
Generation of efficient parsers
through direct compilation of
XML Schema grammars

&

E. Perkins

M. Matsa

M. G. Kostoulas

A. Heifets

N. Mendelsohn

With the widespread adoption of SOAP and Web services, XML-based processing,

and parsing of XML documents in particular, is becoming a performance-critical aspect

of business computing. In such scenarios, XML is often constrained by an XML Schema

grammar, which can be used during parsing to improve performance. Although

traditional grammar-based parser generation techniques could be applied to the

XML Schema grammar, the expressiveness of XML Schema does not lend itself well to

the generic intermediate representations associated with these approaches. In this

paper we present a method for generating efficient parsers by using the schema

component model itself as the representation of the grammar. We show that the

model supports the full expressive power of the XML Schema, and we present results

demonstrating significant performance improvements over existing parsers.

INTRODUCTION
XML has begun to work its way into the business

computing infrastructure and underlying protocols

such as the Simple Object Access Protocol (SOAP)

and Web services. In the performance-critical setting

of business computing, however, the flexibility of

XML becomes a liability due to the potentially

significant performance penalty.

XML processing is conceptually a multitiered task,

an attribute it inherits from the multiple layers of

specifications that govern its use: XML,
1,2

XML

Namespaces,
3

XML Information Set (Infoset),
4

and

XML Schema.
5

Traditional XML processor imple-

mentations reflect these specification layers directly.

Bytes, read off the ‘‘wire’’ or from disk, are

converted to some known form (often UTF-16

characters) and tokenized (UTF stands for Universal

Text Format). Attribute values and end-of-line

sequences are normalized. Namespace declarations

and prefixes are resolved, and the tokens are then

transformed into some representation of the docu-

ment Infoset; at the same time, checking for well-

formedness
1,2

is performed. The Infoset is optionally

checked against an XML Schema grammar (XML

schema, schema) for validity and rendered to the

user through some interface, such as Simple API for

XML (SAX) or Document Object Model (DOM) (API

stands for application programming interface).
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In practice, these tasks are combined to some extent.

Typically a generic parser handles scanning, XML

normalization, namespaces, and well-formedness

checking, as required by the XML specification.

Validation is then grafted on as a separate process,

operating as a filter on the output of the generic

parser. Because validation is an add-on in such a

design, it has a strictly detrimental effect on parser

performance. Validation is, therefore, typically used

exclusively for debugging, if at all, and is disabled

during production.

Although schema validation is expensive in the

above scenario, there is no fundamental reason why

validation needs to be expensive. Indeed, grammars

have long been used to generate optimized special-

purpose parsers that operate much more efficiently

than their generic counterparts, while performing

validation checking.
6

The XML specifications were

designed to enable the compilation of an XML

Schema grammar to a special-purpose parser (see

Techniques that apply standard grammar-based

parser generation to XML Schema grammars have

been used to demonstrate that compilation of

schemas can produce high-performance special-

purpose parsers.
7

Traditional parser-generation

schemes are not, however, particularly well-suited

to XML parsing and have difficulty representing

some XML Schema constructs that are not found in

traditional parsing situations. At the same time, the

syntax of XML and the constraints defined in an XML

schema are not sufficiently complex to require the

full power of traditional parser-generation methods.

Previous efforts in this area that built on conven-

tional intermediate representations have, in general,

supported fewer features of XML
8

or delivered less

efficient solutions.
9

Rather than adapting a conventional intermediate

representation to the forms of XML and XML

Schema, we propose a compilation technique that

deals directly with the abstract schema components

of the XML Schema Recommendation.
5

By tying the

code-generation scheme directly to the schema

components, we are able to take advantage of the

simple lexical structure of XML and the determinism

assurances built into XML Schema grammars.

The generated validating parser drives the optimized

scanning process. Two complementary optimization

strategies, specialization and optimistic scanning,

are used to speed scanning and validation. Special-

ization focuses on the use of specialized context-

sensitive scanning primitives that can scan and

validate the input efficiently. Optimistic scanning

speeds the scanning of the common cases, such as

simple data without comments or entity references.

The resulting generated parser is shown to be

significantly faster than some widely available

parsers, both validating and nonvalidating.

In the next section, we describe the challenges

involved in generating parsers through compilation

of XML schemas. Following that, we propose an

architecture for direct schema compilation, high-

lighting the breadth of support for schema features

and the targeted optimizations that minimize the

cost of parsing. Then we provide performance

measurements of sample generated parsers and

compare those to performance measurements of

commonly used parsers. Finally, we describe related

work from the technical literature and conclude with

final comments.

CHALLENGES OF XML SCHEMA COMPILATION

XML Schema, and the specifications on which it

depends, present several challenges to schema-

based parser generation: XML namespaces and the

dynamic typing features of XML Schema complicate

the scanning of markup. As a result, the schema

grammar and the lexical production of XML are not

easily combined with traditional grammar compila-

tion techniques. Additionally, XML Schema provides

support for content models that are difficult to

represent in traditional automaton models, making

the traditional models inefficient as intermediate

representations of the schema.

XML namespaces

Throughout the XML processing stack, markup and

meta-markup (such as namespace declarations and

xsi:type attributes) assert scoped properties and

declarations for the containing element and all of its

attributes, as well as its content. In the case of XML

namespaces and the dynamic typing mechanism

used in XML Schema, this pattern presents some

difficulties for naı̈ve parser implementations.

Namespaces qualify XML element and attribute

names by using a namespace-prefix declaration. The

declaration takes the form of a special attribute with

a reserved prefix (xmlns) followed by the prefix to
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be declared. The value of this attribute is the

declared namespace. The scope of the namespace

declaration includes the enclosing element, all of the

sibling attributes, and the element’s content. This

arrangement, although natural, presents some diffi-

culties for XML processors.

Beyond the syntactic complexities of the namespace

declaration, the XML Namespaces Recommendation

augments the well-formedness constraints of XML to

forbid the repetition of a qualified attribute regard-

less of its lexical representation in the tag. Thus, in

the examples below, the first my-elt-1 is well-

formed, but my-elt-2 is not, because both attributes

resolve to the same qualified name.

,a:my-elt-1 a:my-attr¼‘‘true’’ b:my-attr¼‘‘false’’
xmlns:a¼‘‘http://www.example.com/a’’
xmlns:b¼‘‘http://www.example.com/b’’/.

,a:my-elt-2 a:my-attr¼‘‘true’’ b:my-attr¼‘‘false’’
xmlns:a¼‘‘http://www.example.com/a’’
xmlns:b¼‘‘http://www.example.com/a’’/.

,a:my-elt-1 a:my-attr¼‘‘true’’ b:my-attr¼‘‘false’’
xmlns:a¼‘‘http://www.example.com/a’’
xmlns:b¼‘‘http://www.example.com/c’’/.

During processing, namespace declarations prevent

the qualified names of the element and its attributes

from being conclusively known until the end of the

tag. This means that scanning of qualified names in

XML requires infinite look-ahead to fully resolve

names. In the preceding examples, the second

a:my-elt-1 appears to be the same as the first until

the last attribute is scanned.

The pattern of declaration used in XML namespaces

is typical throughout the XML processing stack. In

the XML layer, for example, the predefined attri-

butes xml:lang and xml:space, which may be used

to indicate natural language and desired white-space

handling, use this pattern. The values of these

attributes, however, do not affect validation, and

therefore do not complicate scanning or validation.

Dynamic typing in XML Schema

XML Schema includes a mechanism for dynamic

typing of instance elements. By using the xsi:type

attribute, an instance element may assert its XML

Schema type. The declared type must be validly

derived from the type that would otherwise have

been used to validate the element, with respect to

the constraints on type derivation. This declared

type may have a significantly different content

model from the default type that is otherwise

expected.

The syntax of xsi:type is similar to that of

namespace declarations and poses the same kinds of

processing hurdles. In particular, the possibility of

an xsi:type attribute prevents an XML processor

from conclusively determining the type declaration

to use for validation until the entire tag has been

scanned. Furthermore, because the element type

declaration governs the type declarations used to

validate the attributes, the processor cannot con-

clusively determine the types—and therefore the

validity—of the attributes until the entire tag has

been read. In the example below, the element will be

invalid if the dynamic type restricts the attributes to

be of type xsd:integer:

,my-elt-1 my-attr-1¼‘‘one’’ my-attr-2¼‘‘two’’
my-attr-3¼‘‘three’’ my-attr-4¼‘‘four’’
my-attr-5¼‘‘five’’ my-attr-6¼‘‘six’’
xsi:type¼‘‘six-integer-attributes’’
xmlns:xsi¼‘‘http://www.w3.org
/2001/XMLSchema-instance’’ /.

XML Schema content models
Like the Document Type Definition (DTD) grammar

used in XML, XML Schema can specify an element’s

content model as a regular expression over its

contained element. In contrast to the grammars that

can be specified with an XML DTD, however, XML

Schema supports a wider range of operators in the

composition of content models. In particular, the

arbitrary finite occurrence constraints and xsd:all

groups of XML Schema pose challenges to autom-

aton-based approaches to compilation. Arbitrary

finite occurrence constraints can lead to an explo-

sive growth in the number of states for simple

automaton approaches. In the standard implemen-

tation, an element declaration with a maximum

occurrence constraint of 5000 will result in 5000

states corresponding to each possible occurrence in

the range. Models of xsd:all group content are not

represented in any standard regular expression

syntax and require significant augmentation of the

automaton model. If translated directly into a

standard automaton model, xsd:all groups result

in an expansion of states that is combinatorial in the

number of members of the group.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 PERKINS ET AL. 227



Because the xsd:all compositor is not well repre-

sented in traditional models, much of the previous

work on XML schema compilation has treated

xsd:all groups as a ‘‘corner case’’ (that is, unim-

portant). In practice, however, xsd:all groups are

quite important, as the xsd:all group is considered

to be a natural translation of a data structure with

named fields, such as a C struct or a Java class,

where the members are identified by name, rather

than by position. In practice, we have seen that XML

schemas for data stored in relational databases often

have a plethora of xsd:all groups. These scenarios

are quite common for Web services.

XML character data
In addition to the particular challenges posed by the

various specifications involved in XML parsing and

validation, the layering of the specifications presents

challenges of its own. In particular, the constraints

imposed by an XML schema operate on an abstract

representation of an actual XML instance described

in the Infoset as an abstract tree of information

items.
4

All data in the Infoset is represented in a

fully expanded form, with entities and character

references expanded, CDATA sections replaced with

their contents, and end-of-line and attribute nor-

malization completed, as required by XML. This

means that the lexical productions and value

constraints used by XML Schema to constrain data

are defined in terms of this abstract form. As a

result, these constraints are typically implemented

in a two-pass method, where the content is first

scanned according to the lexical-level productions of

XML and then normalized and validated against its

constraining type. This procedure is inefficient

because it requires the data to be scanned twice.

ARCHITECTURE FOR DIRECT SCHEMA
COMPILATION

We present now an architecture for direct compila-

tion of XML schemas in which the code for parsing

and validation is generated directly from the schema

components defined by the XML Schema Recom-

mendation. We describe how this approach sim-

plifies support for schema features that do not

translate well to other grammar representations. We

also show that the simplified custom-compilation

model enables a variety of targeted optimizations

that maximize scanning performance without the

complications normally associated with combined

compilation of XML Schema grammars and XML

concrete syntax. In the following sections, we first

describe the overall design of the compiler and the

generated parser. The algorithms used in the

compilation engine are then presented, followed by

the design of the generated parser.

Design overview

As discussed in the previous section, from a

validation standpoint, the structure of an XML

document constrained by a schema cannot be

decomposed below the tag level. Because meta-

markup, such as namespace and xsi:type declara-

tions, is contained in conceptually unordered

attributes, no conclusive information about the

document can be inferred until the entire tag is read.

Thus, no exchange of information between the

scanner and the validation logic can be made to

refine the scanning of the rest of the tag without

possibly having to back up and correct mistaken

assumptions. As a result, the grammar must not

direct scanning at a granularity any finer than the

tag. Accordingly, the generated validation logic may

be cleanly separated from the scanning infrastruc-

ture at the tag level, without loss of any significant

performance opportunity. Thus, we divide the

generated parser into two logical layers, scanning

and validation.

The validation layer is a generated recursive-descent

parser that drives the scanner by using compiled,

predictive knowledge from the schema. The scan-

ning layer consists of a set of fixed XML primitives

that scan content at the byte level, at the direction of

the validation layer.

The validation logic is produced directly from the

schema component model, using component-spe-

cific code templates for the various components in

the schema. This approach is enabled by a

constraint on valid schemas ensuring that all

content models are deterministic. This constraint is

called the Unique Particle Attribution (UPA) con-

straint, and is defined in Section 4.4 of the

specification as follows
5
:

A content model must be formed such that during

validation of an element information item

sequence, the particle component contained

directly, indirectly, or implicitly therein with

which to attempt to validate each item in the

sequence in turn can be uniquely determined

without examining the content or attributes of
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that item, and without any information about the

items in the remainder of the sequence.

This constraint ensures that transitions between

particles in the content model are deterministic. The

implications of the constraint are somewhat com-

plex and often misunderstood. We will therefore

briefly consider a few informative examples using

the compact DTD-style syntax for the grammars.

The first example below is legal, because as soon as

the parser encounters the first element (an A, B, or C)

it knows which branch of the disjunction to validate

against, AA, BA, or CA, respectively.

AA j BA j CA

On the other hand, if all three branches begin with

the same symbol, as in the next example, the

content model is not considered deterministic:

AA j AB j AC

This is because after encountering the first element

(an A), the parser does not know which A to validate

against. In the language of the Schema Recommen-

dation, it does not know which particle to assign to

the A element in the instance: the one in the first

branch, AA, the one in the second branch, AB, or the

one in the third branch, AC. Because XML Schema

allows arbitrary annotations to be attached to each

particle in the schema, significant differences may

exist between these apparently identical particles.

Assuming that all three A particles are identical from

the point of view of the schema author, the problem

can be remedied easily be rewriting the illegal

schema grammar into a legal one. The key differ-

ence is that there is only one A particle—so there is

no ambiguity about which particle validates an A in

the instance:

A (A j B j C)

The determinism ensured by the UPA constraint

enables particles to be compiled individually.

Because any particle that validates a particular input

element within a given context is necessarily the

only particle that will do so, the validation code

generated for the particles in a schema can be

composed together without any look-ahead and

without requiring backtracking. This is easily

represented with greedy logic but could equivalently

be represented with non-greedy logic because the

two are necessarily equivalent. In any grammar that

conforms to the specification, therefore, the name of

the most recently read tag is sufficient to determine

which branch of the program to execute. This allows

code to be generated directly from the schema

components, while maintaining the assurance that it

will be sufficiently general for all unambiguous

schema grammars. Thus, the particles and their

terms form a sufficient basis for validation-logic

compilation. In the next section, the procedure for

generating the validation logic is explained in detail.

Deterministic but ambiguous content models will be

discussed later.

Schema compilation
The compilation procedure takes place in three

stages. The input schema is first read and modeled

in terms of abstract schema components (see

Section 3 in Reference 5). The complete schema is

then augmented with a set of derived (calculated)

components and properties used to drive code

generation. Finally, the schema is traversed, in a

recursive-descent fashion, to generate the validation

code for each component.

In the following subsections we describe the

augmented set of schema components and the

derived properties that supplement the component

model with information needed for compilation.

Then we discuss the process for generating valida-

tion code from our code templates and show the

templates associated with each schema component.

Finally, we provide an example that shows how the

stand-alone templates are composed to generate a

validating parser.

Schema components

To represent and operate on the XML Schema

grammar, we use a publicly available implementa-

tion of the schema components. The schema

components, taken in aggregate, are referred to as

the schema. It is assumed that the schema for any

given grammar is fully resolved before compilation

begins; that is, there are no missing subcomponents,

and no attempt is made to further resolve compo-

nents. The justification of this assumption is

provided by the Schema Recommendation itself.

Figure 1 shows the relevant schema components,

with their compilation annotations in italics, as well

as two special components (synthetic-element and

skip-term, described later).

The schema components have four primary com-

ponent types: element declarations, attribute decla-
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rations, complex type definitions, and simple type

definitions. Complex type definitions also reference

a set of helper components: particle, model group,

wildcard, and attribute use.

Complex types may have content that is simple,

complex, or empty. When the content is simple, the

value of the content-type property is a simple-type

definition that defines the content. When the

content is empty, the content type is empty. If the

complex type has complex content, then the

content-type is a particle, which defines a complex

content model. The content model for such a

complex type is defined in terms of the helper

components (particles, model groups, and wild-

cards). Particles and model groups structure the

content model for validating element content, which

is eventually validated by element declarations or

wildcards. The basic unit of the content model is the

particle. See the XML Schema Recommendation:

A particle is a term in the grammar for element

content, consisting of either an element

declaration, a wildcard, or a model group,

together with occurrence constraints. Particles

contribute to validation as part of complex type

definition validation, when they allow anywhere

from zero to many element information items or

sequences thereof, depending on their contents

and occurrence constraints.

A particle has a pair of occurrence constraints,

min-occurs and max-occurs, and a term. The term

of a particle can be an element declaration, a model

group, or a wildcard. Model groups, in turn,

compose groups of particles, using one of three

composition models (xsd:sequence, xsd:choice,

xsd:all). These components can be combined

freely, within the constraints of the UPA constraint,

as discussed earlier. Note that in order to facilitate

processing, the XML Schema Recommendation

places extra restrictions on the use of model groups

with the xsd:all compositor.

Synthesis of implicit content models

Because of the open-ended composition model of

XML Schema, the schema components as defined by

the specification lack explicit representations of

validation constraints that reference the schema

globally. In particular, the content model for wild-

Figure 1
Schema components

Synthetic-Element

element-declaration
Qname-literal

Skip-Term

namespace-constraint
Qname-literals

Particle

min-occurs
max-occurs
term
emptiable
first-set
follow-set

Simple-Type-Definition

facets
final
variety
base-type-definition

Attribute-Use

required
attribute-declaration
qname-literal

Element-Declaration

scope
nillable
substitution-grp-affiliation
substitution-grp-exclusions
disallowed-substitutions
abstract
type-definition
synthetic-content-model
substitutable-types

Schema

type-definition
element-declarations
attribute-declarations
document-type

Attribute-Declaration

scope
type-definition

Wildcard

process-contents
namespace-constraint
synthetic-content-model

Complex-Type-Definition

derivation-method
final
abstract
prohibited-substitutions
base-type-definition
content-type
attribute-uses
attribute-wildcard
prohibited-attributes
required-attributes
simple-base-type

Model-Group

particles
compositor
required-particles

Schema component

Synthetic component
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cards, element substitution groups, and the content

model for the document itself all make implicit

references to the global element declarations of the

schema without enumerating them. In the compiler,

these implicit validation rules are rendered explicitly

with content models synthesized from the standard

schema components and the global properties of the

schema. These synthetic content models are repre-

sented with the normal schema components, and

with two additional synthetic components. The

definitions for these components are included in

Figure 1.

Document content model. In contrast to a DTD, XML

Schema provides no way to indicate the content

model for the document itself. The validation rule

for the document element is normally taken to be

similar to that of a wildcard, matching any global

element. To represent this, we define a virtual top-

level type for the content of the document. This top-

level type is a complex type called documentType,

and is defined within a private namespace (http://

www.ibm.com/XML/impl/types). Unless otherwise

stipulated, the documentType is assumed to take a

form similar to that of xsd:anyType, but somewhat

more restrictive in that it bears no attributes, forces

strict processing, and does not allow mixed content

(thus emulating the production of an XML docu-

ment, as described in Section 2.1 of the XML

specification
1,8

). In the XML representation of the

schema components, this can be written as:

,xsd:schema targetNamespace¼
‘‘http://www.ibm.com/XML/impl/types’’

xmlns:xsd¼‘‘http://www.w3.org/
2001/XMLSchema’’ .

,xsd:complexType name¼‘‘documentType’’ .

,xsd:sequence.

,xsd:any/.

,/xsd:sequence.

,/xsd:complexType.

,/xsd:schema.

Element and wildcard content models. Element sub-

stitution groups allow for the substitution of one

named element for another. Any global element

declaration may serve as the head of a substitution

group, and any element with a properly derived type

may declare itself to be substitutable for the head

element.

In a fixed schema, the validation rule for an element

substitution group acts as a choice over the

appropriate element declarations. To represent this

explicitly in the compiler, we augment the element

declaration component with a synthetic-content-

model property that represents the expanded form of

the element declaration (Figure 2). This expanded

form was implicitly part of the original schema

component. The new content model is a choice over

any elements that could transitively appear in the

substitution group headed by this element. In order

to distinguish an element declaration (which is

always considered to be the head of a substitution

group) from the terms of this synthetic choice, we

define a synthetic component called the Synthetic-

Element, which like regular element declarations,

wildcards, and model groups may be the term of any

particle. The Synthetic Element, as opposed to the

regular element declaration, validates only the

declared element and not any of its substitution

group members.

The content model for wildcards is similarly implicit

(Figure 3). The structure of the validation rule for a

wildcard depends on the value of its process-

contents property. When skip processing is stipu-

lated, the processor is required to skip over the

matching element and all of its content without any

validation. When strict processing is stipulated, the

matching element must be validated with one of the

global element declarations in the schema. Lax

Figure 2
Element synthetic-content model

Particle

min-occurs=1
max-occurs=1
term:

Particle

min-occurs=1
max-occurs=1
term:

Synthetic-Element
element-decl=elmtN

• • •

Element Declaration

name=elmt1
synthetic-content-model

Particle

min-occurs=1
max-occurs=1
term:

Model Group

compositor=choice
particles

Synthetic-Element
element-decl=elmt1
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processing combines the two options, requiring full

validation of known elements, but allowing skip

processing for unknown elements. In all cases, the

matching element must satisfy the namespace

constraint specified on the wildcard component.

In the compiler, the validation rule for a wildcard is

represented with a choice similar to that used for

element substitution groups. This is assigned to the

synthetic-content-model property of the wildcard.

Skip processing is represented with a special

synthetic component, the Skip-Term. If the process-

contents property is strict or lax, the choice contains

a particle with a Synthetic-Element term for each

global element declaration that satisfies the name-

space constraint. If the process-contents property is

skip or lax, the model-group also contains a particle

with a Skip-Term.

Derived properties of schema components

Once the schema is fully resolved, the derived

properties may be computed. These properties form

the basis for the code generation phase that follows.

Because several of the properties represent global

information about the schema, such as the complete

set of global elements matching a wildcard compo-

nent, the derived properties must all be computed

before code generation begins. The properties must

be calculated in order because the calculations of

one step are used in subsequent steps. Note that the

calculation procedures implicitly assume that the

schema is valid with respect to all of the constraints

on schema components in the XML Schema

Recommendation.

Substitutable types. The substitutable-types property

of an element declaration defines the set of types

that can appear in the instance document by using

the xsi:type dynamic typing mechanism, instead of

the declared type. The substitutable-types set con-

tains all global types, including the declared type

itself, that possess the following characteristics: they

are not anonymous or abstract; they are transitively

derived from the declared type; and they do not, at

any step of derivation, violate the prohibited-

substitutions properties of the element declaration

and type definition. In the generated parser, the

substitutable-types set is used to validate the value

of any xsi:type attributes that may appear in the

document.

QName-literals. In validating an XML document, a

correspondence is made between literal element and

attribute names and QNames found in the schema.

To make this correspondence, we define a symbol

called the QName-literal. A QName-literal symbol

may represent a specific QName referenced in the

schema, or some unbounded set of QNames not

directly referenced in the schema but indirectly

referenced by a wildcard. Additionally, special

QName-literal symbols are used for the close-tag

and the end-of-file symbols. At the abstract level,

validation constructs are considered to validate sets

of QName-literal symbols in the case of attributes, or

sequences of QName-literal symbols in the case of

content models.

A QName-literal symbol can have one of several

forms, as shown in Figure 4:

� A QName explicitly referenced in the schema is

represented by the known QName-literal symbol,

which is the fURI, local-partg pair.
� An unknown QName in a known namespace is

represented by a namespace-known QName-literal

symbol, with a single property, the URI (Uniform

Resource Identifier).
� QNames with an unknown namespace are repre-

sented by the special singleton unknown QName-

literal symbol, regardless of their ‘‘local-part.’’
� Close tags, regardless of their name, are all

represented by the special close QName-literal

Figure 3
Wildcard synthetic-content model

Particle

min-occurs=1
max-occurs=1
term:

Particle

min-occurs=1
max-occurs=1
term:

Skip-Term
• • •

Wildcard

process-contents= lax
synthetic-content-model

Particle

min-occurs=1
max-occurs=1
term:

Synthetic-Element
element-decl=elmt1

Model Group

compositor=choice
particles

PERKINS ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006232



symbol. Similarly, the end of file is represented by

the eof QName-literal symbol.

Note that the set of known QName-literal symbols is

considered to be established completely before

compilation begins, and that unknown and name-

space-known QName-literal symbols are not used to

refer to known QNames. Thus, an element wildcard

may validate known, namespace-known, and un-

known QName-literal symbols.

Particles. Every particle in the schema has three

calculated properties: emptiable, first-set, and

follow-set.
10

These properties define the relation-

ship between the schema component and the

QName-literal sequence it will validate.

The emptiable property corresponds to the Particle

Emptiable definition is Section 3.9.6 of the XML

Schema Recommendation
5

and determines whether

the particle can validate the empty QName se-

quence. The emptiable property is used to calculate

the other particle properties described next.

The first-set property of a particle defines the set of

QName-literal symbols that can occur in the first

position of an element QName-literal sequence that

is validated by the particle. The first set is used to

build control-flow logic for the content model; as a

direct result of the UPA constraint, comparison of an

input QName-literal symbol to the calculated

first-set property of a particle immediately

determines whether or not that particle validates the

input sequence. The first-set property is calcu-

lated recursively, in a single pass over the schema.

The follow-set property of a particle defines the set

of QName-literal symbols that can follow a QName-

literal sequence validated by that particle. The

follow-set property is used to drive context-

sensitive tag scanning. After the first-set property

is calculated for every particle, the follow-set

property is calculated in a second pass over the

schema components, using the first-set proper-

ties of adjacent components.

Attribute occurrence constraint validation. For each

complex type we calculate two sets of attribute

QName-literal symbols, required and prohibited.

These sets are used to validate the attribute

occurrence constraints. The required set includes

the attribute QName-literal symbols that are re-

quired to appear in the input tag. The prohibited set

includes the attribute QName-literal symbols that

are not allowed to appear in the input tag.

The required and prohibited sets are created from

information in the attribute uses of the complex

type. Entries for attribute wildcards are also

included, in the form of known QName-literal

symbols, namespace-known QName-literal sym-

bols, and the unknown QName-literal symbol,

depending on the wildcard’s process-contents value.

Generation of validation logic

The generated parser consists of modules validating

each type in the input schema, including the

synthetic documentType (see ‘‘Document content

model’’ in the subsection ‘‘Synthesis of implicit

content models’’ in the previous section). The

validation logic is produced directly from the

schema component-model representation of each

type. Validation code for simple types is largely

independent of the input schema, and in our

prototype implementation consists mostly of library

code. The simple type validation code is described in

the section on scanning infrastructure later.

For every complex type we define a recursive-

descent parse function that parses all the attributes

and content of the complex type. To validate

element content in a complex type, we also define

the element dispatch function. This function handles

element-specific validation constructs, such as

defaulting and nilability, as well as dynamic typing,

and dispatches a call to the actual type’s parse

function. Together, the type parse functions and

element dispatch functions make up the whole

validation engine.

The main entry point of the generated parser is the

parse function for the documentType. Starting with

the parse function for the documentType, control

passes back and forth between parse and dispatch

Constants:

unknown
close
eof

namespace-knownknown

namespace-urinamespace-uri
local-part

Figure 4
QName-literal symbols
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functions, descending through the different types in

the schema. The code for each complex type is

generated using component-specific templates, de-

scribed next.

Component templates

For the purposes of this discussion, we ignore out-

of-band constraints such as ID/IDREF (Section 3.3.1

in Reference 1) and key/keyref/unique (Section

3.3.2 in Reference 5). Although we did design an

implementation for many of these features in order

to prove that they would have little effect on the rest

of parsing and validation, they are not implemented

in our prototype. These constraints are orthogonal

to the content model validation code presented and

would have no impact on them, if implemented, as

well as little noticeable performance impact. We

also do not implement a few XML features such as

DTD-internal-subset support.

The validation logic for complex content is gen-

erated by mapping the various schema components

in the content model to code templates. The

templates, like the components themselves, are

composable. For any component type, there is at

least one generic template that will produce vali-

dation code for that component. In addition, there

may be several optimized templates tailored for

common, simple use cases. Using optimized code

templates for common use cases helps to minimize

the size of the generated code and results in highly

optimized validation logic.

Templates for the content model schema compo-

nents are presented next, in pseudo-C code. In the

templates, compile-time substitutions are indicated

as follows:

� COMPILE[x] marks the insertion of the compiled

code for the schema-component specified by x,

relative to the current schema component.
� ID[x] represents a constant for the QName-literal x.
� SET[x] represents a constant set for the given

QName-literal set.
� SET_CASE[x] represents a series of switch cases

(all with the same body) for each of the QName-

literal symbols in x.
� IF[x] indicates a conditional section of the

template that is evaluated at compile time.
� READ_TAG[x] is used to mark the insertion of the

appropriate read-tag primitive (described later) for

the QName-literal set x.

� READ_SIMPLE_CONTENT[x] marks the insertion of

the appropriate read-content function for the

simple type specified by x.
� DISPATCH[x] represents a call to the dispatch

function to validate the type of the element

declaration x.

In our prototype, we have implemented all com-

parisons of QName-literal sets as bit-vector oper-

ations. At compile time, the literal bit vectors are

calculated, and at runtime, the instance literals are

compared against the set in bulk.

Particle. Particle templates handle occurrence con-

straints. They must also handle emptiability, which

interacts with the min-occurs property. The generic

template is:

int count¼ 0;

label: while (count , max) f
if (!SET[first-set].contains(current_tag))

break label;

COMPILE [term];

countþþ;
g
IF [!emptiable] f if (count , min) Fail(); g

For an unbounded particle, with

maxOccurs¼‘‘unbounded’’, there is no upper bound to

check, thus the template may be simplified:

int count¼ 0;

label: while (true) f
if (!SET[first-set].contains(current_tag))

break label;

COMPILE[term];

countþþ;
g
IF[!emptiable] f if (count , min) Fail(); g

An optimized template for optional particles (par-

ticles that have maxOccurs¼1, and are emptiable) can

be greatly simplified:

if (SET[first-set].contains(current_tag))

COMPILE[term];

The template for fixed-repeat particles (particles that

have minOccurs¼maxOccurs and are not emptiable)

is similarly trivial:

int count¼0;
while (count , max) f
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COMPILE[term];

countþþ;
g

The template for trivial particles (particles that have

minOccurs¼ maxOccurs¼1 and are not emptiable) is

simply the code for the term.

Model-Group: xsd:sequence. The generic template

for model groups with compositor xsd:sequence is

just a sequence of substitutions. There is no need for

optimized templates. In the model-group templates,

up to three particles are shown for demonstration. In

cases where more (or fewer) particles may exist,

[. . .] is used to represent a continuation of the

pattern for the rest of the particles.

COMPILE[particles.0];

COMPILE[particles.1];

COMPILE[particles.2];

[. . .]

Model-Group: xsd:choice. The generic template for a

choice is a simple switch statement:

switch (current-tag) f
SET_CASE

[particles.1.first-set]:

COMPILE[particle.1]; break;

SET_CASE

[particles.2.first-set]:

COMPILE[particle.2]; break;

SET_CASE

[particles.3.first-set]:

COMPILE[particle.3]; break;

[. . .]

default: Fail();

g

An optimized template for a choice with two

particles simplifies the switch to the more efficient

if-else clause. A choice with only one particle is a

direct substitution of that particle.

Model-Group: xsd:all. All-group templates make use

of a set to check occurrence constraints. The set is

checked at runtime against the set of required

particles. The required-particles set contains an

entry for each particle in the model group that has

min-occurs ¼ ¼ 1. The entries in the set are one-

based indexes into the list of particles. The generic

template is as follows:

Set s;

while (1) f
switch (current-tag) f

SET_CASE[particles.1.first-set]:

if (!s.add(1)) Fail();

COMPILE[particles.1];

SET_CASE [particles.2.first-set]:

if (!s.add(2)) Fail();

COMPILE[particles.2];

SET_CASE [particles.3.first-set]:

if (!s.add(3)) Fail();

COMPILE[particles.3];

[. . .]

case ID[close]:

break;

default: Fail();

g
g
if (!SET[required-particles].isSubsetOf(s))

Fail();

An optimized all-groups template with no required-

particles set does not need the final test for the

existence of all required particles. As with choice, an

all-group with exactly one particle is a direct

substitution of that particle. As with sequence, an

all-group with no particles validates the empty

sequence. The template is therefore a no-op.

Element Declaration/Wildcard. Validation code for

element declarations and wildcards are produced by

their synthetic-content models. Synthetic-elements

validate exactly one element. Here, the follow-set

property is the follow-set property of the enclosing

particle:

if (ID[QName-literal] !¼current-tag) Fail();

DISPATCH[element-declaration];

READ_TAG[follow-set];

The content model for a skip term, which is used by

the synthetic-content-model of skip and lax wild-

cards, repeatedly calls the scanner to scan through

one well-formed element. Here, the first-set and

the follow-set properties are those of the enclosing

particle.

if (!SET[first-set].contains(current_tag))

Fail();

count¼1;
while (count.0) f

read_tag_mixed();
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if (ID[close] ¼ ¼ current-tag) f
count––;

g else f
countþþ;

g
g
READ_TAG[follow-set];

Complex type. The template for complex types is

composed of a header that handles attributes and

xsi:nil and a body that handles content. The

header template is the same for all complex types:

if (!SET[prohibited-attributes].isDisjointFrom

(current_attributes))

Fail();

if (!SET[required-attributes].isSubsetOf

(current_attributes))

Fail();

if (current_attributes.isPresent(

ID[attribute-uses.1.QName-literal]))

COMPILE[attribute-uses.1];

if (current_attributes.isPresent(

ID[attribute-uses.2.QName-literal]))

COMPILE[attribute-uses.2];

if (current_attributes.isPresent(

ID[attribute-uses.3.QName-literal]))

COMPILE[attribute-uses.3];

[. . .]

handleNil();

The body template for complex types with complex

content reads the next tag and calls the code to

validate the content-type particle:

READ_TAG[particle.firstSet];

COMPILE[particle];

if (ID[close] !¼ current_tag) f
Fail();

g

Note that in the special case of the documentType,

the template is modified to compare the final tag

against EOF rather than CLOSE.

The body template for complex types with simple

content uses simple-base-type, which is the com-

plex type’s nearest ancestor of simple type:

READ_SIMPLE_CONTENT[simple-based-type];

The body template for complex types with empty

content is simply read-tag-close.

Template composition example

We now present an example to illustrate the

composition of the component templates. The

generated source code is subject to standard well-

known source-language optimizations, which are

performed by the C-language compiler that is used

to compile the generated parser. Some of these

optimizations have been applied by hand in the

examples below to improve readability. Beyond this

clean-up, the code presented is actual code gener-

ated by the schema compiler.

The example code is generated from the purchase

order schema from the Primer in the XML Schema

Recommendation. The schema fragments used in

the example are given below:

,xsd:complexType name¼‘‘PurchaseOrderTYpe’’.
,xsd:sequence.

,xsd:element name¼‘‘shipTo’’ type¼‘‘USAddress’’/.

,xsd:element name¼‘‘billTo’’ type¼‘‘USAddress’’/.

,xsd:element ref¼‘‘comment’’ minOccurs¼‘‘0’’/.

,xsd:element name¼‘‘items’’ type¼‘‘Items’’/.

,/xsd:sequence.

,xsd:attributename¼‘‘orderDate’’type¼‘‘xsd:date’’/.

,/xsd:complexType.

,xsd:complexType name¼‘‘Items’’.
,xsd:sequence.

,xsd:element name¼‘‘Item’’ minOccurs¼‘‘0’’
maxOccurs¼‘‘unbounded’’.
. . .

,/xsd:element.

,/xsd:sequence.

,/xsd:complexType.

The PurchaseOrderType example demonstrates

parsing and validation of attributes, required chil-

dren, and optional children. The corresponding

generated code is shown in Figure 5.

The sample presented in Figure 5, while partially

cleaned from its original form, clearly shows its

relation to the templates presented in the previous

section. It shows that the direct compilation method

outlined in this paper is extremely simple to

implement and yet capable of producing nearly

optimal validation logic for all schema constructs.

Ambiguous grammars

The template method outlined in the previous

sections relies on the determinism of valid schemas
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Figure 5
Code generated from purchase order schema

void parse_NONE_PURCHASEORDERTYPE() {
  {
    if ((! isDisjointFrom(NONE_PURCHASEORDERTYPE_prohibited,
                          ((BitVector)currentAttributeSet))))
      FAIL_VALIDATION();

    /* Validating optional attribute 'orderDate'.  */
    /* Since the attribute is optional, first check that it is there, */
    /* then validate the contents. */
    if (isPresent(currentAttributeSet, ((int)NONE_ORDERDATE))) {
      validateAttribute_XSD_DATE(NONE_ORDERDATE);
    } else {
      /* if this attribute has a default value, use it */
      /* This attr has no default. */
    }

    /*  Handle xsi:nil  */
    if (isPresent(currentAttributeSet, XSI_NIL)) {
      XSD_BOOLEAN nilValue;
      validateReportedAttribute_XSD_BOOLEAN((&(nilValue)), (XSI_NIL));
      if (nilValue) {
        FINISH_EMPTY();
        return;
      }
    }

    /* Element Only Content */
    PARSE_THIS_TAG("shipTo", NONE, SHIPTO, NONE_SHIPTO);
    if (currentTag != NONE_SHIPTO) FAIL_VALIDATION();

    {
      if (NONE_SHIPTO != currentTag) FAIL_VALIDATION();
      READ_CONTENT_NONE_USADDRESS_subtypes();
      PARSE_THIS_TAG("billTo", 6, NONE, BILLTO, NONE_BILLTO);
    }
    {
      if (NONE_BILLTO != currentTag) FAIL_VALIDATION();
      READ_CONTENT_NONE_USADDRESS_subtypes();
      PARSE_NEXT_TAG();
      if (! ((currentTag == NONE_COMMENT) || (currentTag == NONE_ITEMS)))
        FAIL_VALIDATION();
    }
    if (currentTag == NONE_COMMENT) {
      {
        if (NONE_COMMENT != currentTag) FAIL_VALIDATION();
        READ_CONTENT_XSD_STRING_subtypes();
        PARSE_THIS_TAG("items", NONE, ITEMS, NONE_ITEMS);
      }
    }
    {
      if (NONE_ITEMS != currentTag) FAIL_VALIDATION();
      READ_CONTENT_NONE_ITEMS_subtypes();
      PARSE_NEXT_TAG();
      if (currentTag != CLOSE) FAIL_VALIDATION();

    }
    if (CLOSE != currentTag) FAIL_VALIDATION();
    return;
  }
}
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to ensure that the implied greedy matching will

correctly validate the input. In rare cases, however,

the determinism ensured by the UPA constraint is

not sufficient. In particular, when there is ambiguity

between different iterations of the same particle, the

constraint is still satisfied, but the naı̈ve validation

logic is incorrect. In the example below, the

implicitly greedy algorithm in the preceding sample

code templates fails to validate a sequence of six A

elements:

,xsd:sequence minOccurs¼‘‘1’’ maxOccurs¼‘‘2’’.
,xsd:element name¼‘‘A’’ minOccurs¼‘‘3’’

maxOccurs¼‘‘4’’ /.

,/xsd:sequence.

The template can be adapted, however, to produce

the correct result by relaxing the constraint and

checking the sequence when it is complete against

the aggregate minimum, maximum, and any interior

prohibited sequences (in this case, a sequence of

five As). This can be done because the ambiguity is

confined to the aggregate occurrence constraint, and

because the validation logic is a direct analogue of

the schema component model. As such, the UPA

constraint ensures that the code which is directly

associated with a particular schema particle should

be used to validate given elements in the document,

and that this can be uniquely determined without

look-ahead.

The problematic case may be generalized to content

models of the following form, where i, j, k, l, and m

represent nonzero occurrence constraints, with 0 ,

(j-i) and 0 , i, and the group references are used to

denote arbitrary content models, with the reference

to the optional a being non-emptiable.

,xsd:sequence minOccurs¼‘‘1’’ maxOccurs¼‘‘m’’ .

,xsd:group ref¼‘‘a’’ minOccurs¼‘‘i’’
maxOccurs¼‘‘j’’ /.

,xsd:group ref¼‘‘b’’ minOccurs¼‘‘0’’
maxOccurs¼‘‘k’’ /.

,/xsd:sequence.

The generic case can be seen to have a finite, known

aggregate minimum and a known aggregate max-

imum. In addition, within this range there is a finite

and potentially empty set of prohibited interior

sequences. This set is finite even when the aggregate

maximum is unbounded.

The use of xsd:group in two places and variables i,

j, k, l, and m has enabled us to construct this

generalized example, which includes absolutely

every case that can express ambiguity in a legal

schema. Generating code as describe earlier, check-

ing against the aggregate minimum, maximum, and

any interior prohibited sequences after the sequence

is complete, allows us to successfully generate

templated code for the ambiguous grammar, and

thus for every legal schema defined by XML

Schema.

It should be noted that the ambiguous grammars

described here are a rare corner case encountered

only when finite occurrence constraints are com-

bined with nested content models that end with

optional content. This is in contrast to strictly

ambiguous, but non-problematic cases allowed by

the XML DTD (such as repeated emptiable par-

ticles), which do not have the expressive power to

define these more broadly ambiguous grammars. As

far as we know to date, no one has reported a real-

world example of a content model in this problem-

atic class to the XML Schema Working Group.

Grammar-directed scanning

In keeping with the tag-level separation described

earlier, communication of data from the scanning

layer to the validation layer is made through shared

state representing the most recently read tag, and

the comments, processing instructions, and charac-

ter data preceding that tag. Here, and throughout

this section, we define tag to mean any open or close

tag, including all of its attributes. Communication

from the validation layer to the scanner is made

through direct calls to the scanning primitives,

advancing the state forward through the next tag. At

any point in the validation logic, the scanner is

always positioned immediately after a tag.

The interface between these layers is designed to

maximize the ability of the validation logic to drive

optimized scanning, leveraging the full power of

context sensitivity in the generated code, while

minimizing the amount of generated code produced

for any given schema. Performance in the scanner is

achieved through a number of grammar-based

optimizations. In this section we describe, through

examples, the range of optimizations that are used.

Optimization strategies

The various scanning primitives that underpin the

generated parser address byte-level scanning per-

formance optimizations that can be characterized as
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deriving from two complementary strategies: spe-

cialization and optimistic scanning.

The specialization strategy leverages the grammar

context to make use of specialized scanning for

known content. For example, when the validation

logic directs the scanner to read the next tag, it does

so knowing the set of expected QName-literal

symbols, based on the follow-set property of the

preceding particle. In the case where the follow-set

property contains only the special close QName-

literal symbol, specialized scanning logic is used

that looks for the start of a close tag, followed by the

exact bytes already seen in the corresponding start

tag. This is significantly simpler and more efficient

than the general production for a tag.

One basic example of specialization, native-encoding

validation, is so pervasive in the scanner that it

deserves special mention. Nearly every scanning

activity, from scanning angle brackets and white

space to basic simple content, is carried out in the

native encoding. Thus, when scanning for an angle

bracket or digits in an integer, or comparing against

a known QName-literal symbol, the input bytes are

not transcoded, but rather compared to pre-encoded

literals.

Output transcoding is avoided through the same

mechanism. Rather than converting input bytes for

use by the application, such as in the UTF-16 based

SAX API, pre-encoded output values are used

wherever possible.

The optimistic scanning strategy further leverages

context sensitivity by optimistically favoring the

common, simple case. This strategy is particularly

powerful for simple types, where the common case

is quite simple and where complex lexical constructs

like comments, processing-instructions, and the

ampersand escapes that introduce XML character

and entity references are rare. For example, ignoring

nonstandard usage, the production for an

xsd:integer is simply an optional minus sign

followed by any number of decimal digits, as shown

in the content for integer-element below.

,integer-element.123456,/integer-element.

In contrast, because comments and processing-

instructions do not contribute to the validation, and

because escapes are resolved before validation

occurs, the following is a valid, if perverse,

representation of the same number.

,integer-element.12,!-- --.34,?x ?.5&#54;

,/integer-element.

Obviously, scanning the former example is much

simpler and can be written quite efficiently, whereas

scanning the latter involves a great deal of overhead

that will almost never be used in the integer simple

type context. The character entity presents partic-

ular problems because it must be translated and

then validated as a digit, rather than simply ignored.

A pervasive use of optimistic scanning is made in

the handling of unknown names, such as wildcard

elements and prefixes, in the instance. On the

assumption that the parser will be used to parse

many instances that use the same prefixes and

element names, the scanner saves both the input

and output encodings for unknown names in its

name table. The well-formedness of an unknown

name is checked only when it is added to the table.

When reused, it is already known to be well-formed.

This means that the scanner rarely has to resort to

the full production of a well-formed XML name.

Fast scanning primitives

All of the scanning primitives obey a single contract,

defined by the validator-scanner interface. When

invoked, each primitive scans from the current

scanner offset through the end of the next tag,

populating the current shared state.

Read-tag. The basic scanning primitive for non-

simple data is read-tag. Following the strategy of

specialization, the read-tag primitive comes in

several flavors: read-tag, read-tag-one, and read-tag-

close. These correspond to the generic case, and the

common simple cases of exactly one known

QName-literal symbol and exactly the close QName-

literal symbol.

The element-name scanning of the read-tag-one

primitive is a good example of how the strategies of

specialization and optimistic scanning are applied.

Rather than scanning the input bytes for a well-

formed tag name and then comparing against the

expected fixed value, the scanner can use the fixed

value to scan through the tag name. Although not

implemented in the prototype, another common

case that might be optimized easily is read-tag-one-

or-close, reading exactly one known QName-literal
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symbol or the close literal. This primitive is suitably

common, occurring in any scenario where a com-

plex type ends with a repeated or optional element.

Optimistic scanning also comes into play when

namespace-qualified tags are read. The scanner first

tries to compare the input bytes against the

unprefixed name, assuming that the appropriate

namespace has been defaulted. In the case where it

has not, this comparison fails very quickly, and the

check for a prefix can proceed. As with all names,

the prefix need not be checked for well-formedness,

and thus the scanner can simply scan ahead for the

expected colon. Once the colon is encountered, the

scanner can then retry the literal name comparison

as before.

Note that all of the operations required to scan the

tag name make use of basic byte-scanning primitives

like strchr and strcmp. Because these operations

are invariably much faster than table-driven scan-

ning on most architectures, read-tag-one can be seen

to be significantly faster than generic nonvalidating

parsing allows.

Simple-content scanning. Simple-content scanning is

handled by a library of simple-type validators. Each

validator is specialized to scan an individual built-in

simple type or a related set of simple types. As with

the read-tag primitives, all of the simple-type

scanners scan forward through the next tag. In the

case of simple content, this tag is always a close tag,

which is scanned with the same mechanism as read-

tag-close.

Simple content represents a very special case of XML

character data. For most types, it is a safe guess that

the data will not contain comments, processing-

instructions, or even entity references, as in the

,integer-element. example earlier. For this rea-

son, optimistic scanning can greatly improve simple-

content scanning. To facilitate optimistic scanning,

simple-type validators employ a uniform approach

to optimistic scanning and fallback. Each scanner

implements a scanOptimistic and a validate

routine. The optimistic routine scans through the

bytes, matching against the optimistic production.

When a byte is encountered that does not fit the

optimistic production, the content is rescanned,

normalized, and validated with the validate

routine.

The optimistic routine is called by a standard, boiler-

plate read-type routine. When the optimistic routine

is completed successfully, the main read-type

routine looks ahead two characters for the expected

close tag and reads it if it is found. If the close tag is

not found, or if the optimistic routine is not

completed successfully, read-tag-close is used to

scan from the original start through the end of the

tag. The resulting character data section is then

collated according to its white-space facet and

validated with the validate routine. The code for an

example read-type routine is shown below:

void readType() f
final int offset¼offset ();

if (scanOptimistic() ¼¼ OK &&

peekChar (0) ¼¼ ‘,’ &&

peekChar (1) ¼¼ ‘/’) f
incrOffset (2);

finishClose ();

g else f
setOffset (offset); /* back up */

readTagClose (MIXED, COLLAPSE);

validate ();

g
checkFacets ();

g

Optimistic scanners may choose to ignore a wide

variety of rare constructs, from comments and

processing-instructions, to type-specific issues like

leading zeros. The type definitions themselves
11

provide some good initial guidelines for what

normal simple data looks like. In addition to the

lexical form, the recommendation also specifies a

canonical lexical representation, which is a limita-

tion of the general lexical representation, such that

each value in the value space has exactly one lexical

representation. For many types, the canonical

representation provides suitable guidance for an

optimistic scanner. For simple content values that

conform to the optimistic form, the optimistic

scanner is clearly much more efficient than the

generic alternative, which has to check for leading

or trailing white space, comments, and other

content that does not often appear in simple type

content.

Even user-defined simple types, which are defined

in the schema, can benefit from this type of

optimistic processing. In schemas, most user-

defined simple types are merely versions of the
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built-in simple types with a set of facets applied.

Thus, scanning functions like those described can be

called for the inherited built-in simple type, and then

the facets applied after parsing and validation. This

requires storing the value, but that is normally

required anyway for reporting in an API.

Attribute scanning and validation. Attributes are

naturally unordered, and their scanning is compli-

cated by the look-ahead issues described earlier:

XML namespaces, dynamic typing, and so forth. As

such, attribute scanning cannot benefit from the

same aggressive optimizations as element-name

scanning. Grammar knowledge can, however, be

used to optimize the evaluation of attribute occur-

rence constraints. In particular, the set of known

QName-literal symbols is used to optimize set

operations, such as subset-of and is-disjoint-from,

by representing attribute sets as bit vectors with an

entry for each known attribute QName-literal

symbol.

PERFORMANCE ANALYSIS

We developed a compiler for generating a schema-

validating XML parser by using the compilation

techniques outlined in this paper. Whereas care was

taken to include all features that might have a

serious impact on performance and design, such as

namespaces, dynamic typing, substitution-groups,

simple type validation and all-groups, not all

schema features were implemented. In particular,

identity constraints (key/keyref/unique) were not

implemented, and optimized scanners for many

simple types were not implemented. As explained

earlier, these would have had at most a negligible

impact on performance and complexity if imple-

mented.

Basic performance tests were run comparing the

compiled parser against two standard open-source

parsers, Xerces 2.6
12

and Expat 1.95.8.
13

Xerces

provides a good baseline for performance because it

is broadly known, widely available, and widely used

for schema validation. We measured Xerces parsing

speed in both validating and nonvalidating modes.

Expat is generally considered to be a fast XML parser

implementation although it does not perform

schema validation. In order to manage the overhead

of populating an API, both the compiled parser and

Xerces render the data as the same SAX-like events,

in which all data must be encoded in UTF-16. Expat

supports a SAX-like interface as well, except the data

is not transcoded.

The tests reported here were run on an IBM eServer*

xSeries* Model 235 with a 3.2 GHz Intel Xeon**

processor, and 2 GB of main memory, using Micro-

soft Windows Server** 2003 Service Pack 1. Our

parsers were compiled with Microsoft 32-bit

C/CþþOptimizing Compiler Version 13.10.3077. All

of the parsers were tested on a selection of schema

and instance pairs from the Sarvega XML Validation

Benchmark
14

and on 1-KB, 8-KB, and 64-KB

instances of the purchase-order schema from the

XML Schema Part 0: Primer.
15

All tested instances

were UTF-8 encoded.

Table 1 shows the test cases and numerical results,

whereas Figure 6 shows in bar-graph form a

performance comparison between the four XML

parsers. The performance is measured in MB/

GHz*Sec which represents the throughput in meg-

abytes per second on a 1-GHz processor machine.

For 64-KB purchase-order documents, test case 6,

the compiled parser is 8.8 times faster than

validating Xerces, and nearly four times faster than

the non-validating Xerces WFC. The results vary

little with document size. Similarly, the compiled

parser validates 64-KB purchase-order documents

1.6 times faster than Expat checks the same docu-

ments for well-formedness.

RELATED WORK

There have been many different efforts directed at

XML parsing performance, including early work into

XML formalisms (Murata et al.,
16

Löwe et al.
8
). One

theme of these efforts has been to produce varia-

tions of deterministic finite automata (DFA), ex-

tended in different ways to accommodate the

difficulties of XML and XML Schema that we have

discussed.

Chiu and Lu
7

extend DFAs to nondeterministic

generalized automata and describe a technique for

translating these into deterministic generalized

automata, from which a parser can be generated.

These parsers operate on a byte level, performing

well-formedness checking and validation concur-

rently, as we do, thus speeding up the parser.

Unfortunately, construction of deterministic gener-

alized automata from nondeterministic generalized

automata can cause a multiplicative blowup in the

number of states. In general, this solution subsets
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the XML specification and XML Schema Recom-

mendation in many important ways, excluding

many commonly used features.

For van Engelen
9

and Reuter and Luttenberger,
17

the

limitations of the generalized automata technique

led to the use of a two-level approach. Van Engelen
9

used a lower-level FLEX scanner to drive a DFA

validation layer. Although the construction of the

validation DFA resembles our templated validation

code, the separation of the scanning and validating

layers prevents scanning optimizations such as

using memcmp on strings known at compile time and

specialized type validators. Van Engelen
9

handles

more of the XML specifications than Chiu and Lu
7

but has to run a FLEX dispatch loop for every input

character.

Reuter and Luttenberger
17

extend deterministic

finite automata with cardinality constraints on state

transitions that map naturally to the encoding of

occurrence constraints. Unfortunately, the CCA does

not perform well-formedness checking but runs as a

separate layer on top of a separate SAX parser, with

the associated performance penalty.

A novel approach to speeding XML parsing is

described in Takase et al.
18

The technique obviates

the need for compilation but rather relies on parsing

a large number of similar XML documents. As

documents are read, they are recorded in a DFA,

with subsequent documents being compared against

the DFA, rather than parsed directly. Where the

documents match, cached parsing events are re-

turned. Where the documents differ, the new

document is parsed to create new parsing events.

This technique relies on byte-level handling of XML

instance documents, enabling the types of optimi-

zations described in this paper. However, if the

instance documents being compared are semanti-

cally identical but not byte-for-byte identical, then

spurious parsing will be performed. Furthermore,

many of the strings that are truly constant from

document to document are declared statically in the

schema. In a scenario such as any standard Web

service, where the input is constrained by a schema,

the overhead in complexity required to store and

identify these strings dynamically might be much

Table 1 Test cases and performance results for four XML parsers

Test case

Throughput (MB/Process or GHz*Sec)

Xerces-SAX Expat Compiled

ID Schema Filename Instance Size (bytes) WFC Val WFC Val

1 po (on 1kpo.xml) 990 4.41 2.65 10.33 16.12

2 MI_AUS_RESPONSE2_1 1,572 3.21 2.98 8.87 17.00

3 po (on 8kpo.xml) 8,062 6.79 3.01 15.14 24.73

4 bibteXML 8,609 8.28 5.58 17.66 26.25

5 MI_AUS_REQUEST2_1 9,429 4.06 3.16 10.42 17.79

6 po (on 64kpo.xml) 63,754 6.88 3.02 16.13 26.58

7 periodic_table 116,506 6.03 3.99 15.68 23.47

Xerces WFC      Xerces Validation      Expat      Compiled

Figure 6
Comparing performance results for four XML parsers
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greater than simply compiling them from the

schema.

Other attempts to boost performance of XML parsing

have focused on changing the form of the XML, such

as the various proposals for binary XML forms.

Although all of our approaches could be used to

validate a binary XML stream, binary efforts

inherently lose some of the benefits and flexibility of

XML, provide limited speedups, and can be detri-

mental to interoperability. With speedups as large as

we have seen on standard XML streams, it is not

clear that the potential performance improvement of

binary XML forms justifies the potential cost in

interoperability and standardization, the core

strength of XML. For a thorough analysis of binary

solutions, see Bayardo et al.
19

CONCLUSION
In this paper we have demonstrated a technique for

generating XML parsers in which the compilation of

XML Schema grammars starts with the abstract-

schema-component model defined in the XML

Schema Recommendation. This allows us to benefit

from the determinism built into XML Schema, which

is inherently reflected in the schema components

and results in a simplified compilation engine.

Furthermore, this method enables the use of

specialized, grammar-sensitive primitives and other

forms of specialized and optimistic validation that

significantly increase parsing performance without

the need for large tables or significant code

generation.

The direct schema compilation method allows for

simpler code generation than traditional automaton-

based models. The simpler model is better suited to

the structure and challenges of XML parsing and

validation and supports the full expressiveness of

XML Schema content models. This includes use of

namespaces and dynamic typing, large occurrence

constraints, and arbitrary compositions of XML

Schema content models.

These features are supported without an explosion

in either compile-time states or runtime code size.

Performance of the generated parsers is greatly

improved over traditional, interpretive validators.

Further, the generated parsers are shown to be

significantly faster than even high-performance non-

validating parsers.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Intel
Corporation or Microsoft Corporation in the United States,
other countries, or both.
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