
A High-Performance Interpretive Approach to
Schema-Directed Parsing

Morris Matsa, Eric Perkins, Abraham Heifets, Margaret Gaitatzes Kostoulas,
Daniel Silva, Noah Mendelsohn, Michelle Leger

{mmatsa,perkinse,aheifets,mgg,dsilva,noah mendelsohn}@us.ibm.com
maleger@gmail.com

IBM Corporation
One Rogers Street

Cambridge, MA 02142 USA

ABSTRACT
XML delivers key advantages in interoperability due to its
flexibility, expressiveness, and platform-neutrality. As XML
has become a performance-critical aspect of the next gener-
ation of business computing infrastructure, however, it has
become increasingly clear that XML parsing often carries a
heavy performance penalty, and that current, widely-used
parsing technologies are unable to meet the performance
demands of an XML-based computing infrastructure. Sev-
eral efforts have been made to address this performance gap
through the use of grammar-based parser generation. While
the performance of generated parsers has been significantly
improved, adoption of the technology has been hindered by
the complexity of compiling and deploying the generated
parsers. Through careful analysis of the operations required
for parsing and validation, we have devised a set of spe-
cialized bytecodes, designed for the task of XML parsing
and validation. These bytecodes are designed to engender
the benefits of fine-grained composition of parsing and val-
idation that make existing compiled parsers fast, while be-
ing coarse-grained enough to minimize interpreter overhead.
This technique of using an interpretive, validating parser
balances the need for performance against the requirements
of simple tooling and robust scalable infrastructure. Our ap-
proach is demonstrated with a specialized schema compiler,
used to generate bytecodes which in turn drive an interpre-
tive parser. With almost as little tooling and deployment
complexity as a traditional interpretive parser, the bytecode-
driven parser usually demonstrates performance within 20%
of the fastest fully compiled solutions.

Categories and Subject Descriptors: D.3.4 [Program-
ming Languages]: Processors - code generation, compilers,
optimization, parsing, retargetable compilers. ; D.2.8 [Soft-
ware Engineering]: Metrics — Performance measures.

General Terms: Performance, Experimentation, Standard-
ization, Languages

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

Keywords: parsing, XML, schema, interpreter, compiler,
performance

1. INTRODUCTION
XML delivers key advantages in interoperability due to

its flexibility, expressiveness, and platform-neutrality. The
broad range of applications and growing user base for XML
technologies have driven the development of common tool-
ing, providing a consistent, robust infrastructure on which
to build applications. These advantages have spurred wide-
spread adoption of SOAP and XML-based web services, as
key components of the next generation of business comput-
ing infrastructure. It is increasingly clear, however, that
with these advantages XML also carries a heavy perfor-
mance penalty, and that the parsing technologies currently
in use are unable to meet the performance demands of an
XML-based computing infrastructure. Traditionally, this
performance gap is especially acute in scenarios where vali-
dation is required to ensure security and integrity of loosely
coupled systems. Thus, validation performance is critical to
the viability of the infrastructure of the web.

Some progress has been demonstrated in recent years in
improving XML validation performance through the use of
grammar-based parser generation [3, 7, 9]. Compiled sche-
ma-specific parsers have been shown to significantly increase
performance and virtually eliminate parsing as a perfor-
mance bottleneck in the overall processing stack. Unfor-
tunately, this increased performance comes at a cost; parser
generation and compilation increase tooling and deployment
complexity. By requiring a source code compiler, and bur-
dening the user with the management of multiple compiled
artifacts, source code compilation undermines the usability
of XML technologies.

While schema-driven, compiled parsers demonstrate dra-
matic performance advantages over existing interpretive ap-
proaches, traditional compilation is not required to achieve
these benefits. Indeed, the performance gains of compiled
parsers have been attributed to a combination of layer-break-
ing optimizations and grammar-directed scanning. [7] While
these optimizations are particularly well suited to expression
through code generation, where otherwise distinct layers are
integrated by being compiled together, this is not the only
way to achieve similar results. In this paper we draw on the

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1093



conclusions of our work with code generation to develop an
interpretive solution for parsing and validation which cap-
tures the key benefits of well-tuned code generation, while
minimizing the overhead of runtime interpretation.

Runtime interpretation of the rules of the grammar, the
approach used in traditional XML validation, does not al-
low sufficient opportunity for layer-breaking and scanning
optimizations. Interpretation of low-level instructions, as
generated by a full-compilation approach, would incur sig-
nificant overhead, overwhelming any performance benefit.
Thus, it is clear that an approach that balances these two
designs is required. Using a domain-specialized, custom in-
struction set it is possible, by controlling the granularity
of the instructions, to control the overhead imposed by the
interpreter. If the specialized instructions are further able
to capture the full breadth of optimization strategies used
in the code generation approach, then performance is not
compromised.

In small or ad hoc deployments, such bytecodes can be
generated on-the-fly, posing no management overhead to
the user. When materialized on disk, the execution plan
provides a compact artifact that can be efficiently stored
and managed in large-scale deployments. The stability and
robustness of an interpretive parser is also improved with re-
spect to fully-generated parsers, as the execution is tightly
constrained by the limited instruction set, and mediated by
a single trusted runtime.

In short, our approach of novel, special-purpose bytecodes
delivers the performance advantages of compiled systems,
while maintaining the convenience of use associated with
traditional parsers and validators. Indeed, the interpretive
approach described here proved essential to the adoption
of high-performance validation technologies in a large scale,
commercial, Web-enabled database.1 This real-world appli-
cation demonstrates the feasibility of this approach to enable
high-performance validation throughout the web.

1.1 Organization of the Paper
In this paper, we discuss in depth the analysis and rea-

soning underlying the design and selection of a bytecode in-
struction set for XML processing. The instruction set incor-
porates the fine-grained composition techniques required for
high performance, while using instructions that are them-
selves coarse grained, minimizing interpretive overhead.

After describing a complete set of bytecodes for XML
parsing and validation, we demonstrate the value of the ap-
proach using a functional, bytecode-interpreting, validating
parser that balances the need for performance against the
requirements of simple tooling and robust scalable infras-
tructure. This prototype leverages componentry from pre-
vious compilation work for XML Screamer [7,9], such as the
content-model compilation engine and the optimized scan-
ning infrastructure, thus supporting the full breadth of XML
and Schema, including full support for namespaces and dy-
namic typing. Rather than generating source code, however,
it compiles a schema grammar into specialized bytecode in-
structions, which may be efficiently interpreted. Together,
the bytecode compilation engine and the interpretive parser
are called iScreamer, indicating both the compilation her-
itage of the system and its interpretive nature.

1DB2 9 for z/OS

2. BYTECODE SCHEMA COMPILATION
The bytecodes used in iScreamer are designed specifically

for the task of XML parsing and validation. Leveraging this
specialization, the instructions can be coarse-grained and
compact. This design minimizes the overhead of instruction
interpretation relative to the actual work of parsing and val-
idation because each instruction may represent tens or even
hundreds of lines of code. The time to load and dispatch a
given instruction thus remains small relative to the time re-
quired to execute the work of the instructions themselves. In
addition to minimizing the overhead of the interpreter, the
specialized design of the instruction set also simplifies the
interpreter itself; since the range of supported operations is
small, the implementation of the interpreter is accordingly
simple. This is in contrast to the generic bytecodes used by
bytecode compilers for a general purpose language such as
Java [13], Perl [16], and Tcl [8], where instruction granular-
ity is fine and interpretive overhead is therefore high. In the
following section we motivate the selection of the bytecodes
used in iScreamer with an analysis of the process of XML
parsing and validation. Careful attention is paid to the the-
oretical limits of grammar-driven optimizations, and these
limits are used to delineate the bounds of the instruction
primitives.

2.1 Design of the Instruction Set
Schema-based parser generation technologies achieve per-

formance by combining parsing and validation through com-
pilation. This allows a compiled validating parser to avoid
reprocessing the parsed input to verify validity, and signifi-
cantly speeds the parse. In some cases, the schema informa-
tion can also speed the scanning itself. When exactly one
element is expected, scanning for the particular tag, rather
than the generic element production, can be significantly
more efficient. Similarly, when only an end tag is expected,
it may be compared verbatim against its balancing start tag.
In a parser generator, these optimizations are a natural re-
sult of the translation of the grammar into compiled code.
In an interpreter, the granularity of that approach is not
practical, and so more care must be taken to abstract the
idioms of generated parser into a set of high-level primitives
that can be interpreted efficiently.

Since the overhead of interpretation is proportional to the
number of instructions evaluated, it is essential that the in-
structions be very coarse-grained, each representing a rela-
tively large piece of required work. On the other hand, the
grammar structure, which is embodied in the composition
of the instructions, must be expressed at a sufficiently fine
granularity to allow the scanner to take full advantage of
the grammar-sensitive scanning techniques that drive gen-
erated parser performance. [7] The challenge is therefore to
identify the minimum set of points of interaction between
the grammar automaton and the scanner.

2.1.1 Scanning
XML Schema constrains character data in the instance

either with a simple type, or the content-type of a complex
type. The content type of a complex type may be simple,
mixed, element-only, or empty. The restrictions on charac-
ter content for simple types and complex types with simple
content are equivalent. Thus at any given point in the doc-
ument, character data is validated according to one of the
four content-types. The content-type, and thus the valida-

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1094



tion rule, for any particular sequence of character data is
determined by the type definition for its enclosing element.
This means that from the end of one tag, to the start of
another, the validation rule is fixed.

Because XML Schema specifies a grammar over qualified
elements, the namespace of a tag must, in general, be re-
solved before the element can be validated. Since names-
pace declarations may occur among any of the attributes
that follow the tag name, it is impossible to unconditionally
validate a tag name until the whole tag is read. The same
problem applies to the attributes and their values, with an
additional complication; dynamic type assertions in the form
of xsi:type may also appear among the attributes. The effect
of an xsi:type declaration is to stipulate, in the instance, the
type used for validation of the element. Because attribute
occurrence and type constraints are specified on the type
definition (and not the element declaration), neither the oc-
currence nor the values of attributes may be conclusively
validated until the whole tag is read. In short, the vali-
dation rule for the tag name and the attribute names and
values of a particular tag are as dependent on the instance
as they are on the grammar, at the granularity of intra-
tag structures. It is in general impossible, having read in
a tag-name, for a grammar automaton to further constrain
the validation rules for subsequent attributes. Similarly, at-
tributes, once read, do not further clarify the validation of
their subsequent siblings. We can therefore conclude that
the grammar automaton has no substantive interaction with
intra-tag scanning.2

Noting, finally, that XML Schema does not provide a
mechanism for character data to affect the validation rule
for subsequent tags, we may conclude that the only point in
the scan where a substantive interaction between the gram-
mar and the scanner occurs, is at the end of a tag (or the
start of the document). This observation forms the basis
for the processing model of the scanning instructions. Each
advances the scanner forward through the end of the next
start or end tag, validating character data according to one
of the four content-types. The various flavors of scanning
instructions, and their contributions to grammar-directed
scanning, are discussed in detail in Section 2.2.

Due to the limitations above, validity cannot be com-
pletely assessed within the scanner. In particular, once a
tag is read, it must be checked against the allowable el-
ements specified by the grammar automaton. Once the
type of an element is established, its attributes must be as-
sessed for occurrence (are all of the attributes allowed, are
any required attributes missing?), and each attribute value
must be validated by the appropriate simple type valida-
tor. Again, the goal of the instruction set design is com-
pact, coarse-grained operations. To this end, validity asser-
tions are made through task-specific instructions that inter-
act with the scanner data structures. Where possible, con-
straints are evaluated in bulk, through the use of bit vectors.
This simplifies constraint evaluation, while at the same time
minimizing instruction space, and thus load time.

2In simple cases, it may be possible to provisionally identify
element and attribute names, and in the absence of xsi:type
declarations, to guess the types and occurrence constraints
on the attributes of a tag. Such heuristics provide dimin-
ishing returns however, as they become more elaborate. For
simple heuristics, the important grammar information can
be established before scanning of the tag begins.

2.1.2 Grammar
With the scanning and validity assessment features of the

instruction set specified, it remains to represent the gram-
mar automaton in the instruction sequence. This requires at
least basic control flow primitives. With interpretation over-
head in mind, however, these primitives must be specialized
to the transitions used by the grammar automaton. XML
Schema provides a guarantee of content-model determinism
in the form of the Unique Particle Attribution Constraint.
This specifies that when an element is read, it must be pos-
sible to uniquely determine the part of the content model
(particle) that validates it. Furthermore, no support for co-
occurrence constraints is provided, so any transitions in the
grammar automaton will be made based solely on the most
recently read tag name. Thus we can save instructions by
replacing generic control flow primitives like JNE (jump if
not equal to zero) with branches that activate based on the
name of the current tag.

Two XML Schema content model constructs create transi-
tions in the grammar automaton that are not well-represent-
ed by the simple tag-based transitions described above. Ar-
bitrary, finite occurrence constraints allow schema authors
to specify that any part of the content model may be re-
peated a specific, arbitrary number of times. In the simple
model of tag-based transitions, this would lead to an explo-
sion in the number of states in the instruction representation
of the grammar. The logical solution is to supplement the
instruction set with counters and counter-based branches, to
allow the repeated evaluation of a given part of the content
model, according to its occurrence constraint.

In addition to occurrence constraints, all groups require
further attention. In XML Schema, all groups duplicate for
elements the restrictions normally placed on attributes. An
unordered set of elements is specified, where each is either
required or optional. Validation of such a constraint is best
achieved, as with attributes, in bulk. Accordingly, we use
a stack of bit vectors to evaluate the constraint. With the
addition of the bit vector check, the all group content model
may be treated as a repeated choice, which is easily handled
by the rest of the control flow constructs.

Many schema-based parser generators represent each type
in the schema with a function. This is a natural division
point for the grammar, and makes support of recursive sche-
mas trivial. Accordingly, the overall execution plan is orga-
nized into type handlers which are analogous to subroutines.
Some specialization is required, however, to limit the com-
plexity of the handler structure. XML Schema provides two
mechanisms (xsi:type, and xsi:nil) that alter the mapping
from element to type. Both are driven by attributes on the
element itself, and can be handled completely within the in-
terpreter. Since the subroutine call is used to redirect con-
trol from the instructions that validate an element to the
handler for the actual type of that element, these special
conditions are best handled by a call instruction. As such,
a call instruction is required to validate any xsi:type and
xsi:nil attributes, in addition to redirecting control to the
appropriate handler.

2.2 Bytecodes for XML Processing
As discussed above, the interpreter derives significant per-

formance savings through the use of specialized, high-level
XML processing instructions. In this section, we present
the full set of instructions in detail, highlighting the bal-

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1095



ance in granularity between context sensitivity and efficient
interpretation.

Many of the bytecodes presented make use of the scan-
ner’s symbol table to reference QNames by an integer iden-
tifier. At compile time, all of the QNames in the schema
are assigned identifiers, which are populated into this sym-
bol table. Additionally, special handles are set aside for end
tags and the end-of-file marker. All end tags, regardless of
their name, are represented by the same special identifier.
When an end tag is scanned, it is implicitly checked against
its matching start tag for well-formedness.

Bytecodes and all of their arguments are simple integers.
In these descriptions, all arguments are shown in italics, and
repeated arguments are shown with ellipses. If any valida-
tion or assertion in a given bytecode fails, then all processing
halts immediately with a validation failure.

Several instructions make use of bit vectors. These are
expressed as a variable length list of integers, each of which
is used to represent 32 bits of the vector. The length of the
list is a separate, explicit argument to the instruction. Bit
vectors are used for processing attributes, elements, and all
groups.

2.2.1 Scanning
The fundamental process of XML parsing is the traver-

sal of the input byte-stream by the scanner. This is con-
trolled with specialized READ instructions, which represent
the basic primitives of XML scanning. As set out in Section
2.1, these instructions are designed to maximize opportu-
nities for grammar-driven optimization, while remaining as
coarse-grained as possible. Performance gains are realized in
two ways. Several of the instructions can be used to invoke
more efficient, specialized scanning, based on the grammar
(READ TAG WITH QNAME is an example of this). Other instruc-
tions combine scanning and validity assertions, avoiding ad-
ditional, possibly costly checks.

In the following discussion, we use the general term tag
to mean any start or end tag, including all of its attributes.
Empty element tags are treated as if they had been ex-
pressed in the equivalent syntax using separate start and
end tags, with no intervening content. This is handled auto-
matically by the scanner. After scanning an empty element
tag, the scanner will appear to be positioned immediately
after a normal start tag. An additional call to the scanner
will be required to advance the state beyond the virtual end
tag.

The processing model used by the scanner, as discussed in
Section 2.1, operates on the input tag by tag. At every point
in the execution plan, the scanner is logically positioned just
after a given tag (or at the start of the document), and before
any subsequent character data. This tag (i.e. the one most
recently read) is called the current tag. Information about
the current tag, its attributes, and any comments, process-
ing instructions, and character data that directly preceded
it is available to all instructions until the next tag is read.
Every READ instruction advances the scanner through the
end of the next tag (except for READ EOF, which reads the
trailing comments, processing instructions, and whitespace
at the end of the document), or fails to complete.

• READ TAG IS MIXED :
Read forward to the end of the next tag in either mixed

or element-only mode. The tag to be consumed may be
any start or end tag. End tags are implicitly checked
for well-formedness against their matching start tags.

• READ TAG WITH QNAME IS MIXED QNAME ID :
Read forward to the end of the next tag in either mixed
or element-only mode. While scanning, validate that
the tag’s name matches the given QName. Here tag
scanning is optimized, because the scanner can directly
compare the input stream against a fixed tag name.
The symbol table lookup is also avoided since the iden-
tifier is already known.

• READ END TAG IS MIXED :
Read forward to the end of the next tag in either mixed
or element-only mode. While scanning, verify that the
tag is an end tag, and match it lexically against its
balancing start tag. Like READ TAG WITH QNAME, this
instruction optimizes tag scanning by comparing the
input buffer against a known string, in this case the
balancing start tag.

• READ EMPTY :
Read the next tag, which must be an end tag, and
must match its balancing start tag, and validate that
there is no intervening character content. This instruc-
tion works much like READ END TAG, except that it also
validates that no character content was read.

• READ SIMPLE CONTENT TYPE ID :
Read character data forward to the end of the next tag,
which must be an end tag, and must match its balanc-
ing start tag. Validate the intervening content using
the built-in simple type handler given by the type ID.
The content is handled by a type-specific scanner that
will validate the content as it scans. The end tag is
handled as in READ END TAG.

• READ EOF :
Read forward to the end of the file, matching the XML
production for TrailingMisc.

2.2.2 Content Model Assertions
Following a given READ instruction, the schema may re-

quire one or more assertions on the state of the current tag.
These assertions are accomplished with a family of ASSERT

instructions that operate on the current tag.

• ASSERT TAG QNAME LIST LENGTH QNAME ID ... :
Assert that the current tag matches one of the given
QNames.

• ASSERT TAG QNAME BV BV SIZE BV ... :
Assert that the current tag matches one of QNames in
the set defined by the given bit vector. This instruc-
tion duplicates the functionality of the one above, but
is used for larger QName sets, where a bit vector com-
parison is more efficient.

• ASSERT ATTRS BV SIZE EXCL BV ... REQD BV ... :
Assert that the current tag’s attributes obey the col-
lective attribute occurrence constraint as represented
with two bit vectors, one for excluded attributes, and
one for required attributes.

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1096



• ASSERT ATTR CONTENT QNAME ID TYPE ID :
Check the current tag’s attributes for the given at-
tribute QName, and if present, validate its content us-
ing the built-in simple type handler given by the type
ID.

• FAIL :
Unconditional assertion failure.

2.2.3 Bit Vectors
In addition to the assertions related to the current tag, we

also introduce bit vector assertions, which are used to check
all group occurrence. These instructions manipulate a stack
of bit vectors.

• PUSH BV BV SIZE :
Push a new, empty, bit vector onto the bit vector stack.

• TEST AND SET BIT BIT :
Set the given bit in the current bit vector, asserting
that it was not already set.

• POP ASSERT BV BV SIZE REQD BV ... :
Pop the current bit vector off of the bit vector stack,
and assert that it is a superset of the given required
bits.

2.2.4 Control flow
Control flow in the parser is governed largely by the state

of the current tag. As suggested in Section 2.1, this is imple-
mented with a family of tag-based control flow instructions.
In each of the JUMP instructions, an offset is used to refer to
the target instruction, and is measured from the start of the
JUMP instruction.

• JUMP TAG NOT EQUAL QNAME ID OFFSET :
Branch to the instruction at the given offset if the tag
does not match the given QName.

• JUMP TAG TABLE TABLE SIZE TABLE PART ... :
Branch to one of several locations using the current
tag as a key in a jump table.

• JUMP UNCONDITIONAL OFFSET :
Branch unconditionally to the given offset.

2.2.5 Counters
In order to verify occurrence constraints on element con-

tent, we support a simple stack of counters, manipulated by
a family of counter instructions. These instructions supple-
ment the tag-based control flow above.

• PUSH COUNTER :
Push a new counter onto the stack, and initialize it to
zero.

• INCREMENT COUNTER :
Increment the top counter on the stack.

• POP COUNTER :
Discard the top counter on the stack.

• JUMP COUNTER LESS VALUE OFFSET :
Branch to the given offset if the top counter is less
than the given value

• ASSERT COUNTER GREATER OR EQUAL VALUE :
Assert that the top counter is greater or equal to the
given minimum value.

2.2.6 Call and Return
The basic scanning, validation and control-flow primitives

above are used to parse and validate the content of an XML
Schema type. Each type in the schema has a handler, anal-
ogous to a function, which is composed of the basic instruc-
tions. The handlers are executed, like functions, in a recur-
sive descent manner. The call and return idioms are, how-
ever, specialized to the task of processing XML. In particu-
lar, the call instruction (CALL TYPE) is made against an ele-
ment declaration. At runtime however, the virtual machine
jumps to the correct type handler corresponding to the ele-
ment’s type, including instance type stipulations (xsi:type),
and handling of xsi:nil. [14]

• CALL TYPE NIL DEF TYPE BV SIZE EXCL TYPES :
Dispatch to the content model for the current (start)
tag. The content model is determined either by the
instance value of xsi:type, or by the supplied default
type ID. Either way, the actual type ID is checked
against the type exclusions bit vector (EXCL TYPES ).
The excluded types bit vector aggregates the various
constraints on the runtime type of the elements (as
specified by the element declaration and the type def-
inition for its default type). If the resolved type is
complex, the interpreter will dispatch to the handler
for that complex type, and resume interpretation. If
the resolved type is simple, the corresponding built-in
simple type handler is used. The NIL argument tells
the complex type which processing is allowed for xsi:nil
in this context.

• RETURN :
Return control from the current complex type handler
to its caller.

• RETURN IF NIL :
Check the current tag’s attributes for the xsi:nil at-
tribute. If present and bearing the value true, read the
next tag as in READ EMPTY, and return control from the
current complex type handler to its caller. In all other
cases, continue execution.

2.3 Example Type Handler
As an example of how the bytecodes above are used to

validate the content model for a complex type, consider the
following schema fragment. The type ExampleType is de-
fined to have one required attribute, attr1, and two op-
tional attributes, attr2 and attr3. The element content
is constrained to be either Name1 or Name2, followed by a
mandatory Name3.

<xsd:complexType name="ExampleType">

<xsd:sequence>

<xsd:choice>

<xsd:element name="Name1"

type="Type1"/>

<xsd:element name="Name2"

type="Type2"/>

</xsd:choice>

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1097



<xsd:element name="Name3"

type="Type3"/>

</xsd:sequence>

<xsd:attribute name="attr1"

type="Type3"

use="required"/>

<xsd:attribute name="attr2"

type="Type4"/>

<xsd:attribute name="attr3"

type="Type5"/>

</xsd:complexType>

The validation plan for this complex type can be expressed
in the bytecode sequence in figure 1. For convenience, in
the figure, the integer ID’s for the types, attributes, and el-
ements are assumed to be the same as the numbers in their
names (i.e. attr1 has attribute ID 1, element Name2 has
element ID 2, and so forth). ID 0 is reserved. The bit vec-
tor arguments to the instructions are shown as hexadecimal
values, to facilitate bitwise reading.

OFFSET BYTECODE INSTRUCTION

------ -----------

00 ASSERT_ATTRS 1 0xFFFFFFF1 0x00000002

04 ASSERT_ATTR_CONTENT 1 3

07 ASSERT_ATTR_CONTENT 2 4

10 ASSERT_ATTR_CONTENT 3 5

13 READ_TAG 0

15 ASSERT_TAG_QNAME 2 1 2

19 JUMP_TAG_NOT_EQUAL 1 10

22 CALL_TYPE 0 1 1 0xFFFFFFFD

27 JUMP_UNCONDITIONAL 7

29 CALL_TYPE 0 2 1 0xFFFFFFFB

34 READ_TAG_WITH_QNAME 0 3

37 CALL_TYPE 0 3 1 0xFFFFFFF7

42 READ_END_TAG

43 RETURN

Figure 1: Bytecode example

In this code sequence, the first step is to check the at-
tribute occurrence constraints. In this case, the attribute
bit vector size is one, indicating that the highest known at-
tribute ID is less than 32. In order to validate the attribute
occurrence, the current tag’s attribute bit vector (which has
a bit turned on for each of the attributes that were scanned),
is compared against the occurrence constraint bit vectors.
The first bit vector excludes all attributes except attr1,
attr2 and attr3. The second requires attr1. After oc-
currence checking, the content of each possible attribute is
validated, against its type, in this case attr1, attr2 and
attr3, against Type3, Type4 and Type5, respectively.

Following attribute validation, the element content is val-
idated. In this case, we expect either Name1 or Name2, so we
execute a plain read (with the mixed argument set to false).
After the tag is read, the QName is validated against the two
possibilities, using ASSERT TAG QNAME. Finally, a JUMP TAG -
NOT EQUAL is executed to either allow control to continue at
the next instruction at offset 22, or to divert control to the
instruction at offset 19 + 10 = 29.

Both branches immediately execute the CALL TYPE instruc-
tion, which evaluates any xsi:type or xsi:nillable attributes
on the tag, and dispatches to the correct type handler. In

the above example, none of the types allow substitution, so
their type exclusion bit vectors all have only one non-zero
bit.

After reading Name1, control is diverted with a JUMP -
UNCONDITIONAL to the code for Name3 at offset 27 + 7 = 34,
which otherwise follows directly from the code to read Name2.
Following Name3, we read an end tag, and return control to
the caller.

2.4 Content Model Compilation
The content model compilation engine which iScreamer

shares with the XML Screamer compiler uses an an ap-
proach in which the parser code is generated directly from
the abstract schema components [9]. In contrast with meth-
ods where the schema is first translated to a more tradi-
tional grammar structure, such as a finite state machine,
this approach allows the compilation engine to support the
full range of XML Schema content model constructs without
suffering from the growth in space requirements (in either
the compiler or the runtime) associated with the translation
of the schema components. Direct reference to the schema
components also allows the compilation engine to leverage
the determinism guarantees of XML Schema to simplify the
generated code.

The core concept of the compilation technique is the com-
ponent template. The validation logic is produced directly
from the schema component model, using component-specif-
ic code templates for the various components in the schema.
The templates are combined together mirroring the com-
position model of XML Schema content model components
(e.g. the template for a repeated particle emits code to
repeatedly evaluate the code produced by the term’s tem-
plate). This method was shown to produce simple, efficient
code for a wide variety of schemas, with a predictable, sta-
ble relation between schema complexity and generated code
size. [9]

In iScreamer the standard source-code templates for the
schema components are replaced with equivalent bytecode
templates. The composition model described above, and the
scope of support for schema constructs remains unchanged,
with only the target language being changed to a bytecode
form. Because the instruction set of the interpreter is sig-
nificantly simpler than a fully general source code language,
such as C or Java, and because the instructions themselves
are tailored to the purpose of XML processing, the infras-
tructure required to generate the bytecode form is simpler.
The bytecode form itself is also terser, and therefore more
efficient to produce, and more compact when materialized
on disk.

2.5 Bytecodes Discussion
Because of the constrained nature of XML validation, the

entire execution plan can be built using these few, coarse
grained primitives, most corresponding to hundreds of in-
structions in a traditional general purpose language such as
Java. The scanning and validation steps embodied by the
instructions of the execution plan can be seen to be identi-
cal to those required of any XML validator, regardless of the
embodiment of the steps themselves. By ensuring that the
same opportunities for optimized, context-sensitive scanning
(i.e. scan for exactly one tag, or scan a given simple type)
are available to the interpreter, we may further assume that
the actual work carried out by these primitives will be equiv-

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1098



alent to the work required for a source-code compiled XML
validator. The remaining overhead, then, can be credited to
instruction dispatch overhead, which is proportional to the
number of instructions. While a source-code compiled parser
avoids this added runtime cost, it forfeits the many benefits
of the bytecode-compiled approach. The coarse granularity
of our instruction set keeps this overhead to a minimum,
making the tradeoff more attractive. In the next section we
discuss the costs and benefits of this tradeoff.

3. EVALUATION
Grammar-specific parser generation techniques have been

shown by several authors [3, 7, 9, 10, 15] to significantly im-
prove XML parsing performance. It is our belief, how-
ever, that for most real-world use-cases, from individual ad-
hoc scenarios to enterprise-scale business computing envi-
ronments, the increased tooling and deployment complexity
of the compilation model undermines the ease of use and
reliability of XML-based technology. The iScreamer system
addresses this problem with a high-performance interpretive
parser that takes advantage of many of the optimizations of
the best source-code compiled solutions, without the tooling
and management overhead of code generation and source
compilation. In the following two sections we explore the
effectiveness of the iScreamer system at overcoming these
obstacles to usability, and its success in meeting the perfor-
mance challenge set by solutions that generate source code
or native code.

3.1 Usability
In actual deployments, standard parser-generators pose

several usability problems. The most obvious obstacle to
the usability of source-code generated parsers is the need for
a source-language compiler to compile down to native code.
In environments hosted within another application, such as
a database or a web server, access to system compilers may
be impractical. In many cases, users will not have or be
familiar with a source-language compiler for their system.
Even in cases where compilers are available, the performance
of the generated parser is dependent on the quality of the
available compiler, and the care with which it is configured.
This tends to incur the kinds of support difficulties normally
encountered with source-code delivered products, and not
normally acceptable to everyday users and vendors.

Code generation also presents a trust and reliability is-
sue. With XML technologies becoming increasingly more
central to business computing, the difficulty of verification
and quality control of the generated code becomes a serious
problem. Through use of an extremely limited instruction
set, iScreamer makes it possible to shift the issue of qual-
ity control back to the product itself, rather than the code
that it generates, greatly simplifying the task of ensuring
reliability. Additionally, the risks of malicious or accidental
errors are greatly reduced in a system with limited capabil-
ity, when compared to running an arbitrary piece of code as
a parser.

Finally, source-code generation burdens the user with the
management of compilation artifacts. For ad hoc deploy-
ments, this is likely to undermine the very reasons for adopt-
ing XML technologies in the first place. In environments
with significant management infrastructure (such as a web
server, or database), this management role must be ful-
filled by the hosting application. This introduces depen-

dencies between the hosting program and the schema com-
piler, which complicate interoperability. Furthermore, in
very large-scale deployments, the artifacts themselves may
become too numerous or too large to manage practically.3

One way to mitigate some of these concerns is to have the
compiler directly generate native code. Unfortunately, such
a strategy is quite complex to implement and does not relieve
most of the concerns mentioned above. Verification, reliabil-
ity and security issues remain, as well as most management
issues. The compilation engine is necessarily significantly
more complex because it must generate a lower level lan-
guage, and because it must handle all of the optimizations
that would otherwise be performed by the source language
compiler, with one backend per runtime platform. Further-
more, direct generation of native code makes the task of
maintenance and debugging much more difficult.

Furthermore, XML is increasingly being viewed as a fea-
ture of the network infrastructure, rather than an applica-
tion technology. An interpretive parser provides the experi-
ence that users expect from XML. The iScreamer interpre-
tive schema compiler effectively straddles the divide between
source-code generation, and classic interpretation, yielding
a balance of high-performance, and high usability.

3.2 Performance
In this section we detail benchmarks of iScreamer, and

analyze performance in the context of real-world deploy-
ments. Our measurements show that iScreamer achieves
parsing performance in the same regime as source-code com-
piled solutions, while maintaining the simplicity and cross-
platform convenience in tooling that has made XML the
success it is today. The iScreamer system delivers a mix-
ture of performance and maintainability that is appropriate
across the whole spectrum of performance-sensitive deploy-
ment scenarios.

Our benchmarks are intended to model, in spirit, produc-
tion quality Web Service deployments of XML, with each
test instance consisting of a single UTF-8 XML entity stored
in contiguous buffer memory. Filesystem or network over-
head is not measured. The tests reported here were run on
an IBM eServer xSeries Model 235 with a 3.2 GHz Intel Xeon
Processor, and 2GB of main memory, using Microsoft Win-
dows Server 2003 Service Pack 1. XML Screamer parsers,
and the iScreamer interpreter were compiled with Microsoft
(R) 32-bit C/C++ Optimizing Compiler Version 13.10.3077.

3.2.1 Systems compared
For the performance measurements below, we compare

the iScreamer system to four baseline systems. As a mea-
surement of industry standard validation performance, we
use the Xerces [1] parser. Xerces is a standard interpre-
tive validator, with schema caching capabilities. In terms
of deployment complexity, it represents the simplest vali-
dating parser presented, as it has no runtime artifacts of
any kind, and conforms to widely used standard APIs. For
comparison, we also measure performance of Xerces without
validation. Both measurements of Xerces use the SAX [12]

3In practice, all of these issues prevented IBM’s main-
frame database product from implementing compiled vali-
dation technologies. The approach outlined in this paper
was shown to successfully mitigate the complexity issues,
while significantly improving validation performance, and
the technology was adopted for use in DB2 9 for z/OS.

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1099



Test Case Schema Schema Size Instance Instance Size Number of
Filename (Bytes) Filename (Bytes) Bytecodes

1 po.xsd 2094 po.xml 990 87
2 ipo.xsd 4240 ipo.xml 1406 154
3 MI AUS RESPONSE2 1.xsd 6912 mismoResponse1.xml 1572 126
4 po.xsd 2094 8kpo.xml 8062 87
5 ipo.xsd 4240 8kipo.xml 8077 154
6 bibteXML.xsd 29121 bibtex1.xml 8609 3375
7 po.xsd 2094 64kpo.xml 63754 87
8 ipo.xsd 4240 64kipo.xml 64233 154
9 periodic table.xsd 4564 periodic.xml 116506 284
10 play.xsd 2375 much ado.xml 202031 326

Table 1: Test Cases, their sizes, and sizes of the generated instruction set

API. We used Xerces 2.6 for Windows with performance
enhancements targeted for inclusion in version 2.7.

As a benchmark of non-validating performance, we use
Expat [4]. Expat is a high-performance parser that checks
only XML well-formedness of the input. Expat uses its own
specialized API, and is significantly faster than both Xerces
modes, with and without validation. While it does not make
use of a standard API, Expat is widely used, and well-known
for its performance capabilities. We used Expat 1.95.8 for
Windows.

For a representative benchmark of source-code compila-
tion, we use the XML Screamer [7, 9] parser generator, on
which iScreamer is partly based. XML Screamer is de-
signed for extremely high performance, and supports the
same range of schema features as iScreamer. For each in-
put schema, it generates a fully custom native-code parser,
which is then compiled with a native language compiler.
XML Screamer demonstrates the highest performance of any
of the parsers measured, and is considered the performance
target for this work. Furthermore, it is worth noting that
XML Screamer and iScreamer share many aspects including
many scanning primitives, and many features of the compi-
lation engine. As such, comparisons with XML Screamer are
particularly apt, in that they may be considered to highlight
the performance tradeoff inherent to the iScreamer inter-
preter.

Both XML Screamer and iScreamer were tested in two
configurations, one which renders SAX events, and the other
producing only a validity result. In XML Screamer the SAX
API is chosen at compile time, and compiled directly into
the generated parser source code. In iScreamer, generation
of SAX events is a runtime option on the interpreter that
alters the semantics of the parsing bytecodes to throw the
relevant SAX events as a side effect of parsing the document.

The SAX measurement is included for comparison against
the other parsers, and Xerces in particular, which is mea-
sured using the same API. The NoAPI result is included to
highlight the raw validation performance, in contrast to the
overhead of the standard, but less efficient, SAX API.

3.2.2 Test Cases
To test performance, we use a range of schemas and in-

stances which, combined, form a ten-piece suite of test cases.
The PO schema is taken directly from the XML Schema
Primer [5], and is used in three of the test cases, with vary-
ing instance sizes. The IPO schema is based on the same
purchase-order schema from the XML Schema Primer, and

inspired by the sections describing an international purchase-
order schema. The IPO schema includes use of namespaces,
dynamic typing and element substitution-groups, and may
thus be considered a more rigorous benchmark than the
standard purchase-order. Instances of varying length for
both schemas are generated by expanding repeated sections
with duplicate copies. The remaining schemas and instances
are taken from the Sarvega XML Validation Benchmark [11].
The details of the test cases are given in table 1, where each
case is assigned a number.

3.2.3 Measurements
Performance measurements were taken for each of the

parsers detailed above, on each of the test-cases in table 1.
The parsers were warmed up before taking measurements,
although priming them seemed to have no sizeable effect
when measuring large numbers of iterations. Indeed, our
results demonstrate that throughput is mostly independent
of instance or schema size, except for very small documents
and documents with very little markup. The results for all
of the test cases and configurations are given in Table 2.

Figure 2 shows a comparison of throughput across all of
the test cases, for each of the validating parsers that were
measured (Xerces, XML Screamer and iScreamer). For the
purposes of this broad comparison, we show SAX perfor-
mance, as the best point of comparison with Xerces. As ex-
pected, XML Screamer shows the best performance, several
times faster than Xerces. The performance of iScreamer,
however, can be seen to be quite comparable to that of XML
Screamer, across the whole range of test cases. This re-
sult demonstrates that interpreter overhead is indeed slight,
with respect to the performance advantage that compilation
yields.

In Figure 3, we present a more detailed comparison of
one test case, namely the moderately sized IPO instance
(8kipo.xml), test case 3. Here, we show the performance of
all of the measured configurations. As in Figure 2, XML
Screamer and iScreamer are seen to be significantly faster
than Xerces. They are also much faster than either Expat
or Xerces in non-validating mode.

In the No API case, iScreamer exhibits some slowdown
with respect to XML Screamer, indicating that the over-
head of interpretation is not completely negligible with re-
spect to the execution time of the instructions themselves.
With the cost of rendering SAX events included, however,
it becomes clear that this overhead is minimal compared to
the cost of rendering the SAX API. In essence, both XML

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1100



0

10

20

30

1 2 3 4 5 6 7 8 9 10

Xerces
Screamer
iScreamer

Figure 2: Comparison of Validation Throughput (SAX) in MB/GHz · sec

Screamer and iScreamer are operating in a regime in which
other computations such as UTF-16 transcoding dominate.
This observation in part validates the use of XML Screamer
as a performance target, and demonstrates that the real-
world performance of iScreamer is likely to be almost in-
distinguishable from that of the best source code compiled
solutions.

0

15

30

45 iScreamer NoAPI
Screamer NoAPI
iScreamer SAX
Screamer SAX
Expat
Xerces SAX
Xerces WFC

Figure 3: Test Case 3: Throughput Comparison of
Validating & Non-Validating Parsers in MB/GHz·sec

4. RELATED WORK
There have been many attempts to improve the perfor-

mance of XML validation. Chiu et al. [3] extend DFAs to
nondeterministic generalized automata and describe a tech-
nique for translating these into deterministic generalized
automata, from which a parser can be generated. These
parsers operate on a byte-level, performing well-formedness
checking and validation concurrently. As a tradeoff for the
unification of content-model validation and byte-level scan-
ning, however, the technique is limited to small occurrence
constraints because the construction of deterministic gener-
alized automata from nondeterministic generalized autom-
ata causes a multiplicative blowup in the number of states.
Further, the DFA model has difficulty supporting xsi:type.

The global optimizations made possible by this and related
methods seem insufficient to mitigate the lack of support for
commonly used features of XML Schema.

While generalized automata could be used to drive an
XML-specific bytecode interpreter much like iScreamer, the
majority of the predicates and actions used in Chiu et al.
are specified at a much finer granularity than the primitives
used by iScreamer. As a result, more instructions would
be required to lay out the execution plan. As instruction
dispatch overhead is proportional to the number of instruc-
tions, we expect that interpreting the actions and predicates
directly would lead to a large performance penalty.

Several authors [10, 15] avoid limitations of the gener-
alized automata technique through the use of a two-level
approach. Cardinality-constraint automata [10] extend de-
terministic finite automata with cardinality constraints on
state transitions. These automata easily handle the encod-
ing of occurrence constraints. Unfortunately, the CCA does
not perform well-formedness checking but runs as a separate
layer on top of a separate SAX parser, with the associated
performance penalty.

Van Engelen [15] uses a two-level schema in which a lower-
level FLEX scanner drives a DFA validation layer. The
two-level approach resembles the separation in iScreamer
between scanning and content-model validation, but does
not allow the validation engine to drive the scanner with
schema knowledge, either in scanning tags, or in scanning
simple data and whitespace. Instead, the same Flex [6] scan-
ner is used for every byte of the input, regardless of context.

XML Screamer, on which our work partly builds, demon-
strates a parser generator that translates XML Schemas into
a parser in C source code. The architecture of the schema
compiler is discussed in detail in one paper [9], and the ar-
chitecture of the generated parser code and how it achieves
performance is explained in a second paper [7]. The differ-
ences between our work and XML Screamer are discussed
in more detail in Section 2 of this paper.

Many other attempts to improve XML performance have
focused on changing the form of the XML. Examples in-
clude the various proposals for binary XML forms. Unfor-
tunately, binary XML has a disruptive effect on the user
in terms of usability, interoperability, and standardization,
the core strengths of XML. For a thorough analysis of bi-
nary solutions see [2]. As the other efforts cited increase
the performance of XML solutions, they may correspond-
ingly reduce the number of cases in which a binary XML is
required.

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1101



Throughput SAX Comparisons with iScreamer
(MB/GHz · sec) (Percentage Difference)

Test Xerces Screamer iScreamer Expat
Screamer Expat

Xerces
Case WFC Val No API SAX No API SAX WFC WFC Val

1 4.41 2.65 35.08 16.12 21.2 13.22 6.85 -18 +93 +200 +398
2 4.24 2.51 23.23 14.76 20.55 13.64 6.81 -8 +100 +222 +444
3 3.21 2.98 25.95 17.00 19.14 13.55 5.21 -20 +160 +322 +355
4 6.79 3.01 48.00 24.73 32.52 19.73 13.68 -20 +44 +191 +556
5 6.08 2.90 38.40 21.44 30.31 20.22 10.31 -6 +96 +232 +597
6 8.28 5.58 47.49 26.25 29.65 21.14 15.54 -19 +36 +155 +279
7 6.88 3.02 49.87 26.58 33.53 20.63 15.65 -22 +32 +200 +583
8 5.68 2.85 44.00 24.65 32.13 22.09 13.75 -10 +61 +289 +675
9 6.03 3.99 34.61 23.47 28.18 19.44 15.25 -17 +27 +222 +387
10 8.20 5.85 42.41 22.41 24.69 14.17 19.10 -37 -26 +73 +142

Table 2: Performance results

For an analysis of more work related to XML performance
and compilation of XML Schema for increasing XML parsing
performance, see the section on related work in our XML
Screamer paper. [7]

5. CONCLUSION
Through the use of a carefully tuned set of special-purpose

bytecode instructions, we have shown that the performance
advantages of schema-based XML parser generation can be
achieved in an interpreter. The technology is demonstrated
with iScreamer, a schema compiler and interpretive parser
that make use of these bytecodes. In a series of perfor-
mance tests, iScreamer is shown to perform within 20% of
high-performance generated parsers, and significantly faster
than any widely available parsers, both validating and non-
validating.

The bytecode instruction set, specialized to the task of
XML processing, is designed to incorporate the optimiza-
tion techniques used in source code compilation while max-
imizing the amount of work done by any given instruction.
The interpretive dispatch overhead is thus minimized, while
the opportunity for grammar directed optimization remains
high.

While maintaining the benefits of compilation, this elim-
inates the need for deployment-time source code manage-
ment and compilation. By using a compact bytecode stream,
it further eliminates the large space requirements typical of
generated artifacts. The management complexity is thus re-
duced to a level similar to conventional parsers that have no
compile step at all. Using this approach, the combined bene-
fits of high performance and simplified management provide
a viable solution for XML validation throughout the web.

6. ACKNOWLEDGMENTS
Joe Latone managed this project and contributed to it

greatly. We would also like to thank Joe Kesselman, David
Marston, Chet Murthy, Dennis Quan, and many others.

7. REFERENCES
[1] The Apache Foundation. Xerces.

http://xml.apache.org.

[2] R. J. Bayardo, D. Gruhl, V. Josifovski, and
J. Myllymaki. An evaluation of binary XML encoding
optimizations for fast stream based XML processing.
In World Wide Web Conference, May 2004.

[3] K. Chiu and W. Lu. A compiler-based approach to
schema-specific XML parsing. In First International
Workshop on High Performance XML Processing,
May 2004.

[4] J. Clark. Expat XML parser.
http://expat.sourceforge.net/.

[5] D. C. Fallside and P. Walmsley, editors. XML Schema
Part 0: Primer Second Edition. W3C, second edition,
Oct 2004. http://www.w3.org/TR/xmlschema-0.

[6] The GNU Project. Flex.
http://www.gnu.org/software/flex/.

[7] M. Kostoulas, M. Matsa, N. Mendelsohn, E. Perkins,
A. Heifets, and M. Mercaldi. XML screamer: An
integrated approach to high performance XML
parsing, validation and deserialization. In 15th
International Conference on World Wide Web
(Edinburgh, Scotland, May 23 - 26, 2006), pages
93–102, New York, NY, May 2006. ACM Press.

[8] J. K. Ousterhout. Tool Command Language.
http://www.tcl.tk/.

[9] E. Perkins, M. Matsa, M. Kostoulas, A. Heifets, and
N. Mendelsohn. Generation of efficient parsers
through direct compilation of XML schema. IBM
Systems Journal, 45(2):225–244, 2006.

[10] F. Reuter and N. Luttenberger. Cardinality constraint
automata: A core technology for efficient XML
schema-aware parsers.
http://www.swarms.de/publications/cca.pdf, 2003.

[11] Sarvega, Inc. XML Validation Benchmark.
http://www.sarvega.com/xml-validation-
benchmark.html.

[12] saxproject.org. SAX: Simple API For XML.
http://www.saxproject.org/.

[13] Sun Microsystems, Inc. Java Technology.
http://java.sun.com/.

[14] H. Thomson, D. Beech, M. Maloney, and
N. Mendelsohn, editors. XML Schema Part 1:
Structures. W3C, second edition, Oct 2004.
http://www.w3.org/TR/REC-xmlschema.

[15] R. van Engelen. Constructing finite state automata for
high-performance XML web services. In International
Conference on Internet Computing, 2004.

[16] L. Wall. Practical Extraction and Report Language.
http://www.perl.org/.

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1102


