in Section 1, science knows almost nothing about the nature of consciousness,
including its underlying causal mechanisms. We don’t know how to detect it, or even if it can be detected
in an objective way - indeed, the present paper provides grounds for skepticism. This lack of knowledge
on our part lies at the heart of the ‘Hard Problem of Consciousness’. Does consciousness only arise as a
consequence of the configuration of certain materials, as is the case with magnetism? Or is it substrate
independent? It is conceivable that consciousness is a physical property associated with matter, like mass
or magnetism, and it can therefore be detected by some physical means that we don’t yet understand.
Perhaps when present, consciousness creates a ‘mental field’ analogous to a magnetic or a gravitational
field, or a form of radiation that we haven’t yet discovered, in which case something akin to an (uncon-
scious) Geiger counter for this type of radiation could be placed on someone’s head or on a computer to
objectively show that it experiences consciousness. The present results rule out certain computational
possibilities for machine consciousness detection, but as far-fetched as these other physical possibilities
may seem, we are not able to rule them out.

On the other hand, if there really are no computational nor physical methods to objectively detect
consciousness, then unless there exists some third way, we may live in a Universe where general con-
sciousness detection truly is impossible. In this case Turing was right all along and the best we can do
is test for behavioral indistinguishability.

It is gratifying to prove results that unify two of Turing’s great interests, namely the areas of com-
putability and machine consciousness. Why did Turing himself not combine the two areas back in the
1950s and instead chose to devise a more subjective version of the Turing Test? The proof of Theorem
4.3 above so closely parallels Turing’s own proof of the Halting Problem that one is tempted to conclude
that without the hindsight benefit of fundamental papers such as [Put60, Arb61], his attention simply
wasn’t focused in this direction, possibly for lack of a technical definition of consciousness, or possibly
because the idea of conscious software would have been too exotic so many decades ago.

Computer science and AI have progressed considerably since then, but much more research is still
needed to solve the biggest problems mentioned above and gain true insights into the nature of con-
sciousness.

27



6 Related Open Problems, Conjectures, & Future Research

Rather than focusing on the major open problems in the area of consciousness studies such as its
precise physical nature or whether conscious machines are even possible or what the difference between
conscious and non-conscious computations are (assuming the panpsychists are wrong), we will instead
highlight some more tactical research areas that are closely related to our present results:

6.1 Machine Consciousness & Languages

In Section 4.2 we showed that it is trivially easy to take any non-conscious machine and turn it into
a conscious one that accepts exactly the same language, but the opposite direction of this statement
remains a significant open problem. For any arbitrary conscious machine, can we ‘downgrade’ it to be a
non-conscious ‘philosophical zombie’ version? In other words, is there an equivalent machine that decides
exactly the same language but is not conscious? Closely related to this problem is one asking whether
every artificial superintelligence must be conscious. We are unaware of a compelling intuition in either
direction on these questions and therefore decline to hazard a conjecture.

6.2 Generalization of The AMCD Problem

However, it is tempting to conjecture that the obvious generalization of Theorem 4.3 is true. In this
result, we were only able to show that one cannot detect machine consciousness with an unconscious
AMCD, but in all likelihood it isn’t possible to create an AMCD, whether conscious or not, because
the detection of almost any non-trivial property of a Turing Machine by another machine is typically
not computable. As discussed above in Section 4.1, Rice’s Theorem technically does not apply here, but
that does not mean that it cannot guide our intuitions. Together with Theorem 4.3, this suggests that
the following conjecture is likely true, and proving it would constitute a valuable extension of the present
research:

Conjecture 6.1. If Assumption 3.1 holds true, then it is not possible to create an Automated Machine
Consciousness Detector MC , whether it is capable of experiencing consciousness or not.

6.3 Generalization of The N-Step AMCD Problem

More research into the computability of N-Step AMCDs is also needed. In Theorem 4.5, we simulta-
neously made the problem more difficult in two ways, by both disallowing MC to be conscious, and also
by restricting the number of steps it is allowed to perform below n. The Scientific Method dictates that
we should change only one variable at a time, so it would be preferable to prove this result with only
one change or the other. Since both of these changes remove the ability to use simulation as a tool, it is
tempting to conjecture that both resulting problems would remain incomputable.

If we allow MC to be conscious, then is it possible for it to do its work in under n steps? That is the
purpose of the following conjecture:

Conjecture 6.2. Under the premise that Assumption 3.1 holds true, it is not possible to build an
N-Step Automated Machine Consciousness Detector MC (whether conscious or not) that computes its
output within n− ϵ steps, where n is described in Definition 4.3, and ϵ is a constant.

Conversely, is this problem solvable if we disallow MC from being conscious, but do allow it the full
n steps in which to do its work? Again we hypothesize that the answer is no:

Conjecture 6.3. Under the premise that Assumption 3.1 holds true, it is not possible to build an N-Step
Automated Machine Consciousness Detector MC that is itself not capable of experiencing consciousness.

28



6.4 Generalization of Proof Technique

In Sections 4.3 and 4.4.2, we respectively proved Theorems 4.3 and 4.5 and we generalized these
incomputability results to include all qualia as well as more absurd examples of computations that
summon an apparition of Napoleon Bonaparte. It is clear that this proof technique is very general like
Rice’s Theorem, and that it might be possible to generalize it further. What is less clear is precisely
what the largest class of properties to which we can extend these results might be. If the Computational
Theory of Mind is correct, then certain computations seem to have the strange side effect of summoning or
manifesting or conjuring a consciousness into existence, not unlike our example of Napoleon’s ghost. For
this reason it perhaps isn’t surprising that consciousness as well as the human soul have been described
as the ‘ghost in the machine’.

If this larger class exists and it is possible to precisely define it, this may help us to better understand
the nature of consciousness itself.

6.5 Implications For The Physical Nature of Consciousness

Another research direction is suggested by our positive result in Theorem 4.4. In it, we connected
the physical and theoretical worlds through computer simulation. Can this technique be used to ‘boost’
negative theoretical results into the real world and thereby allow us to draw conclusions about the physical
nature of consciousness? More specifically, if we assume that the physical nature of consciousness is such
that it can be detected by some type of physical sensor S, and if we can use a simulated form of S to
build a consciousness detector in a simulation that contradicts a known incomputability result, then that
contradiction in the simulated digital world would mean that the nature of consciousness in the physical
world is such that it cannot be detected by any physical sensor. Any result along these lines ruling
out such possibilities would constitute a major breakthrough in our understanding of consciousness and
progress towards solving the Hard Problem.

Acknowledgments

TODO: THANK EVERYONE WHO PROVIDED COMMENTS

References

[Aar13] S. Aaronson. The Ghost In The Quantum Turing Machine.
URL: https://www.scottaaronson.com/papers/giqtm3.pdf, 2013.

[ACA+21] M. Alfonseca, M. Cebrián, A.F. Anta, L. Coviello, A. Abeliuk, and I. Rahwan. Superintel-
ligence Cannot Be Contained: Lessons From Computability Theory. Journal of Aritificial
Intelligence Research, 70:65 – 76, 2021.

[Arb61] M. Arbib. Turing Machines, Finite Automata, and Neural Nets. Journal of The ACM, Vol. 8
Issue 2:467 – 475, 1961.

[BB22] L. Blum and M. Blum. A Theory of Consciousness From A Theoretical Computer Science
Perspective: Insights From The Conscious Turing Machine. Proceedings of The National
Academy of Sciences of The United States of America (PNAS), Vol. 119, No. 21, 2022.

[Cas02] V. Caston. Aristotle on Consciousness. Mind, Vol. 111 No.444:751 – 815, 2002.

[Cha96] D. Chalmers. The Conscious Mind: In Search Of A Fundamental Theory. Oxford University
Press, New York, 1996.

[Cha07] D. Chalmers. The Hard Problem of Consciousness. In M. Velmans and S. Schneider, editors,
The Blackwell Companion To Consciousness, pages 225 – 235. Blackwell Publishing, 2007.

29



[DSH21] A. Doerig, A. Schurger, and M. H. Herzog. Hard Criteria For Emperical Theories of Con-
sciousness. Cognitive Neuroscience, Vol. 12 No. 2:41 – 62, 2021.

[Fag18] D. Faggella. Could Artificial Intelligence Become Conscious? 33 Researchers Contribute Their
Opinion. URL: https://emerj.com/ai-market-research/conscious-artificial-intelligence/, 2018.
Available online at Emerj.

[Gra22] N. Grant. Google Fires Engineer Who Claims Its A.I. Is Conscious. New York Times, July
2022.

[Hai19] P. O. Haikonen. Consciousness and Robot Sentience, Second Edition. World Scientific Pub-
lishing Co., Singapore, 2019.

[Hai20] P. O. Haikonen. On Artificial Intelligence and Consciousness. Journal of Artificial Intelligence
and Consciousness, Vol. 7, No. 1:73 – 82, 2020.

[Har91] S. Harnad. Other Bodies, Other Minds: A Machine Incarnation of An Old Philosophical
Problem. Minds and Machines, 1:43 – 54, 1991.

[Har19] A. Harris. Conscious. HarperCollins, New York, 2019.

[Kle24] J. Kleiner. Towards A Structural Turn in Consciousness Science. Consciousness and Cogni-
tion, 119:103653, 2024.

[Low12] P. Low. Cambridge Declaration on Consciousness. In Proceedings of the Francis Crick Memo-
rial Conference, pages 1 – 2. Cambridge University, 2012.

[Mas16] J. W. D. Mason. Quasi-conscious Multivariate Systems. Complexity, Vol. 21 No. S1:125 –
147, 2016.

[Mas21] J. W. D. Mason. Model Unity and The Unity of Consciousness: Developments in Expected
Float Entropy Minimisation. Entropy, Vol. 22 Issue 11:1444 – 1465, 2021.

[McC79] J. McCarthy. Ascribing Mental Qualities to Machines. In M. Ringle, editor, Philosophical
Perspectives in Artificial Intelligence, page 161. Humanities Press, Atlantic Highlands, N.J.,
1979.

[MP43] W. S. McCulloch and W. Pitts. A Logical Calculus of The Ideas Immanent in Nervous
Activity. Bulletin of Mathematical Biophysics, Vol. 5:115 – 133, 1943.

[Neu58] J. Von Neumann. The Computer and The Brain. Yale University Press, New Haven, CT,
1958.

[Pen89] R. Penrose. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of
Physics. Oxford University Press, 1989.

[Pen94] R. Penrose. Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford
University Press, 1994.

[Put60] H. Putnam. Minds and Machines. In Sidney Hook, editor, Dimensions Of Mind: A Sympo-
sium, pages 138 – 164. New York University Press, 1960.

[Reg14] J. A. Reggia. Conscious Machines: The AI Perspective. The Nature of Humans and Machines
- A Multidisciplinary Discourse: Papers From The 2014 AAAI Fall Symposium, 2014.

[Ric53] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems. Transac-
tions of The American Mathematical Society, Vol. 74, No. 2:358 – 366, 1953.

30



[Sea80] J. Searle. Minds, Brains, and Programs. Behavioral and Brain Sciences, 3(3):417 – 457, 1980.

[Sip97] M. Sipser. Introduction to The Theory of Computation, First Edition. PWS Publishing
Company, Boston, MA, 1997.

[Sip13] M. Sipser. Introduction to The Theory of Computation, Third Edition. Cengage Learning,
Boston, MA, 2013.

[SMB+21] D. Sattin, F. G. Magnani, L. Bartesaghi, Milena Caputo, A. V. Fittipaldo, m. Cacciatore,
M. Picozzi, and M. Leonardi. Theoretical Models of Consciousness: A Scoping Review. Brain
Sciences, 11:1 – 58, 2021.

[SSP21] C. M. Signorelli, J. Szczotka, and R. Prentner. Explanatory Profiles of Models of Conscious-
ness - Towards A Systematic Classification. Neuroscience of Consciousness, Vol. 7 No. 2:1 –
13, 2021.

[Tay99] C. C. W. Taylor. The Atomists Leucippus and Democritus: Fragments, A Text and Transla-
tion with Commentary. University of Toronto Press, Toronto, 1999.

[TK15] G. Tononi and C. Koch. Consciousness: Here, There, and Everywhere? Philosophical Trans-
actions of The Royal Society B, Vol. 370, No. 1668:20140167, 2015.

[Tur37] A. M. Turing. On Computable Numbers, With An Application To The Entscheidungsproblem.
Proceedings of The London Mathematical Society, Series 2, Vol. 42:230 – 265, 1937.

[Tur50] A. M. Turing. Computing Machinery and Intelligence. Mind, New Series, Vol. 59, No. 236:433
– 460, 1950.

[Tye21] Michael Tye. Qualia. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, Fall 2021 edition, 2021.

[Wik24] Wikipedia. Eugene Goostman - Wikipedia, The Free Encyclopedia.
URL: https://en.wikipedia.org/wiki/Eugene Goostman, 2024. [Online; Accessed 23-March-
2024].

31


