
AUTOMATED SYNTHETIC FEASIBILITY ASSESSMENT: A DATA-DRIVEN DERIVATION OF
COMPUTATIONAL TOOLS FOR MEDICINAL CHEMISTRY

by

Abraham Heifets

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

c© Copyright 2014 by Abraham Heifets

Abstract

Automated Synthetic Feasibility Assessment: A Data-driven Derivation of Computational Tools for Medicinal

Chemistry

Abraham Heifets

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2014

The planning of organic syntheses, a critical problem in chemistry, can be directly modeled as resource-

constrained branching plans in a discrete, fully-observable state space. Despite this clear relationship, the full

artillery of artificial intelligence has not been brought to bear on this problem due to its inherent complexity and

multidisciplinary challenges. In this thesis, I describe a mapping between organic synthesis and heuristic search

and build a planner that can solve such problems automatically at the undergraduate level. Along the way, I show

the need for powerful heuristic search algorithms and build large databases of synthetic information, which I use

to derive a qualitatively new kind of heuristic guidance.

ii

Contents

Relation to published work xi

1 Introduction 1

2 Prolegomena to any future automated synthesis planning 6

2.1 Search . 6

2.2 AND/OR graph search algorithms . 9

2.2.1 AO* . 10

2.2.2 Learning in Depth-First Search (LDFS) . 12

2.2.3 The question of cycle semantics . 13

2.2.4 Proof Number Search (PNS) . 15

2.2.5 PN* . 19

2.2.6 Proof Disproof Search (PDS) . 21

2.2.7 Depth-First Proof Number and variants (DFPN, DFPN+, DFPN(r), DFPN-TCA, and

DFPN-SNDA) . 21

2.3 The shapes of chemistry . 25

2.4 Challenges of organic synthesis . 27

2.5 Automated organic synthesis planners . 29

2.5.1 LHASA and its variants (interactive synthesis planners) 29

2.5.2 Noninteractive synthesis planners . 31

2.6 Heuristics . 33

2.6.1 Complexity-based . 36

2.6.2 Fragment-based . 38

2.6.3 Machine learning and retrosynthetic analysis . 40

2.7 Reaction libraries . 41

iii

2.8 The critical need for search guidance . 47

3 A declarative description of chemistry 49

3.1 Definitions . 49

4 Retrosynthetic search algorithms 55

4.1 Introduction . 55

4.2 A Proof Number Search-based Solver . 57

4.3 Constructing a Public Chemistry Benchmark . 62

4.4 Results and Discussion . 63

4.5 Chapter Conclusion and Future Work . 65

5 Compilation of synthesis and chemical data 66

5.1 SCRIPDB . 66

5.2 Discussion . 71

5.2.1 Patents as a source of chemical images . 71

5.2.2 Patents as biomedical literature . 72

5.2.3 Patents as a reaction database . 72

5.2.4 Patents as a bioisostere catalog . 73

5.3 Chapter Conclusion and Future Work . 73

6 Domain-specific heuristics for synthetic feasibility 75

6.1 Introduction . 75

6.1.1 Humans, eh? . 77

6.1.2 Objective measures of synthetic feasibility . 80

6.2 Materials and Methods . 81

6.2.1 Data collection . 81

6.2.2 Data cleaning . 87

6.2.3 Data labeling . 88

6.2.4 Data modeling . 90

6.3 Results . 92

6.4 Discussion . 95

6.5 Chapter Conclusion and Future Work . 98

7 Summary & Conclusion 100

iv

Appendices 103

A Glossary 104

B Which molecules should be built? 107

B.1 Introduction . 107

B.2 System and methods . 111

B.2.1 Correspondence of bound ligands . 111

B.2.2 Ligand alignment . 113

B.2.3 Residue cluster extraction via clique detection . 115

B.3 Results and discussion . 116

B.3.1 Heme . 117

B.3.2 Nicotinamide adenine dinucleotide . 120

B.4 Chapter Conclusion and Future Work . 126

Bibliography 127

v

List of Figures

2.1 Cyclical AND/OR graphs. Semicircles connect paths in a single hyperedge. Double circles in-

dicate goal states. The examples are deliberately simple; equivalent yet more-realistic examples

may be generated by replacing simple arcs with larger subgraphs. 14

2.2 If a descendant node can be reached via multiple paths, then Equations 2.1 and 2.2 are no longer

correct. An example schematic when a node has repeated precursors showing the (dis)proof

counts will be incorrect. In this case, there are only 3 leaf nodes but the root reports a count

of 4. 18

2.3 Graph history interaction problem from Kishimoto and Müller (2004). Assume node D is a loss

for the player at the root. Node B is an AND node, marked by an semicircle connecting its out

arcs. Nodes C, G, and H are AND nodes as well but are not marked because they have a single

outgoing arc. 24

2.4 Aspirin. Vertices labeled C, H, or O denote carbon, hydrogen, and oxygen atoms, respectively.

Edges drawn with single lines denote single bonds and double lines represent double bonds. Typ-

ically, bonds to hydrogen are not drawn. 26

2.5 Esterification reaction of an alcohol active site with an anhydride active site to produce an ester.

Atoms in the molecular fragments are numbered to help the reader track bond changes. When

atomic labels are omitted, the vertex is presumed to be a carbon atom with sufficient hydrogens to

total 4 bonds. Reaction conditions have been omitted for simplicity. 26

2.6 Synthesis of aspirin (right column) from carbon dioxide, sodium hydroxide, phenol, acetic acid

and ketene starting materials (left column) via the precursor molecules, salicylic acid (top mid)

and acetic anhydride (bottom mid). The final aspirin-forming step is an application of the esteri-

fication reaction depicted in Fig 2.5. 26

2.7 Palytoxin, a 409-atom molecule synthesized in 1994 (Suh and Kishi, 1994). Bonds depicted as

wedges indicate the bond is angled out of the plane of the paper toward the reader. Bonds depicted

as dashes indicate the bond is angled away from the reader. 28

vi

2.8 Example from Todd (2005). Structure (40) depicts the quinone Diels-Alder reaction, while (41)-

(43) show natural products that had been synthesized using the quinone Diels-Alder. LHASA

does not apply the quinone DA to these cases. 30

2.9 8 step synthesis from Takahashi et al. (1990). Molecular complexity proceeds nonmonotonically. . 32

2.10 Figure 19 from Boda et al. (2007) depicting minimum, maximum, and average synthetic acces-

sibility scores by five medicinal chemists. Structures are sorted by average score. Molecules of

particularly wide score disagreement are labeled. Most molecules have scores of 4 ± 1 and many

have ranges which overlap. 35

2.11 Figure 7 from Huang et al. (2011) depicting minimum, maximum, and average synthetic accessi-

bility scores by five medicinal chemists. Structures are sorted by average score. Most molecules

have scores of 4 ± 1 and many have ranges which overlap. 35

2.12 Example comparison of synthetic complexity measures, taken from Barone and Chanon (2001).

Synthetic progress is nonmonotonic. 37

2.13 Reaction example from Pirok et al. (2006) depicting a Friedel-Crafts Acylation reaction. Ad-

ditional properties specify the charge necessary at the active site for the reaction to complete.

Problematic compounds are excluded with additional patterns. 42

2.14 Diels-Alder example from Wilcox and Levinson (1986). Lines 1 and 4 show two reactions. Lines

2 and 3 are the MXC and CXC, respectively, for the first reaction. Line 5 shows the maximum

common substructure from the two reactions (note the activating electron-withdrawing oxygen on

the dieneophile). 44

2.15 Example from Law et al. (2009). Figure (a) depicts a sample reaction, while (b) and (c) show an

extracted core and extended core, respectively. Compare to the MXC and CXC from Figure 2.14.

Law et al. note that the non-chemically-essential atom 2 is correctly not included in the extended

core; in contrast, a bond radius approach such as (Satoh and Funatsu, 1999) would have included it. 46

4.1 The benchmark target molecules. Images generated directly from the problem definition using

OpenBabel O’Boyle et al. (2011a). 58

4.2 Computer-generated Atorvastatin synthesis matching the synthesis reported in Brower et al. (1992)

and Roth (2002). 63

vii

5.1 Cumulative SCRIPDB content. Although SCRIPDB includes patents from 2011, we show data

through 2010, the last complete year. (a) Left panel shows the number of ChemDraw CDX struc-

ture files, and the structures described therein, available in SCRIPDB for various years. SCRIPDB

contains 4,814,913 CDX files from 2001 through 2010, comprising 10,840,646 molecules. Du-

plicate molecules were filtered from each patent but not across patents, as described in the text.

(b) Right panel shows the number of patents and details the subset containing reactions. For 2001

through 2010, SCRIPDB contains 107,560 patents, of which 25,048 contain synthetic reactions. . 68

5.2 Example Markush structure from US Patent 6,268,504 (Raveendranath et al., 1999) defining a

chemical class via substituent, positional, and frequency variations. 68

5.3 Structures per patent in SCRIPDB. While 34,789 patents contain ten or fewer structures, two-

thirds of patents contain more than ten and 1,296 patents contain more than a thousand structures. 69

5.4 Number of CDX data files with that contain various numbers of reaction arrows. 70

5.5 Sample of search results for molecules containing an acridine substructure. 71

6.1 Chart from Boda et al. (2007) depicting minimum, maximum, and average synthetic accessibility

scores by five medicinal chemists. Structures are sorted by average score. Molecules of par-

ticularly wide score disagreement are labeled. (This is Figure 2.10, duplicated here for reader

convenience.) . 78

6.2 Chart from Ertl and Schuffenhauer (2009) depicting the average of chemist scores for 40 test

molecules, in blue. The error bars denote the standard error of the mean of scores by 9 chemists.

Therefore, to translate to standard deviation the bars would need to be tripled in size. Struc-

tures are sorted by average score. Molecules of particularly wide score disagreement between the

average chemist score, in blue, and their software’s scores, in red, are labeled. 79

6.3 Data flow schematic depicting the processing steps in each of the collection, cleaning, labeling,

and modeling stages. 82

6.4 Example synthesis from US Patent 7,238,717 (Fleming et al., 2007). “Procedure A (Synthesis of

Weinreb Amides)” is described in the patent as: “ A substituted anthranilic acid (24 mmol) was dissolved

in acetonitrile (200 mL), 1.05 equivalents of N,O dimethylhydroxylamine hydrochloride, 1.05 equivalents of EDC, 0.05

equivalents of dimethylaminopyridine and 1.0 equivalent of triethylamine were added and the reaction was stirred at

room temperature overnight. The acetonitrile was removed by rotary evaporation and the residue was partitioned between

ethyl acetate and water. The organic layer was washed with brine then concentrated to a residue. The residue was

chromatographed on silica gel (ethyl acetate as eluent) to give the product. Typical yields are 70-90%”. 83

viii

6.5 Available bounding boxes around geometric entities in the ChemDraw files distributed with USPTO

patents. 84

6.6 Difficult visual parsing example. Which molecules are reagents and which are products, for which

reaction step? . 84

6.7 CDX reading example. First bounding boxes (in blue) are computed for each molecule. Then

the minimum distance between fragments is measured (in green), and used to compute mean and

standard deviation for inter-molecule distance. Molecules intersecting with 2 standard deviations

from an arrow head or tail (dashed purple arrow) are considered possible reagents or products,

and are classified as described in the text. The three bottom molecules overlap and, therefore, are

grouped into an enclosing bounding box (in orange). Because this box encloses an arrow, these

molecules are rejected. Similarly, because the central arrow intersects line segments (in the center

black circles) we cannot assign unique direction for the arrow and it is rejected. 86

6.8 Illustrative schematic of organic synthesis. Although there are 8 reaction arrows depicted, the

A→B reaction is repeated four times and it is likely that only 5 reactions were run at the bench.

Assuming that A and C are starting materials, Algorithm 5 labels A and C as requiring zero steps,

B requiring 1, D requiring 2, E requiring 3, F requiring 4, and G requiring 5. 88

6.9 Distribution of the labels for molecules in the training data. 93

6.10 The predictive performance on the automatically-labelled training data for the top 3 algorithms

from Table 6.1 and random forest for comparison. The plots were generated with R; the linear fit,

R2 and p-values were computed using R’s lm linear model. 95

6.11 The predictive performance on the automatically-labelled external validation data for the top 3

algorithms from Table 6.1 and random forest for comparison. The plots were generated with R;

the linear fit, R2 and p-values were computed using R’s lm linear model. 96

6.12 The predictive performance on the manually scored data from Ertl and Schuffenhauer (2009) for

the top 3 algorithms from Table 6.1 and random forest for comparison. The plots were generated

with R; the linear fit,R2 and p-values were computed using R’s lm linear model. For comparison,

Ertl and Schuffenhauer (2009) report that the r2 among 9 chemists on these 40 molecules ranged

from 0.450 to 0.892, with an average of 0.718. 97

B.1 LigAlign Flowchart. The three stages of ligand-based active site alignment, namely ligand corre-

spondence, ligand alignment, and cluster detection, are shown along with the techniques used to

accomplish each stage. 110

ix

B.2 Topological vectors encode atom counts as a function of bond distance from a selected atom.

For example, the numbers next to the atoms depict the minimal bond distance from atom A. The

topology vector for B is [3, 5, 1] indicating three atoms at distance 1, five atoms at distance 2, and

one atom at distance 3. 112

B.3 A sequence alignment of P450 homologs and extracted patterns, as computed by MUSCLE Edgar

(2004) using default settings. The colors correspond to the default Clustal coloring scheme. Four

biologically-significant regions Nebel (2006) are boxed and numbered and the conserved cysteine

residue from PROSITE pattern PS00086 is marked. The first five rows comprise the input pro-

teins; the next five rows show the subset of residues marked as conserved by LigAlign; the last

two rows are the conserved residues in the results reported by Nebel. 118

B.4 A ligand-based alignment of P450 homologs showing the shared heme moiety (colored tan) sur-

rounded by the residue clusters detected by LigAlign. The patterns labelled in Figure B.3 are

distinguished by color. Pattern 1 is shown in purple; pattern 2 is dark blue; pattern 3 is green; and

pattern 4 is presented in red. Clustered residues which are not members of one of these patterns

are shown in light grey. 119

B.5 A rigid minimal-RMSD ligand-based alignment of the NAD ligand from the 21 NAD-binding

proteins listed in Table B.1. The shared NAD ligand is colored tan. Consistent clusters of residues

are shown surrounding the ligand. Hydrophobic residues (LVAGIMP) are depicted as orange

lines; acidic residues (DE) are shown as pink lines. Red spheres correspond to the location of

structurally conserved water molecules. 121

B.6 Fragmentation of the bound NAD ligand from 1HDR (each rigid fragment is shown in a different

color), after fragmentation but before alignment to the green pivot NAD ligand in 1HDX. The

NAD moieties of nicotine, nicotine ribose, nicotine phosphate, adenine phosphate, adenine ribose,

and adenine are labeled. 123

B.7 A protein alignment using only the nicotine moiety of the NAD ligand (shown in a dashed circle).

The shared NAD ligand is colored tan. The misalignment induced by nicotine alignment on the

non-nicotine moieties is apparent. Consistent clusters of residues, as listed in Table B.2, are

shown surrounding the ligand. The underlined C5 cluster was identified by flexible alignment but

was not detected by rigid alignment. Hydrophobic residues (LVAGIMP) are depicted as orange

lines; basic residues (RHK) are blue lines. Red spheres correspond to the location of structurally

conserved water molecules. 125

x

Relation to published work

Chapter 4 was published as:

• “Construction of new medicines via game proof search”, Abraham Heifets and Igor Jurisica, AAAI,

(2012). Heifets and Jurisica (2012a). Reprinted (adapted) with permission from Heifets and Jurisica

(2012a). Copyright 2012 Association for the Advancement of Artificial Intelligence.

The material in chapter 5 was published as:

• “SCRIPDB: a portal for easy access to syntheses, chemicals and reactions in patents ”, Abraham

Heifets and Igor Jurisica, Nucleic Acids Research, 40:428-433 (2012) Heifets and Jurisica (2012b).

Reprinted (adapted) with permission from Heifets and Jurisica (2012b). Copyright 2012 Oxford Uni-

versity Press.

• “Diversity as a first-class ranking measure in automated bioisosteric replacement”, Abraham Heifets

and Igor Jurisica, Abstracts of Papers, 242nd ACS National Meeting(2011) Heifets and Jurisica

(2011). Adapted with permission from Heifets and Jurisica (2011). Copyright 2011 American Chem-

ical Society.

Chapter 6 is in manuscript preparation as:

• “Synthetic feasibility without human judgment”, Abraham Heifets, Andrea Vargas, and Igor Jurisica.

Appendix B was published as:

• “LigAlign: Flexible ligand-based active site alignment and analysis ”, Abraham Heifets and Ryan

Lilien, Journal of Molecular Graphics and Modeling, 29(1):93-101, (2010) Heifets and Lilien (2010).

Reprinted (adapted) with permission from Heifets and Lilien (2010). Copyright 2010 Elsevier.

xi

Chapter 1

Introduction

Paclitaxel, a chemotherapy used for breast and ovarian cancer, occurs in the bark of the Pacific yew tree (Taxus

brevifolia). Pacific yew tree bark contains so little paclitaxel that ten trees must be sacrificed to produce one

course of chemotherapy. Unfortunately, the Pacific yew is both ecologically threatened and too slow-growing to

be cultivated. Therefore, harvesting paclitaxel is - at best - a temporary solution until the Pacific yew is wiped out

and puts the lives of cancer patients directly at odds with environmental stewardship.

If we can construct paclitaxel artificially, we are freed from the need to gather naturally-occurring molecules.

Artificial molecule construction, or synthesis, is often more cost-effective and dependable than collecting wild

molecules (which may be rare, hidden, laborious to harvest, or legally protected). Additionally, certain useful

molecules do not exist in nature. Indeed, many modern conveniences, such as medications, dyes, fragrances, food

additives, plastics, and pesticides, are synthesized rather than harvested. At the beginning of my PhD program,

the ten largest pharmaceutical and chemical companies had revenues of over USD$434 and USD$414 billion,

respectively (Cacace, 2009), giving an indirect measure of their pervasive impact.

However, to synthesize a molecule, we require a scheme for its construction from available starting materials

using known chemical reactions. Analogously to cooking a meal, syntheses begin with simple commercially-

available ingredients which are combined and transformed into new products. Often, as in the motivating example

of paclitaxel, we have a specific molecule which we would like to construct, and the key question is how to figure

out the recipe which will cook up the molecule we want. When the molecule has already been made, the recipe

can be found in a synthetic database (the chemist’s equivalent of a cookbook). Unfortunately, many desirable

molecules, such as new medicines, have never been made and recipes must be invented to create the molecule.

Indeed, a core task in organic chemistry is the planning of organic syntheses: the determination of a succession

of chemical reactions that constructs a desired molecule from simple commercially-available starting materials.

1

CHAPTER 1. INTRODUCTION 2

Over the last 44 years, computational chemists have achieved important technological advances in computer

tools that spawned the entire field of cheminformatics. We have significantly advanced since Corey and Wipke’s

pioneering paper, which detailed the repurposing of oscilloscopes to display molecules and the use of “lightpens”

to avoid entering molecules on punchcards (Corey and Wipke, 1969). Corey and Wipke’s system formed the basis

of ChemDraw software, a closed but common chemical interchange format. Additionally, a number of popular

molecular toolkits have been developed, including JChem (ChemAxon, 2011), RDKit (Landrum, 2006), OpenBa-

bel (O’Boyle et al., 2011a), Pybel (O’Boyle et al., 2008), the Chemistry Development Kit (Steinbeck et al., 2003),

and the Small Molecule Subgraph Detector toolkit (Rahman et al., 2009). In addition to providing data structures

to represent molecules and reactions, these toolkits provide standard implementations to compute properties of

molecules, such as molecular weight, charge, polar surface area, compute the product of chemical reactions, or

to recognize important biochemical substructures such as hydrogen bond donors or acceptors. These capabilities

are used in software that helps to propose new interesting molecules, such as de novo design or lead elaboration

software (Langdon et al., 2010, Leach et al., 2006, Meanwell, 2011, Patani and LaVoie, 1996, Segall et al., 2011,

Sheridan, 2002, Stewart et al., 2006, Wagener and Lommerse, 2006). Because these toolkits read and interconvert

molecular data in a variety of formats and provide code to efficiently find molecular substructures in large sets of

molecules, they are often used to perform operations on data from chemical databases such as ChEMBL (Warr,

2009), PubChem (Wang et al., 2009), ChEBI (Degtyarenko et al., 2008), and the Protein Databank (Berman et al.,

2000).

Even computer-aided organic synthesis planners have been extensively studied. Corey and Wipke developed

the first computer-aided organic synthesis planning system demonstrating that the computer could be a useful

tool for the bench chemist, although their system relied on the human to decide which reaction to apply at every

step (Corey and Wipke, 1969). Krebsbach et al. note that chemical synthesis planning may be thought of as an

instance of AND/OR graph search, although they did not describe the use of algorithms which search AND/OR

graphs efficiently (Krebsbach et al., 1998). Chemists have, at a high level, noted the analogy between the kind

of reasoning used in playing chess and in planning chemical syntheses (Todd, 2005). Specifically, in both tasks,

the choice between two alternative actions requires an analysis of what states each action leads us to and our

available options in that imagined future. (Here, caution should be exercised as the analogy may be misleading:

chess computers can beat humans by searching to some depth cut-off, even if checkmate is not yet achieved. In

contrast, a chemical synthesis must be described all the way to starting materials or else the chemist does not know

how to begin making the molecule.) In Section 2.5, I give a deeper discussion of these and other previous efforts

to build automated synthetic planners and, in Chapter 4, I construct an automated planner of organic syntheses

using modern search algorithms.

None of these previous efforts could compete with an expert chemist, evidenced by the fact that new syntheses

CHAPTER 1. INTRODUCTION 3

are still primarily planned by hand today. Automated organic planning systems “understood” how to apply many

fewer reactions than a human chemist, and could analyze syntheses of smaller sizes. Additionally, many of the

systems relied on ad hoc strategies to guide the search, which can prevent the discovery of good syntheses and

have been shown to be unreliable in other domains (Campbell, 1999). To date, there have been no examples of

computer-aided organic synthesis planners that use complete and efficient search algorithms. Existing heuristics

have been evaluated only on small test sets and, at best, capture the opinions of a handful of chemists.

But, before we discuss search algorithms in detail, let us cover the general design of such systems. As we

will see, such automated organic synthesis planners typically take three pieces of input. First, the user specifies

a goal molecule for the computer system to synthesize. Second, the computer is provided with a database of

available starting materials and, third, with a database of reactions that encode transformations which can be

performed on those starting materials. (In contrast, a human chemist largely carries the set of available reactions

and starting materials in his or her head, and queries external databases only to verify the existence of a particular

example.) The computer system outputs a set of partially-ordered reactions that produce the desired goal molecule

by iteratively transforming available starting materials.

While I will formalize these descriptions in Chapter 3 as Definitions 12 and 13, I will note an important point

about partial-ordering because it impacts our intuitions about how to perform synthesis planning: the output is

partially-ordered because, often, there is no restriction of the order of several reactions. Consider our previous

example of a recipe to cook a meal, where different courses can be made separately: the cooking of the dessert can

be planned and executed independently of the main course. Indeed, this partial-ordering often holds recursively:

to make a pie for the dessert course, the pie crust is built separately from the pie filing. Similarly, the synthesis

of a molecule often decomposes into several independent pieces. These pieces can be performed in any order,

or indeed in parallel, and the work for one piece does not impact other pieces. Unlike shortest-path problems,

where the output is a single path (Russell and Norvig, 1995, Chapter 3), organic syntheses are acyclic graphs. An

example is shown in Figure 2.6.

Fortunately, the automated derivation of such graphs of actions has been studied extensively in the field of

artificial intelligence, under the subfields of heuristic search, path planning, game proofs, and automated domain-

independent planning (Russell and Norvig, 1995, Chapters 3, 4, 5, 6, 7, 11, 12, 13, 16, and 17). In these research

areas, problems are abstracted into a graph. The nodes of the graph correspond to the state of the world under

consideration. For example, in chess the nodes may represent different board states, whereas for a robotic car the

nodes could represent different locations. The connections between nodes in the graph correspond to actions that

change the world. In chess, these would be specified by legal piece moves, whereas the car’s actions might corre-

spond to wheel velocities. Strategies for solving the problem are articulated as paths in the graph, corresponding

to sequences of actions which eventually transform the world from some initial state into some desired state. As

CHAPTER 1. INTRODUCTION 4

I will show, organic syntheses can be modeled as branching plans in a discrete, fully-observable state space.

In this thesis, I describe the design of computer-aided organic synthesis planners and draw connections to

proof-number based game tree search. Since the efficiency of heuristic search depends on the strength of avail-

able heuristic guidance, in Chapter 2 I describe recent developments in molecular complexity measurements that

incorporate starting material availability as well as difficulty of chemistry, which can be used to provide heuristic

guidance for organic synthesis planners. Then, in Chapter 6, I discuss the critical limitation of existing heuristics

for estimating the difficulty of constructing molecules: specifically, existing systems use human opinion to build

their training sets. Unfortunately, in a number of fields including chemistry, human opinions have been shown to

be consistent neither across experts nor across time. I address this limitation by proposing a heuristic estimator

that predicts the number of synthetic steps required to produce a molecule. These synthetic step counts approx-

imate the total difficulty of making a given molecule, and are derived objectively from syntheses in our training

data.

I offer this dissertation in support of my thesis: Through the use of principled algorithms and massive datasets,

it is possible to create human-caliber automatic synthetic feasibility estimators. I demonstrate this deliberately-

provocative claim in two separate ways. First, I show heuristic-free retrosynthetic analysis that can solve problems

from undergraduate organic chemistry exams. Second, I derive heuristics for estimating synthetic feasibility

that correlate well with human-generated assessments. While the automatic tools I describe can not and should

not replace expert human judgement, my hope is that they may serve as useful adjuncts - especially when the

number of molecules we wish to consider are far too numerous for manual curation. In fact, the design of new

syntheses is so crucial that a variety of tools to (partially) inform the design are useful; we are not obliged to create

fully-automated planning systems for organic syntheses. Tools related to the planning of syntheses can be used

for finding relevant starting materials, searching the literature for appropriate reactions, and rough ordering and

filtering of candidate molecules via the prediction of synthetic feasibility. Therefore, even heuristics of limited

scope or accuracy can have utility.

To summarize, the contributions of this thesis include

1. the first complete and principled search algorithm for synthesis planning, specifically the use of proof-

number search algorithms to guide the search (Chapter 4);

2. the first public benchmark for computer-aided organic synthesis, to permit direct comparisons of alternative

planners (Chapter 4);

3. the first synthetic feasibility heuristic derived from the number of steps per synthesis, rather than from

subjective estimates of difficulty (Chapter 6);

CHAPTER 1. INTRODUCTION 5

4. the largest synthetic feasibility training set (Chapter 6); and

5. an analysis of synthetic feasibility estimators on substantial external validation sets (Chapter 6).

At 43,976 data points, the training data is an order of magnitude larger than the previous largest comparable data

set of 3,980 molecules in Takaoka et al. (2003), and the validation set of 5,280 molecules is the largest validation

set to date.

I note that many of these contributions are open-source and publicly-accessible. In contrast to computer sci-

ence and bioinformatics tradition, a substantial proportion of work in cheminformatics is commercially motivated

and is not publicly distributed (such as Takaoka et al. (2003), which was work done inside a company and is not

available for analysis). As a consequence, science is slowed: direct comparisons are often impossible and every

practitioner must build each tool from scratch. In the case that the tool is derived from empirical measures, as in

this thesis, often the necessary datasets must be gathered and curated before any analysis can begin. I constructed

SCRIPDB, a publicly-accessible database containing chemical structures, syntheses, bioisosteric alternatives, and

biomedical literature to enable the investigations described in the preceding paragraph (Chapter 5). At the time of

its deposition to the NIH’s comprehensive PubChem database, SCRIPDB had over 6 million unique structures and

was the 7th largest contribution of molecules to PubChem and the 2nd largest academic contribution in history.

It is my hope that my contributions will provide a foundation so that future research endeavors will not begin ex

nihilo.

Chapter 2

Prolegomena to any future automated

synthesis planning

A limiting factor in the usefulness of previous synthetic planners has been the combinatorial explosion of the

search space but the search algorithms previously employed have been rudimentary (Law et al., 2009). Over the

last two decades, a number of important advances in search algorithms appropriate for synthetic search have been

developed. For example, I will show that the derivation of syntheses can be represented as an AND/OR graph

search (Nilsson, 1980, Wipke et al., 1978) since we analyze precursor molecules independently1.

In presenting the background work for my thesis, I will begin by discussing standard heuristic search algo-

rithms and their application to domain independent planning. Then, I will discuss algorithms that are specific

to search problems with branching solutions. Finally, I will briefly cover some basic chemistry, and discuss

domain-specific guidance for search algorithms and how to derive libraries of available reactions.

2.1 Search

Search is a fundamental technique in artificial intelligence, and many problems have been framed as a search for

a solution in an appropriate problem formulation (Russell and Norvig, 1995, Chapters 3, 4, 6, 7, 11, 12, 13, 16,

and 17). Search problems comprise a description of the world, a set of actions that can be performed to alter the

world, and a preferred way for the world to be. The question that search tries to answer is what actions need to

1For example, to make macaroni and cheese, I need to cook both the macaroni and the cheese sauce. If my scheme to cook the macaroni is
totally separate from my scheme to make the sauce, then these are independent. Since a chemist synthesizes required precursor molecules in
separate test tubes from abundant starting materials, the construction of the molecules proceeds independently. Contrast this with problems in
other planning domains, where progress toward one goal may undo progress toward another. For example, an autonomous rover that drives to
location X may lack sufficient fuel to reach location Y. Such entanglement hinders the decomposition of the problem into clearly delineated
subproblems.

6

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 7

performed, and in which order, to convert the world from its current state to the desired world. An extraordinary

number of algorithms have been devised to guide the search to find these sets of actions.

As a reminder, Russell and Norvig write:

A [search] problem is really a collection of information that the agent will use to decide what to do.

[. . .]

• The initial state that the agent knows itself to be in.

• The set of possible actions available to the agent. The term operator is used to denote the

description of an action in terms of which state will be reached by carrying out the action in a

particular state. (An alternate formulation uses a successor function S. Given a particular state

x, S(x) returns the set of states reachable from x by any single action.)

Together, these define the state space of the problem: the set of all states reachable from the initial

state by any sequence of actions. A path in the state space is simply any sequence of actions leading

from one state to another. [. . .]

• The goal test, which the agent can apply to a single state description to determine if it is a goal

state. Sometimes there is an explicit set of possible goal states, and the test simply checks to see

if we have reached one of them. Sometimes the goal is specified by an abstract property rather

than an explicitly enumerated set of states. For example, in chess, the goal is to reach a state

called ”checkmate,” where the opponent’s king can be captured on the next move no matter

what the opponent does.

Finally, it may be the case that one solution is preferable to another, even though they both reach the

goal. For example, we might prefer paths with fewer or less costly actions.

• A path cost function is a function that assigns a cost to a path. In all cases we will consider,

the cost of a path is the sum of the costs of the individual actions along the path. The path cost

function is often denoted by g.

For example, in classical domain-independent planning, states and goals are expressed in the equivalent of

first-order logic (Russell and Norvig, 1995, Chapter 11). Typically, for a given domain, these are compiled into

conjunctions of Boolean variables. States are a set of Boolean variables which encode what is true in the state,

while Goals specify a conjunction of Boolean variables which must be true. Goals may also contain existentially

quantified variables. Operators have two parts: first, a precondition which is a conjunction of Boolean variables

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 8

that must be true for the operator to be applied; and second, an effect which is a conjunction of Boolean variables

which describes what changes are made to the state variables when the operator is applied.

As we shall see, organic chemistry can also be mapped to state space search: molecules are the states, and

the operators are the reactions that transform one molecule or set of molecules into another. The desired product

is the goal molecule. Some molecules can be acquired simply by purchasing them. These may be chosen as the

initial states; all other molecules will need to be constructed by some set of reactions from molecules which are

purchasable. In our discussion, we will only attempt to minimize the total number of synthetic steps, so the cost

of every action is 1.

A search algorithm proceeds by checking whether the initial state is a goal. If it is, the search is complete. If

not, alternative states need to be considered. Other states may be found by expanding the state: that is, applying

the operators to the current state to generate a new set of states. The process is repeated by choosing one of these

new states to investigate, and storing the other states for later evaluation.

As Russell and Norvig write:

This is the essence of search - choosing one option and putting the others aside for later, in case

the first choice does not lead to a solution. [...] We continue choosing, testing, and expanding until a

solution is found, or until there are no more states to be expanded. The choice of which state to expand

first is determined by the search strategy. [...] Breadth-first search expands the shallowest node in

the search tree first. Uniform-cost search expands the least-cost leaf node first. Depth-limited search

places a limit on how deep a depth-first search can go. Iterative deepening search calls depth-limited

search with increasing limits until a goal is found.

Often, we have some additional knowledge about which node to select for expansion. We can incorporate this

knowledge and guide our search heuristically. If the decision of which node to expand next is the node with the

best evaluation, then the expansion strategy is called best-first search. When the heuristic evaluation is a function

that estimates the cost to reach the goal, and this heuristic function is used in a best-first search, the resulting

strategy is called greedy search. That is, greedy search chooses to expand the state with the minimum estimated

cost to reach the goal.

The basic formulation of search has been extended to more general problems. For example, nondeterministic

planning extends operators to have several alternative effects (Rintanen, 2004). These capture the idea that an

operator application might succeed or fail, such as an imperfect robotic arm that sometimes drops a block that

it tries to lift. In such a formulation, an operator may lead from a particular state to one of several states. A

complete solution for this problem should describe plans for each contingency: that is, it should specify what the

robot should do if the block were lifted and what the robot should do if the block were dropped. This means that

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 9

the solution contains branches, depending on which state is encountered after an operator application. Since we

land in different states, the solutions from each branch may need to be different.

Often, nondeterministic planning assumes that the various outcomes of an operator application happen with

some nonzero probability, although these probabilities may not be known to the planner. In this concrete example,

this means that the robotic arm can repeatedly try to pick up the block and drop it, until it eventually succeeds.

In other words, the solution may contain cycles as well as branches. However, in alternative problem domains,

nondeterminism may need to be modeled without probabilities: for example, in a 2-player game, the choice of

move by the other player may be modeled by nondeterminism because it transitions the game to one particular

game state out of a set of possible states, but the other player chooses their moves adversarially rather than

randomly.

Finding branching solutions to problems such as nondeterministic planning requires algorithms that are dis-

tinct from the single path generating algorithms of traditional search. We now investigate such algorithms.

2.2 AND/OR graph search algorithms

AND/OR graph search (Nilsson, 1980, Wipke et al., 1978) has been previously applied to planning problems

such as Markov Decision Problems (MDPs) (Bonet and Geffner, 2006) and the derivation of winning strategies

in two-player games (Allis et al., 1994, Nagai, 1998, Schaeffer et al., 2007).

We define an AND/OR graph as

Definition 1 (AND/OR graph).

• a discrete set of states S

• a distinguished initial state s0 ∈ S

• for each state s ∈ S, a set of actions A(s) ⊆ A.

• Each action ai is a directed hyperedge, connecting state s to set of successor states {si, ..., sj} ∈ S. In the

literature, these connections are sometimes equivalently described by a successor function f(a, s) ⊆ S (Rus-

sell and Norvig, 1995, Chapter 3).

• A function cost(a, s) describing the cost of taking an action.

• A cost function cost(s) for terminal states.

A subset of states, G ⊆ S, where cost(s) = 0 are termed goal states and the set of states where cost(s) =∞

are called failure states. We assume that costs are non-negative. Goals and failures are terminal states, while

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 10

any other state is nonterminal. It is often convenient to represent the hyperedges as nodes, which permits

all connections in the graph to be represented with simple (start,end) arcs. For example, in two player games,

the hyperedges represent the outcome of the opponent’s moves and it can be useful to represent the two players

symmetrically. In the literature, these hyperedges are calledAND nodes (I may use these terms interchangeably)

and the nodes from which the hyperedges originate are called OR nodes.

The nodes in AND/OR graphs may be labeled as solved. Goals are always solved. An internal AND node is

solved if all of its children are solved, while an internal OR node is solved if any of its children are solved. A

solution graph therefore specifies (at least) one action for each non-goal node, which connect the initial state to

some set of goal states.

For organic synthesis, an OR node comprises a single molecule. The hyperedges from the OR node are given

by the reactions that could produce the molecule. The AND node has arcs pointing to the OR nodes that represent

each required reagent molecule. In other words, the OR node representing a molecule that could be produced

by 5 different reactions would have 5 arcs pointing to the required reagents for each reaction. The molecule can

be produced (i.e., solved) if any one of the reactions is executed but each reaction is executable only if all of

its required precursors are available. Molecules in the set of starting materials are labeled as solved, implying

that molecules not available as starting materials are solved if they are produced by some reaction with solved

reagents.

We will formalize the notion of the unbounded synthesis problem in Definition 12 of Chapter 3. However,

we can intuitively describe how a synthesis problem may be represented as an AND/OR graph. Each state in S

corresponds to a different possible molecule. A synthesis problem specifies a goal molecule, which corresponds

to the initial state s0 of the AND/OR graph. The set of goal states corresponds to the catalog of available starting

materials for the synthesis. The library of reactions available to the chemist correspond to the set of actions A.

2.2.1 AO*

Algorithm 1 describesAO∗, one of the earliest complete and admissible algorithms for AND/OR graph search (Martelli

and Montanari, 1973). AO∗ may be seen as a generalization of A∗ (Hart et al., 1968). A∗ finds a minimal cost

path from the initial state to the goal state. AO∗ finds minimal cost trees from the initial state to a set of goal

states. This generalization is necessary because AND nodes require solutions for every child node, not just for a

single child. A∗ and AO∗ are equivalent when the searched graph only has OR nodes.

AO∗ executes as follows. The partial solution graph is initialized to contain the start node. AO∗ then proceeds

in two phases that may be termed find and revise (Bonet and Geffner, 2006). First, an unexpanded node is found

in the current minimal cost partial solution and expanded. This expansion may increase the costs of the current

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 11

Algorithm 1: Pseudocode AO∗ listing as presented in (Hansen and Zilberstein, 2001)

1 procedure AO*
Input: start state s

2 G’← {s}
3 while partial solution graph contains nonterminal unexpanded node n do

Expand best partial solution
4 foreach n′ ∈ children(n) do
5 if n′ /∈ G’ then
6 G’← G’ ∪ {n′}
7 if goal(n’) then f(n’)← 0
8 else f(n’)← h(n’)
9

Update state costs and mark best actions
10 Z← {n} ∪ ancestors-along-marked-arcs(n)
11 while Z not empty do
12 Remove from Z a node i such that no descendent of i ∈ G’ occurs in Z.

13 a← argminx∈actions(i)

[
ci (x) +

∑
j pij (x)f(j)

]
14 Mark a as the best action for i.
15 f(i)← ci (a) +

∑
j pij (a)f(j)

16 return marked solution graph

solution to be larger than alternatives. Therefore, AO∗ iterates up the ancestors of the expanded node and revises

each’s best action to point to the lowest cost alternative. This process is repeated until the solution graph contains

no unexpanded nodes, at which point the solution is complete and of minimal cost.

In more detail, AO∗ executes in two alternating phases. The first phase is node expansion, which begins at the

root of the search tree and traces a path to some nonterminal leaf. At each node, the path is extended by taking

the arc which leads to the set of successors with cheapest total cost. When following a hyperedge, the path is

extended arbitrarily by choosing amongst the unsolved successor states. Once a leaf is found, its successors are

generated and added to the expanded AND/OR graph. The cost of leaves is defined as 0 for goal states, ∞ for

failure, and the heuristic evaluation of the state otherwise.

The second phase is cost updating, which propagates changes in path cost up the tree. For each expanded state,

AO∗ needs to update its ancestors, whose value may have changed. To ensure correctness, updates are required

to proceed from the leaves upward, since the cost of a node has to reflect the updated cost of its descendants.

For efficiency, we do not attempt to update ancestors which are uninvolved in the current best solution. Since

the current best solution is maintained by marking arcs on Line 14, this procedure is referred to as “ancestors-

along-marked-arcs” in the listing of Algorithm 1. These nodes are precisely those where a cost revision would

not change the final solution because there already exists a cheaper partial answer.

AO∗’s most serious practical problem is that, like A∗ (Hart et al., 1968), it stores the entire graph in memory.

Search spaces tend to grow exponentially with problem size so few real-world problems fit within modern mem-

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 12

ory, which limits A∗ and AO∗’s applicability to toy problems. To address this shortcoming, several linear-space

AO∗-like algorithms have been proposed (Bonet and Geffner, 2003, 2005, 2006). These can be understood as

iterative best-first variants, analogous to the relationship that IDA∗ (Korf, 1985) and RBFS (Korf, 1992) hold

to A∗.

2.2.2 Learning in Depth-First Search (LDFS)

Algorithm 2: Learning in Depth-First Search from (Bonet and Geffner, 2005)

1 V(Global variable storing costs of nodes)
2 π(Global variable storing policy mapping states to actions)
3 procedure LDFS-DRIVER

Input: start state s
4 solved← false
5 repeat
6 solved← LDFS(s)
7 until solved
8 return (V, π)

9 procedure LDFS
Input: node n

10 if n is solved or terminal then
11 if n is terminal then V(n)← cost(n)
12

13 Mark n as solved
14 return True

15 flag← False
16 foreach a ∈ actions(n) do
17 if [c(a, n) +

∑
n′∈F (a,n) V (n′)] > V (n) then continue

18

19 flag← True
20 foreach s′ ∈ F (a, n) do
21 flag← LDFS(s’) ∧ [c(a, n) +

∑
n′∈F (a,n) V (n′)] ≤ V (n)

22 if ¬flag then break
23

24 if flag then break
25

26 if flag then
27 π(n)← a
28 Mark n as solved

29 else
30 V(n)← mina∈A(n)[c(a, n) +

∑
n′∈F (a,n) V (n′)]

31 return flag

Learning in Depth-First Search is presented as Algorithm 2 (Bonet and Geffner, 2005). LDFS is similar to

IDA∗, in that CPU time is increased to reduce memory requirements. Whereas the entire search tree is saved

in AO∗, in LDFS, nodes are re-expanded on the path from the root to the leaves and only the score for each

state is saved, to guide the search on future expansions. While this incurs a certain computational overhead, in

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 13

cases where the size of the search tree exceeds available main memory, the reduction in use of slower levels of the

memory hierarchy can be a net win.

LDFS is a recursive algorithm which returns whether a node is consistent, namely whether the cost of a

node is equal to the least expensive child cost plus the cost of the transition to the child. As a side-effect, node

values are brought into consistency with their children and a choice of best-child is maintained at each node,

which permits policy-generation after termination of the algorithm. The base case for the recursion is described

on line 10. If the node under examination is a goal, a failure terminal, or has already been solved, the node is

marked as solved which prevents the node from being re-expanded unnecessarily. Furthermore, the appropriate

value (0 for goal states,∞ for failure, or the minimum of its children’s value otherwise) is recorded for the node.

Terminal and solved nodes are always consistent by definition and this fact is reported up the callstack.

If the node is a nonterminal node, it is checked for consistency in the block beginning on line 16. For each

hyperedge defined by an action, the set of successor states is examined. If the cost of choosing the successor set

F (a, s) (that is, the cost of the transition plus the sum of the costs of the states) exceeds the cost of the original

interior node, we know that this arc did not determine the previous cost of the nonterminal node and therefore

would not change its cost, even if the cost of this set were revised. The check on line 18 lets us skip examination

of these nodes in such cases.

Alternatively, lines 19-25, check that every successor state of the current action is itself consistent and cheaper

than the interior node. The interior node is consistent exactly when it has an action for which all of the successors

are consistent and cost less. It may seem that the second cost check (line 23) is unnecessary as it repeats the

computation on line 18 but the recursive call to LDFS on line 21 can have an imperative side-effect of revising

the cost of the child upwards.

Two aspects of this basic algorithm should be noted. First, heuristics can be incorporated by initializing V (s)

to a heuristically computed value for an instantiated node. That is, the cost function on line 12 may incorporate

admissible heuristic estimates for the cost that solving node n will eventually incur. The second consideration

is the algorithm’s behavior when the search graph contains cycles. We consider this general problem in the next

section.

2.2.3 The question of cycle semantics

LDFS cannot deal with cycles as the recursive call on line 21 would never terminate. LDFS shares this defi-

ciency in handling cycles with AO∗. This is a critical limitation. The AND/OR graphs that model many problem

domains contain cycles when the set of operators contain inverses. These cycles must be handled with some care.

For example, in Figure 2.1a, the state is not a goal state (double circle), and the futility of this cycle would need

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 14

(A) (B) (C)

(a) Dead-end. Guaranteed failure under
any semantics.

(A) (B) (C)
(b) A guaranteed win if hyperedges tran-
sition with nonzero probability to a single
state.

(A) (B) (C)
(c) No guaranteed win under any seman-
tics. Guaranteed loss unless hyperedges
transition to a single state.

Figure 2.1: Cyclical AND/OR graphs. Semicircles connect paths in a single hyperedge. Double circles indicate goal states. The examples are
deliberately simple; equivalent yet more-realistic examples may be generated by replacing simple arcs with larger subgraphs.

to be detected by algorithms searching the AND/OR graph.

Cycles occur in many domains and, in our particular domain, cycles are common and must be handled cor-

rectly. Cycles occur in the organic synthesis planning state spaces due to invertible reactions. For example,

oxidations and reductions or the addition and removal of protecting groups can regenerate a molecule from itself.

However, successful syntheses cannot depend on consuming a molecule in its own production.

Not all algorithmic responses are appropriate for the domain of organic synthesis planning because the seman-

tics of what a cycle denotes can differ across problem domains. For example, LAO∗ returns cyclical solutions for

Markov Decision Problems by running a cyclical value revision step until the change in node values converges

below some ε-bound or the change in node values does not alter the best action policy (Hansen and Zilberstein,

2001). This solution is not applicable to organic synthesis planning because the semantics of cycles are different.

While both search spaces contain cycles, successful policies for MDPs can contain certain types of cycles. For

example, consider Figure 2.1b. In an MDP, following the arc out of the start node will transition to the goal with

probability p while, with probability 1 − p, it will have no effect and leave the system at the start node. Because

this transition can be taken an unbounded number of times, a policy which takes it will be successful as long as

p > 0. In fact, the graph in Figure 2.1b is a guaranteed win because every path could be extended to reach a goal.

In an adversarial context where an opponent chooses the destination state of a hyperedge, such as in two-player

games, the opponent can force the transition to always return to the start state. Therefore, there is no successful

policy under an adversarial interpretation. Similarly, for organic synthesis planning, where we are obliged to

provide a synthesis for every precursor molecule (that is, each state pointed to by the hyperedge) rather than just

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 15

one, a loop such as in Figure 2.1b denotes a failed synthesis.

Figure 2.1c gives an example where a probabilistic problem interpretation should return a policy with a non-

zero probability of success (namely, taking the arc out of the start state). In contrast, if the graph represents an

adversarial problem, a problem where we need a guarantee of success, or an organic synthesis problem, then our

planning algorithm must detect that this case is a certain failure. Although Figure 2.1c is a simple example, we

could replace the left and right child nodes with arbitrarily large subgraphs (either containing or lacking cycles)

without changing the results of the analysis.

2.2.4 Proof Number Search (PNS)

Due to these subtleties in analyzing the domain of applicability of graph search algorithms, we now turn to

algorithms designed to yield plans in an adversarial context. Game proofs, in games of first-player loss (Kishimoto

and Müller, 2004), are a domain with a semantics that closely matches the semantics we require in organic

synthesis. A game state is a guaranteed win for the first player if the game state is already a win or if there is a

move they can play such that, for every response by the second player, the resulting game state is a guaranteed

win. We can cast organic synthesis as a game in the following way: player 1 moves by picking a reaction that

synthesizes the goal molecule. Then player 2 demands one of that reaction’s required reagents be synthesized.

The players continue to take turns until the molecule to be synthesized is in the library of starting materials. The

game is a forced win for player1 iff player 1 can construct all required reagents.

Proof number search, or PNS, analyzes two-player zero-sum games and determines whether a player has a

forced win (Allis et al., 1994). As a side-effect, it returns the strategy that produces the victory. Unlike classical

planning, this strategy is not representable as a single sequence of moves since the proper response can vary

depending on the opponent’s move. Instead, such a strategy can be given as a mapping from game states to moves.

Allis et al. used PNS to give game theoretic values for Connect-Four, Qubic, and Go-Moku, demonstrating the

algorithms applicability to real-world problems.

In the context of proof number search, a node is proven if it is a guaranteed win for player 1 and disproven

if player 1 cannot prevent a loss. PNS maintains a proof number for each node, which correspond to the number

of leaves in the subtree rooted at the node that would need to be examined to conclude that the node is proven as

well. Similarly, each node has a disproof number that tracks the smallest number of leaves needed to be disproved

for the node to be disproved as well.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 16

Proof numbers are defined as follows:

proof (n) =



0 if n is terminal win

∞ if n is terminal loss

1 if n is unevaluated leaf∑
x∈children(n) proof (x) if n is internal AND node

minx∈children(n) proof (x) if n is internal OR node

(2.1)

If a node’s particular game position is already won, then zero additional nodes need to be proven to prove the

node, so the proof number is 0. If a position is lost, then no amount of additional nodes will suffice to prove it, so

the proof number is∞. In the best case, an unexamined leaf node could turn out to be a won position. The proof

number in this case is 1 because the leaf is the only node that had to be examined. If a node is an AND node, all

of its children must be guaranteed wins for it to be proven. Therefore, the proof number of an AND node is the

sum of the proof numbers of its children. Finally, it is sufficient for an OR node to be proven by a single proven

child. Therefore, the minimum number of leaves to prove an OR node is the minimum of proof numbers of its

children.

Disproof numbers are defined symmetrically:

disproof (n) =



∞ if n is terminal win

0 if n is terminal loss

1 if n is unevaluated leaf

minx∈children(n) disproof (x) if n is internal AND node∑
x∈children(n) disproof (x) if n is internal OR node

(2.2)

No matter how many additional nodes are evaluated, a won node cannot be disproved; an AND node is disproven

if any of its children are disproven; and an OR node is disproven only if all of its children are disproven.

Proof number search, as given in Algorithm 3, begins with an unevaluated start leaf node. The algorithm se-

lects a leaf node, expands it, and assigns it proof and disproof numbers in accordance with Definitions 2.1 and 2.2.

The selected leaf is found by descending from the root, at each point choosing the child node that needs the least

work to (dis)prove it, until the leaf is found. The choice at an interior OR node is not governed by its children’s

disproof numbers; since every child needs to be disproved, the order in which they are examined is irrelevant.

However, it is possible that a proof will be discovered for a child during exploration, which will prove the OR

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 17

Algorithm 3: Proof Number Search from (Allis et al., 1994)

1 procedure proof-number-search
Input: root node root

2 while proof(root) 6= 0 ∧ disproof(root) 6= 0 do
3 most proving node← select-most-proving-node(root) expand-node(most proving node)

update-proof-numbers(most proving node)
4 return proof(root) = 0

5 procedure select-most-proving-node
Input: Node n

6 if n is a leaf then return n
7

8 else if n is OR node then
9 return select-most-proving-node(argmini∈children(n)proof(i))

10 else
11 return select-most-proving-node(argmini∈children(n)disproof(i))

12 procedure expand-node
Input: Node n

13 foreach c ∈ children(n) do
14 c.parent← n
15 if c is a win then
16 proof(c)← 0
17 disproof(c)←∞
18 else if c is a loss then
19 proof(c)←∞
20 disproof(c)← 0

21 else
22 proof(c)← 1
23 disproof(c)← 1

24 procedure update-proof-numbers
Input: Node n

25 if n is OR node then
26 proof(n)← mini∈children(n)proof(i) disproof(n)←

∑
i∈children(n) disproof(i)

27 else
28 proof(n)←

∑
i∈children(n) proof(i) disproof(n)← mini∈children(n)disproof(i)

29 if n.parent 6= NULL then update-proof-numbers(n.parent)

node and terminate exploration of the rest of the OR-node-rooted subtree. Therefore, child selection at interior

OR nodes is the child with minimal proof number. By construction, this child will have a proof number equal to

the OR node. The case for interior AND nodes is symmetric.

Once the node is expanded, its (dis)proof numbers are likely to have changed, so the proof numbers of this

node and its ancestors must be updated. PNS walks node parent pointers, recalculating the proof and disproof

numbers on the way up. This process is repeated until this root node is either proven (that is, the computed proof

number equals 0) or disproven (disproof number = 0).

Allis et al. provide three optimizations for PNS. First, they note that the update can be terminated as soon as

the (dis)proof numbers for a node do not change. This can occur whenever a node has children with tied minimal

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 18

node counts, e.g., when a node has a number of unexplored leaves. Second, if the update is terminated early in

such a manner, the node where the termination occurs will remain on the path to the selected leaf node. This

node’s subtree contained the best node in the previous iteration, this node and and all of its ancestors’ counts

were unaffected, so it would be selected again if we were to select a node all the way from the root. Therefore, a

second optimization is possible where, when the update is terminated early, the next expansion starts immediately

from the unchanged node. Finally, Allis et al. observe that the most-proving child can be determined during

count updating and that caching the index of the best child during the updating makes selection a constant time

operation.

4

2 2

11 1

Figure 2.2: If a descendant node can be reached via multiple paths, then Equations 2.1 and 2.2 are no longer correct. An example schematic
when a node has repeated precursors showing the (dis)proof counts will be incorrect. In this case, there are only 3 leaf nodes but the root
reports a count of 4.

Proof number search is not without its limitations. First, Allis et al. discuss the game search space as if it were

a tree. That is, Allis et al.’s implementation lacks transposition tables, rendering it unable to detect previously

encountered game states (such as in loops or in transpositions), and necessitating the generation of a new node for

every state. Although this state duplication is not incorrect, it is needlessly inefficient.

In many cases, games are general graphs which can contain cycles of board states when moves are reversible

(vide supra) and where nodes can have multiple parents. When nodes have multiple parents, the update proce-

dure of Algorithm 3 must be extended to update the node counts for every parent. Not only does the additional

bookkeeping computations increase runtime overhead and storing all parent pointers increase memory consump-

tion but the existence of multiple parents introduces subtle constraints into the computation of node counts. For

example, Figure 2.2 shows a situation where the counts computed for the root node do not reflect the minimal

number of leaves that must be explored to (dis)prove the node. Because the middle layer of nodes each count

the shared leaf and Equations 2.1 and 2.2 are defined only in terms of the values of immediate children, the root

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 19

double counts the proof burden of the leaf. Müller (2003), Schijf (1993) proposed set-based solutions that back

up from the leaves the sets of nodes to be proven. Unfortunately, the additional memory for storage of the sets

and increased computation for merging and checking set membership rendered this technique impractical even

for Tic-Tac-Toe.

Like AO∗, PNS keeps the entire expanded graph in memory. Allis et al. describe two methods to reduce

memory usage, named DeleteSolvedSubtrees and DeleteLeastProving. The DeleteSolvedSubtrees technique re-

moves all nodes in a subtree which has been been (dis)proven. This removal is safe because a (dis)proven internal

node will never be chosen to be expanded, so no node contained in the subtree will ever be referenced. As with the

problem of maintaining correct node counts, transitioning from a tree to a graph complicates the deletion of solved

nodes, since nodes may simultaneously be children of unsolved parents elsewhere in the search space. An anal-

ogy can be drawn to garbage collection in language runtimes, where cycles pose problems for reference-counting

garbage collectors.

The DeleteLeastProving technique is not safe, even in the restricted context of tree search, and is described as a

“last resort when all memory has been used”. That is, it may delete nodes which are still needed for the proof of the

root node. When the search cannot continue because all of memory is in use, DeleteLeastProving frees the nodes

least likely to be needed in the rest of the search. It walks the tree, selecting children with maximal (dis)proof

number; these are the nodes that would be selected last for proving. It marks these nodes as un(dis)provable and

removes them with the DeleteSolvedSubtrees method. Either this frees memory, and the search can continue as

normal, or the root is removed and the problem is declared unsolvable within the given resource constraints.

2.2.5 PN*

Again we see that memory consumption is a critical limiting factor in application of AND/OR search algorithms.

To address this constraint, Seo et al. (2001) proposed a depth-first version of PNS, called PN∗. A depth-first

traversal need store only the nodes along the current solution path, reducing the memory requirements from

exponential in search depth to linear. This increases computational overhead, due to reexpansions of interior

nodes, but Seo et al. report a relatively modest reexpansion ratio of 20%. Like most depth-first variants of best-

first algorithms, PN∗ uses a bound to limit the amount of search permitted in any subtree. Between iterations,

this budget is increased, causing successively deeper explorations of the tree. For PN∗, the bound used is the

proof number.

Seo et al. incorporate a number of extensions in their solver, namely dynamic evaluation, dominance relations,

killer moves, and recursive iterative deepening. Dynamic evaluation carries information about proof numbers

between iterations using a hashtable. If, on the current iteration, a leaf node is generated that had been previously

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 20

expanded on a previous iteration and unsolved within a proof number threshold K, then the leaf’s proof number

is initialized to K. Even at a depth of 1, for example, dynamic evaluation will set an AND node’s proof number

to the number of moves that are possible in that game state. This number is typically much higher than the default

value of 1. If the leaf had been previously solved, then no benefit can be derived from solving it again, so the

leaf’s proof number is initialized to 0. Similarly, if the leaf had been disproved, it is initialized to∞. Finally, if

the leaf is truly novel, it receives the default value of 1.

Dominance relations exploit the fact that many states are not independent, so solving one state provides clues

on how to solve others. Seo et al. describe a domain-specific shogi dominance relation between game states A

and B which describes when a solution for A guarantees a solution for B. One can make an analogy to resource

constrained planning: if we plan a successful trip that uses half a tank of gas, we’ve also generated a plan for

when we have a full tank. If such a dominance relation holds, it is clearly better to try to solve A before B and, if

the proof is successful, to solve B without expanding it.

Because such a clear dominance relationship seldom holds, the authors describe a secondary heuristic tech-

nique to handle game states which are different but which differ only by the placement of irrelevant pieces. In

such a situation, the move that served in a proof of one child of an AND node is the first move tried for prov-

ing the sibling nodes. If the differing pieces were truly irrelevant, the same sequence of proving moves would

generate a proof for the new board state. In these cases, move generation can be skipped, which can be an im-

portant computational savings for domains where invoking the move generator is expensive. This idea had been

developed earlier under the name simulation (Kawano, 1996) as an application of killer moves and the history

heuristic (Schaeffer, 1989) to proof trees.

Traditional iterative deepening increases the search budget at the root and expands the tree until the budget is

spent. PN∗ uses recursive iterative deepening, which is iterative deepening at every OR node. The justification

is that, since an AND node splits its search budget across all of its children, the thresholds to properly explore an

AND node can be much higher than needed for its child OR nodes. Recursive iterative deepening prevents PN∗

from searching too deeply the subtrees rooted at the OR node children. Although recursive iterative deepening

causes increased node expansions, even relative to regular iterative deepening, the search tree reductions due to

child re-ordering between iterations can reduce the total number of node expansions (Plaat et al., 1996). Combined

with dynamic evaluation and killer move heuristics, recursive iterative deepening provides an informative and

effective ordering on child node expansion.

As a final important optimization, Seo et al.’s implementation of PNS uses transposition tables. Seo et al.

note that the previously-discussed difficulties of generating proofs in game graphs rather than game trees occur

in practice. For example, “A Big Labyrinth”, problem 49 from the Edo era tsume-shogi (Japanese-chess mating

problems) problem benchmark “Zuku-Tsumuya-Tsumazaruya”, was not initially solved by their system due to

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 21

proof-number double counting, as discussed above for Figure 2.2. Despite these algorithmic limitations, PN∗

dramatically outperformed human solvers, solving 194 out of 195 test problems and even solved a notoriously

difficult problem with a solution depth of 1525 ply.

2.2.6 Proof Disproof Search (PDS)

Because PN∗ only uses proof numbers, it can devote significant effort trying to generate a proof for nodes which

are impossible to win and have easy disproofs. Nagai (1998) presented the first algorithm, Proof-number and

Disproof-number Search or PDS, to use both proof and disproof numbers while requiring a linear amount of

memory.

PDS maintains two bounds on the amount of search effort left to spend in proving or disproving a subgraph.

It continues to search in a subgraph while either the spent proof effort or disproof effort is below the applicable

bound. If the search fails to prove or disprove the root, a bound is increased and the search is retried. Although

there are two bounds, PDS will only increase one. If the proof number of the root is less than the disproof

number, PDS interprets this as evidence that a proof is easier to reach than a disproof and increments the proof

bound. Symmetrically, if the node looks easier to disprove, the search will be rerun with an incremented disproof

bound.

Nagai notes two optimizations. First, the initialization of (dis)proof numbers can be done heuristically. For

example, an AND node will have a proof number equal to at least the number of moves available in the board

state. Secondly, he notes that an OR node’s proof number and an AND node’s disproof numbers are essentially

equivalent. Similarly, an OR node’s disproof number and an AND node’s proof number are treated equivalently.

Therefore, he specifies a negamax implementation of PDS by specifying generalized data representations n.φ,

denoting the proof number if n is an AND node and the disproof number otherwise, and n.δ, which is the disproof

number iff n is an AND node and the proof number otherwise. This version is specialized to handle only two-

player games where players alternate turns but yields better cache performance by shrinking the amount of code

that must stay resident.

2.2.7 Depth-First Proof Number and variants (DFPN, DFPN+, DFPN(r), DFPN-TCA,

and DFPN-SNDA)

Although PNS and PDS each consider both proof and disproof numbers in their searches, the order of node

expansion by the two algorithms can differ. It is not the case that the nodes chosen for expansion by PDS

correspond to the most-proving node as defined in PNS. Therefore, PDS can waste time expanding nodes that

do not lie on the minimal proof tree. Nagai developed Depth-First Proof Number Search, or DFPN , and proved

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 22

Algorithm 4: Pseudocode for Depth-First Proof Number Search from (Nagai, 2002)

1 procedure Df-pn
Input: root node root

2 root.thφ ←∞
3 root.thδ ←∞
4 search(root)
5 return root.φ = 0

6 procedure search
Input: Node n

7 if n is a leaf then
8 expand-node(n)

9 else
10 while ¬ (n.φ ≥ n.thφ ∨ n.δ ≥ n.thδ) do
11 nc ← argmini∈children(n) i.δ
12 n2 ← argmini∈(children(n)\{nc}) i.δ

13 nc.thφ ← n.thδ −
∑
i∈(children(n)\{nc}) i.φ

14 nc.thδ ← min(n.thφ, n2.δ + 1)
15 search(nc)
16 n.φ← mini∈children(n)(i.δ)
17 n.δ ←

∑
i∈children(n) i.φ

18 procedure expand-node
Input: Node n

19 if n is a win then
20 n.φ← 0
21 n.δ ←∞
22 else if n is a loss then
23 n.φ←∞
24 n.δ ← 0

25 else
26 foreach c ∈ children(n) do
27 c.φ← 1
28 c.δ ← 1

that the sequence of node expansions always matches that of Proof-Number Search (Nagai, 2002). DFPN (with

the improvements discussed in this section) has been shown to exceed human capability in a number of real-world

domains: Nagai reported that DFPN could solve all standard Tsume-Shogi problems; Kishimoto and Müller

applied it to solve more than 95% of problems in a Go liveness analysis test suite; and Schaeffer et al. (2007)

proved that perfect play by both sides leads to a draw in checkers. Pseudocode for DFPN is given in Listing 4.

DFPN uses a negamax formulation. As we saw in PDS, the desired fact to be shown alternates with each

level: at AND nodes, the algorithm is trying to show the node can be proven, while at OR nodes the algorithm is

trying to show the node can be disproven. For either node, DFPN maintains a threshold φ for the budget left

to spend showing the proof or disproof is possible. The φ threshold for a child node is set on line 13 to be the

disproof budget of the parent node, minus the sum of proof effort already allocated to the child’s siblings. This is

the maximum before the parent node exceeds its own thresholds. The fact that the φ bound of the child is based

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 23

on the δ bound of the parent reflects the alternation of AND and OR nodes in the game tree.

Similarly, the threshold δ is the computational budget left to show that success for the node (i.e., a proof for

AND nodes and a disproof for OR nodes) is impossible. The expansion budget of the child depends on the value

of the second-best node (Line 28). This prevents over-exploration of nodes when competitive alternatives exist.

nc.δ < nc.thδ ≤ n2.δ + 1 (2.3)

∴ nc.δ ≤ n2.δ (2.4)

The essence of Nagai’s proof of equivalence to PNS is that, since the selected child’s δ is always less than its

δ threshold and the δ threshold is less than the next-best-node’s δ value (as in Equation 2.3), then transitively the

selected node has minimal δ and is therefore the most-proving node (as in Equation 2.4), in the sense of PNS.

DFPN can accommodate the optimizations previously discussed for PN∗ and PDS. In addition, Nagai

discusses an algorithmic extension called DFPN+ (Nagai, 2002). Usually, in these game proof algorithms, the

proof and disproof numbers are initialized to 1 and playing a move is considered to be free. This can lead to

very large proof trees. In DFPN+, the proof and disproof numbers are heuristically initialized and the costs of

playing a move can be set arbitrarily. For total flexibility, these setting can be different for AND and OR nodes.

By varying these settings, the shape of the search tree can be modified. For example, large move costs favor

shallow searches, possibly at the cost of wider trees.

Although Nagai produced very good results (solving all standard problems in the domain of Tsume-Shogi),

Kishimoto and Müller demonstrated a number of theoretical and practical issues with DFPN search related to

our previous theme of search in directed cyclical graphs. Kishimoto and Müller observed difficulties in solving Go

problems due to double counting of proof numbers in problems with cycles. When a cycle occurs, naive solutions

will sum the (dis)proof numbers of leaves multiple times along overlapping paths. This counting anomaly can

causeDFPN search to be incomplete on DCGs (Kishimoto, 2005, Kishimoto and Müller, 2008). Kishimoto and

Müller construct an example where the counts are incremented in such a way as to always select a node that is

not on the solution path, inducing an infinite loop. The authors propose a modification to DFPN search named

DFPN(r) to avoid such double-counting and the resulting non-termination (Kishimoto, 2005, Kishimoto and

Müller, 2003).

DFPN(r) partitions a node’s children into a set of normal children which are further from the graph root

and a set of old children which are reachable from the root on paths shorter than the paths to the parent. Intuitively,

the normal nodes are “below” the current node and the old nodes are “above” the current node in the graph. So

long as a node has unproven normal children, the old children are ignored and φ and δ are computed based only

on the normal children. If a node only has unproven old children, the node is relabeled old because its old children

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 24

must be explored for it to be solved. Therefore, the depth of the node is set to the minimal depth of its old children.

This updating of depth can change the (dis)proof counts of its ancestors if the node is moved out of the set of nodes

considered for computation of φ and δ.

This method of ignoring (dis)proof counts of certain child nodes prevents the overcounting problem but risk

creating a undercounting problem when the ignored nodes actually lie on the proof tree. Completely satisfactory

solutions do not exist. DFPN − TCA breaks the infinite loop by increasing the (dis)proof thresholds, rather

than decreasing the (dis)proof numbers as in DFPN(r) (Kishimoto, 2010). Undercounting does not occur since

the (dis)proof numbers of all nodes are considered, but the increased thresholds mean that the algorithm can

spend significant time exploring regions of the search space which do not contribute to the solution of the root.

DFPN − SNDA detects alternative paths to the same node via parent pointer chasing. The (dis)proof counts

of the common ancestor are restricted to sum only one of the paths to the repeated node. In practice, however,

DFPN −SNDA incurs a high computational overhead and still suffers from undercounting (Kishimoto, 2010).

A

B C

D E F

G H
Loss

Figure 2.3: Graph history interaction problem from Kishimoto and Müller (2004). Assume node D is a loss for the player at the root. Node B
is an AND node, marked by an semicircle connecting its out arcs. Nodes C, G, and H are AND nodes as well but are not marked because they
have a single outgoing arc.

A separate issue concerns the issue of game proofs in the presence of repetitions. Game proofs are not

commutative when cycles determine success or failure. Consider Figure 2.3 under the semantics that repetition

implies a loss for the player moving at the root, who we will call Player 1. This is similar to organic synthesis

where the chemist must avoid consumption of a molecule in its own creation. Also, assume that node G is a win

for Player 1. If we search the sequence A → B → E → H → E, we find that Player 1 loses because a game

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 25

state was repeated. Now if we search A→ B → D, we conclude that B is a loss because it is an AND node and

a loss at any child implies a loss at B. Finally, we search A → C → F → H , find that H has been previously

determined to be lost, and conclude that C and F are lost as well. Since all of A’s children (B and C) are losses,

we conclude that A is lost, despite the winning strategy A→ C → F → H → E → G.

Kishimoto and Müller provide a solution for the path-dependency of proofs, called the Graph History Interac-

tion problem (Kishimoto and Müller, 2004). The authors extend Zobrist hashing encode the sequence of moves

used to generate a board state. Given a maximum search depth, MaxDepth, and the number of possible moves

in the game, MaxMoves, the authors create a table of size MaxDepth ×MaxMoves that is initialized with

random values. The fingerprint for a sequences of moves is computed as the XOR, in sequence, of the values

in the table. When a new proof is generated for a board position, the proof and fingerprint are appended to the

entry in the transposition table. If the board position is reached with a different path, a proof for the new path is

attempted to be generated by simulating the stored proof (Kawano, 1996). Without this path-dependent technique,

incorrect proof trees could be reported in cases similar to Figure 2.3.

2.3 The shapes of chemistry

We now turn to a brief description of chemistry and will discuss how to map the concepts to the state space search

discussed earlier. For the problem of organic synthesis planning, the search states are molecules. The operators

are reactions that are applied over sets of states. Some molecules are initially available, and every other molecule

must be synthesized by finding a set of reactions which reach from initially available molecules. The synthesis

problem is finding such a set of reactions for a given goal molecule.

Figures 2.4, 2.5, and 2.6 show typical depictions of a molecule, a reaction, and their use in a multistep syn-

thesis. These representations can be seen as generalizations of domain-independent planning problems, except

where planning states are typically represented using sets of Boolean variables, molecules are represented as la-

beled graphs. The states of organic syntheses are molecules, which are represented by graphs where vertices

correspond to atoms (of elements such as carbon, oxygen, hydrogen, etc.) and edges correspond to bonds of dif-

ferent types (single, double, aromatic, etc.). The operators in chemistry are reactions, which describe the change

in bonds that can be enacted on molecules containing appropriate reactive centers. Reaction specifications include

required activating substructures, which must be present to enable a reaction, and interfering substructures, which

forbid them. These required and forbidden substructures correspond to the positive and negative preconditions of

planning operators.

Chemists plan syntheses using regression. In domain-independent planning, regression determines the pre-

cursor states that lead to a particular target state through the application of a given operator. Iteratively regressing

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 26

Figure 2.4: Aspirin. Vertices labeled C, H, or O denote carbon, hydrogen, and oxygen atoms, respectively. Edges drawn with single lines
denote single bonds and double lines represent double bonds. Typically, bonds to hydrogen are not drawn.

Figure 2.5: Esterification reaction of an alcohol active site with an anhydride active site to produce an ester. Atoms in the molecular fragments
are numbered to help the reader track bond changes. When atomic labels are omitted, the vertex is presumed to be a carbon atom with
sufficient hydrogens to total 4 bonds. Reaction conditions have been omitted for simplicity.

Figure 2.6: Synthesis of aspirin (right column) from carbon dioxide, sodium hydroxide, phenol, acetic acid and ketene starting materials
(left column) via the precursor molecules, salicylic acid (top mid) and acetic anhydride (bottom mid). The final aspirin-forming step is an
application of the esterification reaction depicted in Fig 2.5.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 27

a goal state through a sequence of operators establishes the set of states from which the goal is reachable. When

the initial state is a member of the set of precursor states, the operator sequence is a valid plan for reaching the

goal.

As with operators in domain-independent planning, chemical reaction application can be considered in the

forward or reverse directions. A reversed reaction application asks whether it is possible to create a given product

via a particular reaction and, if so, what reagents are sufficient. These reagents may be recursively analyzed in

turn until all proposed starting materials are commercially available. This recursive reversed reaction application,

called retrosynthetic analysis (Corey and Cheng, 1995), provides an algorithm to generate syntheses. Corey’s

development of this analytic technique was honored with the 1990 Nobel Prize in Chemistry (Corey, 1991).

Retrosynthetic analysis is conceptually similar to regression (Waldinger, 1977, Weld, 1994) except regression

typically begins with a set of goal states, whereas a synthesis has a single desired product that is fully specified.

A reaction can combine multiple reagents into one product. Because each required reagent is acquired or

constructed separately from the others, chemists plan the synthesis of each reagent independently. Retrosynthesis

can therefore be considered a branched planning domain such as nondeterministic planning (Rintanen, 2004).

Unlike Rintanen’s model, the branches in retrosynthesis do not admit a probabilistic interpretation as every reagent

must be created. Retrosynthetic solutions must also be acyclic. Loops in an organic synthesis denote that a

molecule is consumed in its own production, and such plans are not feasible.

Branched solutions also occur in the context of game tree proofs, which establish a game-theoretic value for

game positions. For example, to demonstrate a particular board configuration is a win for one player, a game tree

proof provides, for every opponent move, a response that forces a win (although the responses can vary depending

on the opponent’s move). Game tree proofs must also be correct when repetition is possible but cycles are

forbidden (Kishimoto and Müller, 2004). Proof number search and its memory-efficient variants (Allis et al., 1994,

Kishimoto, 2010, Nagai, 1998) have been used to solve large real-world problems such as checkers (Schaeffer

et al., 2007).

2.4 Challenges of organic synthesis

Organic synthesis presents an interesting and demanding planning domain due to the complexity of the state

description, the cost of checking whether a state satisfies the goal conditions, and the number of operators and

their interaction. We now discuss each of these factors in turn.

A particular challenge for computational chemistry is that molecules can be considerably larger than the states

generally considered in computer game playing or automatic reasoning. To represent a molecule, the atoms,

bonds, and their 3-dimensional relationships are all critical pieces of information which must be encoded in the

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 28

Figure 2.7: Palytoxin, a 409-atom molecule synthesized in 1994 (Suh and Kishi, 1994). Bonds depicted as wedges indicate the bond is angled
out of the plane of the paper toward the reader. Bonds depicted as dashes indicate the bond is angled away from the reader.

state description. Atoms vary by element type, and bonds by bond order (e.g., single, double, aromatic, etc.).

Distinct configurations interact differently with their environment despite having the same internal connectivity2.

Therefore, varying the atomic type, bond type, or atomic configuration encodes a different molecule. Considered

large among human-synthesized molecules, palytoxin (shown in Figure 2.7) has 409 atoms of which 71 can es-

tablish non-superimposable 3-dimensional configurations (Hudlicky and Reed, 2007). The state size required to

encode this information is significantly larger than for other computer reasoning domains, such as checkers (Scha-

effer et al., 2007), chess (Campbell, 1999), or domain-independent planning (Helmert et al., 2008).

Many different molecules have been characterized in practice. Any combination of constituent elements,

graph connectivity, and 3-dimensional molecular configuration can define distinct molecules. In fact, over 30

million molecules have been deposited in the PubChem compound database. Of these, at least 14 million come

from chemical vendors (Wang et al., 2009) and, therefore, are efficiently and economically synthesizable. To

determine whether planning can be halted because the molecule under analysis is commercially available, an

organic synthesis planner must efficiently check the molecule for membership in this set.

Chemical syntheses tend to have a length which is comparable to the search depth of modern chess engines.

The length of syntheses is restricted to be relatively short because a single reaction’s yield is never 100%, so

long syntheses produce very little product. The average industrial pharmaceutical synthesis uses 8.1 steps, albeit

2An analogy to stereoisomers is provided by human bilateral symmetry: right and left hands interact differently with right-handed gloves,
despite identical constituent fingers and thumb connected to one palm.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 29

with a heavy tail of syntheses with 16 or more reactions (Carey et al., 2006). Complex academic targets or

natural products may require more involved chemistry. For example, synthesis of vitamin B12 required over 100

steps (Nicolaou and Sorensen, 1996).

Additionally, the branching factor in the search for a synthesis can be large. (ChemAxon, 2011) provides a

free-for-academic-use reaction engine containing a library of 145 manually-curated commonly-used reactions (ChemAxon,

2011). This is more than the average number of moves in a game of chess or checkers, for example. Addition-

ally, the same molecule can be created by the same reaction from different precursor molecules; similarly, in

the forward causal direction, different molecules can be created by one reaction applied to one set of starting

materials. This happens when the reaction operates on a substructure which shows up several distinct times in

the molecules. Therefore, unlike moves in chess, one action applied to one state can produce multiple successor

states. Empirically, dozens of distinct sets of precursor reagents can be proposed for each reaction (Agarwal et al.,

1978). Furthermore, the reaction library can be considerably enlarged. A statistical analysis of synthesis databases

estimated the existence of 92,781 unique known transformations (Law et al., 2009).

2.5 Automated organic synthesis planners

Despite these technical challenges, over a dozen synthesis systems have been constructed (Todd, 2005). These

planners include interactive and automated systems, using hand-constructed, statistically-derived, or theoretically-

motivated transform databases (Law et al., 2009). I focus on automated systems using transforms extracted from

the chemical literature. In addition to planning organic syntheses for particular molecules (and in contrast to

interactive systems), automated systems can be used to generate assessments of synthetic feasibility (Baber and

Feher, 2004), search starting material catalogues (Johnson et al., 1992) or the chemical reaction literature (Tseng,

1997) for relevant related work.

2.5.1 LHASA and its variants (interactive synthesis planners)

Although it is an interactive system using a manually-constructed reaction database, the OCSS (later renamed

LHASA) synthesis program is notable for founding the field of computer-assisted organic synthesis (Corey and

Wipke, 1969). LHASA pioneered the algorithmic recognition of synthetically-significant molecular features,

such as strategic bonds and real versus pseudo rings, as well as individual functional groups and stereochemistry.

Retrosynthesis is the process of planning an organic synthesis by working backwards from the goal molecule. (For

a molecule, we ask “Which precursors would we need to generate this molecule in one step, using some reaction

we can perform?”) In LHASA, the retrosynthetic analysis proceeded by simplification of molecular complexity via

disconnection of chains, removal of reactive functional groups and chiral centers, and a cutting of rings. Strategic

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 30

bonds are bonds which, when eliminated in the retrosynthetic direction, dramatically simplify the molecule. These

were detailed manually in LHASA’s transformation database, analogously although with different syntax to the

transformation in Figure 2.13. Pseudorings are cycles in the molecule which a naive ring-finding algorithm might

return but which are not constructed directly by known chemistry (for example, because they contain smaller rings

due to “bridging” connections, as in Figures 2.7 and 2.8), and should be eliminated from further consideration.

These are useful heuristics unless advanced starting materials are available and justified because LHASA lacked

a starting material database.

LHASA would suggest possible alternative reactions, along with their required precursors, to the chemist.

These would be prioritized according to an extensive expert-system rule base. For example, functional groups

would be ranked according to reactivity and the most reactive would be removed first. Seven- to ten- member

rings would be converted to five- or six- membered rings by rearrangement or elimination. Bonds to nucleophilic

heteroatoms would be cleaved (because these are substructures that could be built by many different reactions,

and therefore often show up in syntheses as the place of joining two simpler molecules).

Figure 2.8: Example from Todd (2005). Structure (40) depicts the quinone Diels-Alder reaction, while (41)-(43) show natural products that
had been synthesized using the quinone Diels-Alder. LHASA does not apply the quinone DA to these cases.

If a reaction was judged to powerfully simplify the molecule, but could not be immediately applied, LHASA

would add subgoals to create the functional relationships necessary to permit the application of the transform.

These subgoals would then be recursively analyzed, similar to Hierarchical Task Network (HTN) planning (Nau

et al., 1999). In HTN planning, the plan to achieve a difficult goal is generated by recursively breaking the goal

down into a combination of simpler goals. This top-down strategy also causes difficulties when the conditions

under which a goal can be broken into subgoals are masked (Ott and Noordik, 1997). For example, the system may

not recognize that a given transformation would advance the synthesis when the application of the transformation

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 31

requires several preparatory steps. The setup steps “hide” the fact that the transformation could be applied, and

the system may never try to setup the transformation. The limiting factor becomes the skill of the transform

writer to detect opportunities for appropriate and advantageous application of the transform. For example, Figure

2.8 shows a quinone Diels-Alder (QDA) transform, along with several molecules which were synthesized with

it. However, LHASA was unable to recognize that the QDA retron in these molecules. It did not select it as a

transform, nor explore the subgoals necessary to permit its application.

Johnson et al. present a starting-material-aware extension to the LHASA system (Johnson et al., 1992). The

principle feature is automatically calculating mappings between the target and starting molecules. The system can

compute different mappings of atoms in target material to atoms in the user-chosen starting material. Also, the

search system can utilize the operator-chosen starting material goal to prune the search tree by only extending the

search of the node most similar to the starting material. Unsurprisingly, clever unintuitive mappings can lead to

dramatically cleaner syntheses.

2.5.2 Noninteractive synthesis planners

SYNCHEM was the first noninteractive synthetic planner (Agarwal et al., 1978, Gelernter et al., 1977). The

molecular representation and functionality detection followed the design of LHASA and, while SYNCHEM

could not detect stereochemistry, its successor, SYNCHEM2, could. Both systems were quite sophisticated in

their chemical understanding; they could perceive differences in relative functional group reactivity, disfavored

intermediates due to structural violations, and the relative arrangements of rings. Whereas (due to limitations

of the storage systems of the time) LHASA did not represent available starting materials, one of SYNCHEM’s

important advantages was the ability to discover useful starting materials in databases too large to be investigated

by humans. At the time, the starting materials database was a 3000-item subset of Aldrich Chemical Company’s

catalog, which was selected because it was available on punched cards (Gelernter et al., 1977).

SYNCHEM was the first description of heuristic greedy search for organic synthesis planning. SYNCHEM

used heuristic estimates of both the probability of reaction completion and the complexity of precursor molecules

to guide its search. Each reaction is augmented with a set of tests on the goal molecule, the results of which

modify the estimated merit of the reaction. The paper gives the examples of detecting the presence of activating

groups, which would raise the estimate of the probability of reaction completion, whereas a cramped molecular

configuration which hindered access to the reactive site would lower the reaction probability. The frontier of the

search was stored and, if the leading synthetic route encountered difficulties from dodgy reactions or complicated

precursors, exploration of the line would be temporarily paused and alternatives explored. In this way, the system

would avoid local minima in the synthetic route space.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 32

SYNCHEM was later rewritten to exploit the parallelism afforded by a cluster of nine Sparc20 workstations,

each with four 50MHz processors and 64MB RAM (Krebsbach et al., 1998). The parallel speedup was sublinear,

but often 3-6x faster. Although effective branching factors of several dozen were observed, a significantly amount

of repetition was found in the synthetic routes explored. Approximately 35% of nodes in a synthetic tree were

duplicates, implying that the search space is often a graph, in practice. If duplicates were very rare, then algorithms

that are appropriate for trees would yield reasonable answers in many cases. Empirically, duplicates appear often

enough that we would expect that treating the graph as a tree would be incorrect or, at least, inefficient. The

master node had to ensure that worker nodes did not waste time synthesizing previously explored molecules and

this communication effort quickly became the process bottleneck.

Figure 2.9: 8 step synthesis from Takahashi et al. (1990). Molecular complexity proceeds nonmonotonically.

Takahashi et al. (1990) encoded a number of chemical pruning rules to help combat the combinatorial explo-

sion inherent in state-space search. Generated substructures were checked for significant instability or limiting

reactivity, and reactions could specify required unsaturation, atomic number, quantity of attached hydrogen and

kind of hetereoatoms in the neighborhood around the reaction center. Such rules are sufficient to filter out, for

example, Bredt’s rule violations (Appendix A). The user could request transforms to be pruned if they do not

functionalize a saturated atom, make carbon-carbon bonds or heterocyclic rings or if they only add or remove a

simple group such as a methyl, ethyl, or tert-butyl. With this setting, the user specified the number of protection

and deprotection steps permitted in a synthesis. The user could also limit the number of non-stereo-selective or

regiospecific reactions in the entire synthesis and the number of facilitating reactions permitted at one site. The

user optionally specified bonds or atoms which should not be affected by the synthesis. Similarly, the acceptable

starting materials or intermediates could be filtered by limiting the molecular size, elements, function groups,

rings, chiral atoms, and so on. Using these controls, most chemical nonsense can be avoided and relatively long

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 33

syntheses were discovered noninteractively, for example as in Figure 2.9.

In Tseng (1997), Tseng describes his use of MDL’s RXL Browser to design a synthesis for a compound of

agrochemical interest. If we are to take Tseng’s walkthrough as a canonical description of a chemist’s workflow,

we would conclude that chemists operate by performing a database search for a substructure of their target,

finding a specific previous reaction which generates it, and trawling the literature for a published reaction which

is similar enough in mechanism to successfully generate their desired compound when run on appropriate starting

materials. In such a scenario, they do not design a synthesis from scratch and, surprisingly, the key mental

tools are not retrosynthetic disconnections (an assumption made by Corey when he established computer-aided

organic synthesis) but rather judgements about the independence of functional groups and the cross-applicability

of published reactions.

RouteDesigner is a recently developed organic synthesis planner (Law et al., 2009). Like the planners that

proceeded it, RouteDesigner accepts a molecule as input, detects molecular properties such as aromaticity or

protonation, and adds the annotated molecule is added to the search queue. The first molecular is popped from

the search queue and all valid retrosynthetic transforms are applied. The generated precursors are subjected to

pruning rules like in Takahashi et al. (1990). Precursors are checked for duplication to molecules already in the

search queue and in the starting material library and, if they are novel, added to the search queue. Unless the

queue empties, the search proceeds exhaustively until a depth limit is exceeded.

The focus of RouteDesigner is in the automated extraction of transforms from the chemical literature (vide

infra). Briefly, reactions are clustered by their “graph edits”, that is, the changes in atoms and bonds enacted

onto the reagents to generate the products. The reactions within each cluster are then analyzed for consistency of

neighborhood around the modifications. These consistent substructures are putatively considered to be activating

substructures necessary for the reaction to proceed. Unfortunately, unlike the manually constructed rules which

can be refined to respect interfering groups and stereo- and regio- selectivity, the automatic extraction does not

consider these reaction aspects. Furthermore, automated reaction extraction assumes access to large corpora of

reported chemical reactions. Unfortunately, commercial vendors sell limited search access to reaction databases;

reaction databases which are free and permit analysis over the entire dataset, rather than returning results per

query, do not exist.

2.6 Heuristics

The effectiveness of heuristic search greatly depends on the quality of heuristics used. For example, the de-

velopment of efficient relaxed plan heuristics (Hoffmann and Nebel, 2001) led heuristic search to become the

predominant technique for automated planning (Bryce and Kambhampati, 2007) and the success of Schaeffer

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 34

et al. in solving checkers was predicated on access to accurate board analysis by Chinook, a checkers playing

program stronger than all living human players (Schaeffer, 2009).

Corey and Cheng (1995) describe a number of fundamental criteria to determine which transformation to

explore in a retrosynthetic analysis. Although the measures are described as pertaining to which reaction to

choose, the selection is based on the simplifying effect the reaction achieves on the molecule being analyzed.

Furthermore, different strategies, e.g., the transform-based, structure-goal, or topological, can be used to simplify

a molecule along one measure of complexity, such as functional group reactivity, without modifying others, such

as cyclic connectivity (Corey, 1991).

Because Corey and Cheng write for human chemists, the assessment of molecular complexity is often left

implicit; unfortunately, a computational synthesis does not have this luxury. An automated planner of organic

synthesis could search for syntheses blindly but, as in the examples from classical search above, the search frontier

grows so quickly that only simple problems could be solved. Alternatively, an automated organic synthesis planner

could guide its search using appropriate heuristics. Such heuristics inform the planner how much effort is left to

build any particular molecule in its search frontier. These heuristic estimates are used to guide the search by

favoring the investigation of molecules which should be easy to synthesize and delaying the investigation of

molecules which are expected to be hard to synthesize.

A number of conceptually-different approaches have been proposed for the algorithmic assessment of a chem-

ical structure’s synthetic accessibility, which Baber and Feher (2004) categorize into complexity-, chemistry-,

starting material-, retrosynthetic-, and neural network-based estimation. Briefly, complexity-based assessment

calculates the number of synthetically-difficult structural features present, such as fused rings or stereocenters,

and computes a score for the molecule based on the structural intricateness. Chemistry-based assessment func-

tions as a preprocessing filter for complexity-based measures. They identify portions of the molecule for which

there exist known synthetic routes and reduce or eliminate the fragment’s contribution to the overall synthetic

burden of the molecule. Starting material-based estimation relates the portion of the desired molecule that can

be covered by commercially-available molecules. Straightforward implementations require exact substructure

matches whereas more sophisticated variants accept near-equivalences (defined either structurally or chemically).

Retrosynthetic measures produce a score based on the length or yield of a generated synthetic plan to produce

the molecule under analysis. Retrosynthetic approaches tend to be more computationally expensive and imply a

bootstrapping problem if they are to be used as heuristic guidence in a retrosynthetic planner.

Finally, what Baber and Feher term “neural network-based” assessment covers any machine learning based

prediction of synthetic accessibility from molecular features. The authors postulate that, given a training set of

pairs of molecules and scores of synthetic difficulty, predictors could be trained to score novel molecules. Baber

and Feher provide no examples of this category, the absence of which they ascribe to a lack of training data.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 35

Figure 2.10: Figure 19 from Boda et al. (2007) depicting minimum, maximum, and average synthetic accessibility scores by five medicinal
chemists. Structures are sorted by average score. Molecules of particularly wide score disagreement are labeled. Most molecules have scores
of 4 ± 1 and many have ranges which overlap.

Figure 2.11: Figure 7 from Huang et al. (2011) depicting minimum, maximum, and average synthetic accessibility scores by five medicinal
chemists. Structures are sorted by average score. Most molecules have scores of 4 ± 1 and many have ranges which overlap.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 36

Not only is manual annotation prohibitively laborious, but individual chemists vary greatly in their assessments.

An accurate annotation would require assessment by multiple independent chemists, as demonstrated in the large

variance in Figure 2.10 and Figure 2.11. The molecular difficulty of most molecules overlap and cannot be

distinguished from each other by chemists.

2.6.1 Complexity-based

Bertz compared a number of structural measures of molecular complexity, including Cr, the complexity due to

rings, Cp, the complexity due to the number of atoms, and Cl, the complexity due to the number of bonds, and

found that these do not exhibit fidelity to the chemist’s manual determination of molecular complexity (Bertz,

1981, 1983). Bertz also defined a new measure of molecular structural complexity inspired by information theory

C(η) = 2η log2 η −
∑
i

ηi log2 ηi (2.5)

where η is the number of edges in the graphical representation of the molecule, and ηi is the number of ways a

subgraph of size i can be found in the molecule. For example, for i = 2, it is the number of adjacent edges in the

graphical representation of the molecule. That is, the number of ways a graph of three nodes connected by two

edges (like a letter ‘V’) can be subgraph isomorphically mapped onto the molecule.

Randić and Plavić (2002) proposed a related measure of molecule complexity which is a summation of the

complexity of each nonsymmetric node in the molecular graph. The complexity of each node is initialized to be

the node degree. This complexity is updated by computing (for example) 1/2d times the complexity of every other

node in the graph, with d equal to the distance in the graph between the nodes. Randić and Plavić experiment with

a number of linear and exponential decay rates for the penalty contributed to an atom’s neighbor. The authors

discuss how the complexity updates can be performed multiple times. Nodes which are in denser areas of the

graph, which have high degree or are in a region of nodes with high degree will accumulate higher scores. In

chemistry, sterically hindered atoms are difficult to construct, as are dense regions of hindered atoms. The high

scores for the nodes representing these atoms reflect this construction difficult.

The preceding abstract structural measures do not directly account for chirality, symmetry, or variance in

atomic element. Barone and Chanon (2001) discuss empirically derived measures intended to be more intuitive

to the practicing chemist.

W (·) = 4 ∗ number of rings + 2 ∗ number of nonaromatic unsaturated bonds +

1 ∗ number of heteroatoms + 2 ∗ number of chiral centers (2.6)

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 37

(a) Daucene synthesis. Complexity scores for each intermediate cor-
respond to Eq. 2.5, Eq. 2.6, and Eq. 2.7, respectively.

(b) Normalized complexity scores for each step of synthesis in
Fig. 2.12a. Triangles correspond to Eq. 2.5, circles to Eq. 2.6, and
squares to Eq. 2.7.

Figure 2.12: Example comparison of synthetic complexity measures, taken from Barone and Chanon (2001). Synthetic progress is nonmono-
tonic.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 38

EW (·) = 6 ∗ number of rings + 3 ∗ atoms with 1 heavy atom neighbor +

6 ∗ atoms with 2 heavy neighbors + 12 ∗ atoms with 3 heavy neighbors +

24 ∗ atoms with 4 heavy neighbors + 3 ∗ heteroatoms + 3 ∗ number of atoms (2.7)

These included the Whitlock measure given in Equation 2.6 and and an extended Whitlock measure given in

Equation 2.7, which was also empirically derived and manually fitted to the authors’ estimation of molecular

complexity. In contrast to Bertz, Barone and Chanon do not attempt to provide a formal motivation for their

complexity measure.

Barone and Chanon empirically compare the complexity measures of Eq. 2.5, Eq. 2.6, and Eq. 2.7 by manually

computing the complexity for each step in a number of syntheses. An example is given in Figure 2.12. As would

be expected, these measures, which are all based on structural complexity, correlate with each other. Also, it is

noteworthy that the complexity assessment does not rise smoothly as the synthesis progresses to the goal, pointing

to limits in the accuracy of these measures. This inconsistency suggests certain structural motifs are synthetically

easier (or more difficult) to achieve than is implied in their structure. Large parts of a molecule may be altered en

masse with relatively simple reactions. For example, tosyl protecting groups comprise many atoms and contain

rings and heteroatoms, yet are relatively easy to add and remove from a molecule.

Allu and Oprea attempt to correct for the fact that different molecular substructures require different synthetic

effort (Allu and Oprea, 2005). Specifically, their scoring function assigns points to atoms or molecular substruc-

tures based on a number of chemical features, such as electronegativity, bond order or hybridization state, vicinal

chiral centers, and ring size. However, their results show a very strong correlation between various complexity-

based scores (including their score) and the molecular weight of the molecule. Therefore, it is not clear that any

of the discussed measures correspond to complexity assessment as performed by the practicing synthetic chemist,

who is likely to be more concerned with starting material availability, chirality of the product, and the presence of

interfering functional groups that constrain the synthetic route (Tseng, 1997).

2.6.2 Fragment-based

A recently-popular technique combines aspects of chemistry- and starting material-based synthetic assessment (Boda

and Johnson, 2006, Boda et al., 2007, Ertl and Schuffenhauer, 2009). The central concept is that structural rarity

correlates with synthetic difficulty. In other words, structures which have been made more frequently are easy to

synthesize, whereas structures that have been made rarely are difficult. The synthetic accessibility of a molecule

may be a self-fulfilling prophecy rather than due to its inherent structure (as accounted for by complexity-based

measures). A molecule that is frequently made will have well-developed synthetic chemistry as well as com-

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 39

mercially available precursors, both of which will reduce the difficulty of follow-on syntheses and increase the

population of related molecules.

Boda and Johnson analyzed the World Drugs Index and MDL Drug Data Report databases to find frequently

occurring fragments. The fragments of interest were defined a priori to be 1, 2, 3, or 4 adjacent nonterminal

chain atoms and their neighbor heavy atoms and simple, fused, spiro, and bridged rings with and without their

immediate neighbors. These fragments were arranged in an overlapping hierarchy based on atom substitutions.

For example, a pyrimidine would be subsumed in a pyridine class and, transitively, in a benzene class.

BJ(·) = 1− w · ln (# occurrences matched fragments)
ln (# occurrences most common fragment)

(2.8)

Equation 2.8 is computed for each fragment class and atom substitution pattern. The weight w, a penalty for not

matching a particular fragment, and penalty terms for the presence of stereocenters and number of rotatable bonds

may be set by the user. These factors are linearly combined into one summary score.

The atom substitution classes in Boda and Johnson (2006) provide an approximation to the fact that similar-

but-distinct molecules could have similar syntheses. However, it is not the case that a pyridine could be trans-

formed into a benzene ring. Boda et al. extend to reactions the idea that the frequency of reported structures

function as a proxy for the synthetic feasibility of molecular fragments. The authors analyze a reaction database

to find substructures which are frequently created in reactions. The synthetic chemist has great freedom to operate

if a molecule has a large number of constructible pieces with many alternative applicable reactions. These reaction

centers are matched against the molecule and a score is generated analogously to Equation 2.8.

The choice of fragments in Boda and Johnson (2006) was not explicitly motivated. Furthermore, the analyzed

databases only contained drug molecules, so the derived scores could have been correlated with drug-likeness

rather than synthesizability alone. Ertl and Schuffenhauer address these deficiencies by starting with a dataset of

1 million molecules from PubChem (Wang et al., 2009) and producing all fragments generated by taking a 1, 2,

or 3 bond radius around any central atom. This produced 605,864 fragments, of which 51% were singletons. The

score of each fragment was computed as the logarithm of the number of occurrences of the fragment divided by

484691.2. This is the ratio between the fragment count and the number of fragments forming 80% of the database,

which implies frequent fragments have a positive score while rare fragments have a negative score. The score of

the molecule, described in Equation 2.9, was computed as the average of the fragment scores minus a molecular

complexity penalty.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 40

ES(·) =

∑
fragments log (

fragment occurrences
484691.2)

fragments in molecule
− log (ring bridge atoms + 1) + log (spiro atoms + 1)−

log ((# rings of size ≥ 8) + 1) + log (stereocenters + 1)− (number of rings1.005 − number of rings)

(2.9)

As is clear from Equations 2.6-2.9, all of the complexity measures described here have been heavily hand-

tuned to produce results in line with the idiosyncratic synthetic assessment of their creators and testers. This is

not a criticism of the measure’s usefulness but it is likely that these formulae have been overfitted to the datasets

from which they derive. The small quantity of data prohibits a partition into useful independent test suites. A

freely available database of syntheses could serve as the basis of such a test set, since the number of steps in the

synthesis of a molecule is a direct measure of the effort to construct it.

2.6.3 Machine learning and retrosynthetic analysis

Even though Baber and Feher provide no examples of machine learning approaches to synthetic feasibility pre-

diction, some systems have been built in the interim since publication.

The limiting factor for machine learning approaches was the lack of labelled data from which to learn model

parameters. Both Podolyan et al. and Huang et al. use retrosynthetic engines to automatically construct labelled

datasets, which then serve as the basis for synthetic feasibility estimating functions. The utility of estimators,

given that the authors had already built retrosynthetic planners, was explained by decreasing the time required to

analyze each molecule and improving the interpretability of the results by collapsing the score to a single scalar

value, respectively.

Podolyan et al. (2010) create a model called RSSVM . The features used to describe the molecules are the set

of unique molecular fragments of width 4-6, making this approach similar to computing appropriate weights in a

fragment-based synthetic feasibility estimator. RSSVM casts synthetic feasibility prediction as a binary classifi-

cation problem, and employs a support vector machine using a Tanimoto coefficient-based kernel to differentiate

molecules which require many steps from molecules which require few. Specifically, molecules which require

synthesis trees of height 1-3 are labelled ‘easy’ while molecules which were not synthesized in 5 steps of decom-

position were labelled ‘hard’. Considering that the average industrial pharmaceutical synthesis is 8.1 steps (Carey

et al., 2006), many pharmaceutically-relevant molecules are labelled hard.

These labels are also conditioned on the quality of the retrosynthetic analysis engine. These results were

created using a 23 reaction library. This is significantly smaller than 92,781, the estimated number of unique

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 41

known transformations (Law et al., 2009), and one might be concerned that the labels are would significantly

change with a different set of available reactions. To their credit, Podolyan et al. investigate the effect of removing

each reaction on the labels of the molecules. For 20 out of 23 reactions, removal increased the depth of the

decomposition tree and, in 13 out of 23 cases, a majority molecules that used the specified reaction become

impossible to make with the remaining 22 reactions.

The RASA system is similar, in that the scores it assigns are computed by a function that was automatically

tuned to fit a training dataset and based on output from a retrosynthetic engine (Huang et al., 2011). RASA uses

a linear combination of scores measuring the variety of available synthetic routes, the difficulty of executing the

reactions in each synthesis, and the difficulty of purifying the desired products. The weights on the subscores

were fit, using linear regression, to the training set of 100 manually scored compounds. Like RSSVM , the out-

put of RASA depends on the quality of the retrosynthetic analysis. The RASA system uses 143 retrosynthetic

transforms, each of which was manually annotated with electronic and steric penalties which are used to prune

the retrosynthetic search. Additionally, RASA has a database of forbidden or unstable molecular subgraphs and

it prunes search paths that require such precursors. Finally, RASA requires the complexity of molecules in its

explorations to monotonically decrease, even though real syntheses are decidedly nonmonotonic as depicted in

Figure 2.12.

2.7 Reaction libraries

The utility of a synthesis planner is limited by the fidelity of its reaction library to reality. The speed with which

a synthesis is found is irrelevant if the proposed synthesis depends on unrealizable chemistry. Unfortunately, the

effects on a molecule of a particular reaction condition are usually determined experimentally and are difficult to

predict beforehand. It is often the case that a reaction predicted to enact some modification fails to do so in the

lab (Nicolaou and Sorensen, 1996). Therefore all reaction libraries are necessarily approximations to reality.

Corey introduced the concept of retrons, or a molecular substructure generated by a particular reaction (Corey,

1967, using the earlier name synthon), which serve as a motivating principle for computer description and appli-

cation of reactions. The presence of a retron in a molecule implies that the reaction can be used to construct

the molecule from appropriate precursors. Corey’s implementation in LHASA permitted the specification of ad-

ditional property constraints on the product or reagents (Corey and Wipke, 1969). A modern example of this

approach is presented in Figure 2.13. These labelled graph presence and absence requirements motivate Defini-

tion 10.

The majority of early computer synthesis planners, e.g., OCSS/LHASA (Corey and Wipke, 1969), SYNCHEM (Agar-

wal et al., 1978, Krebsbach et al., 1998), SECS (Wipke et al., 1978), and SYNSUP-MB (Takahashi et al., 1990),

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 42

Figure 2.13: Reaction example from Pirok et al. (2006) depicting a Friedel-Crafts Acylation reaction. Additional properties specify the charge
necessary at the active site for the reaction to complete. Problematic compounds are excluded with additional patterns.

used manually constructed reaction libraries. These libraries typically contained several hundred or low thousands

of reactions. The extensive manual effort required to build them has been implicated as a significant contributory

factor to the abandonment of the systems (Law et al., 2009). Of practical note to the PhD-candidate designer of a

new synthesis planner, ChemAxon’s Reactor software is a recent free-for-academics manually-constructed library

containing approximately 150 reactions (ChemAxon, 2011, Pirok et al., 2006).

Nakayama (1991) described a system to “crowdsource” the construction of reaction databases by reducing the

effort of manual definition and curation of reaction patterns. SPEK represented transforms with a unique number,

transform name, literature citation, matching structural pattern, reaction confidence, interfering groups, reaction

conditions, and editor name for assigning blame when a reaction was described poorly. Despite this, no large

repository of transformations is currently available for bulk extraction and processing.

Instead, a number of attempts have been made to extract transformations from synthesis databases. Com-

mercial databases, such as SciFinder, Beilstein, and SPRESI, compile syntheses that have been published in the

chemistry literature. Generalized transforms may be deduced by tracking the modifications enacted at each step

of a synthesis. The hope is that the abundant training examples in the databases contain sufficient information

from which to extract the retrons. The difficulty with this approach is that synthetic databases typically lack neg-

ative examples as syntheses that fail likely do not get published. Another challenge for automated transformation

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 43

extraction systems is that reactions act via different mechanisms may produce the same modifications in certain

circumstances but not in others.

Most such systems are based on the work of Wilcox and Levinson (1986). Wilcox and Levinson define two

graph-based generalizations for every synthesis step. The first, called minimum reaction concept of a reaction

step or MXC(R), is the smallest connected subgraph of a reaction R which contains all the changed bonds in that

reaction. When we define “changed bonds” to include bonds with different bond orders or the bonds internal to

functional groups which had been added to the molecule, the MXC of a reaction captures the changes enacted by

the reaction. However, it does not necessarily capture all of the activating groups near the reaction center that are

necessary for the reaction to proceed. The second generalization, called the complete reaction concept or CXC(R),

expands the MXC with the transitive closure of all neighboring bonds that are not carbon-carbon single bonds.

While the MXC probably does not include all structures necessary for a reaction, the CXC probably includes (at

least) all needed molecular structures.

Given a large corpus of syntheses, we can generate MXCs and CXCs for every step in every synthesis. The

reactions are then grouped into clusters sharing identical MXCs. That is, the reactions are partitioned into groups,

each of which enacts the same edit to a molecule. Unnecessary structures in the CXCs can then be pruned

by taking the maximum common substructures between pairs of reactions. These substructures can then be

refined further by iteratively intersecting them with other members of the original cluster. This process produces a

continuum of progressively less constrained transforms; at some point the keying substructure becomes so broad

that the reaction will probably no longer succeed.

Blurock (1990) avoids the problem of determining which level of generalization adequately describes a real

reaction by building an interactive planner, RETROSYN, and requiring the chemist to select which reaction is

appropriate from the hierarchy of reaction classes. The chemist marks where in the molecule functionality should

be changed or the bond to be made or broken, and the system matches the surrounding substructure against the

MXCs in its database. It then displays these options to the chemist. RETROSYN will also attempt to automatically

determine the need for protecting groups by matching the reaction center against other places in the molecule. If

too many alternative sites are matched, the system will search down the hierarchy to find more precise keying

substructures that match fewer sites and propose modifications to the molecule that will distinguish the desired

reaction location from side-reactions loci.

Satoh and Funatsu (1999) also created an interactive planner, AIPHOS, based on similar principles. AIPHOS

defines an extensive list of structural fragments and stereochemical characteristics that it uses to define reaction

sites. These fragments were, presumably, chosen because they proved useful in discriminating reaction types and

are therefore a reasonable starting basis for pattern extraction. Unfortunately, any such finite list is necessarily in-

complete and it seems somewhat arbitrary as the authors provide neither evidence to support the particular choice

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 44

Figure 2.14: Diels-Alder example from Wilcox and Levinson (1986). Lines 1 and 4 show two reactions. Lines 2 and 3 are the MXC
and CXC, respectively, for the first reaction. Line 5 shows the maximum common substructure from the two reactions (note the activating
electron-withdrawing oxygen on the dieneophile).

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 45

of fragments nor a discussion of how they were chosen. The AIPHOS system also defines the reaction neighbor-

hood differently from Wilcox and Levinson’s CXC. AIPHOS uses a simple bond radius definition, extending a

neighbor from one to three bonds away from the changed bonds. This definition is simple and has been copied

elsewhere, including the web-based searches of SciFinder, Reaxys, and Isentris (Eiblmaier et al., 2011, Wang

et al., 2001).

Lawson and Kallies describe a technique, Random Access Black Box Indexing Term, for encoding multi-

step reactions such that similar reactions would be clustered together (Lawson and Kallies, 1990). The authors

correctly note that chemists, when searching reaction databases, seldom find exact examples of their desired reac-

tion. Instead, chemists repurpose previously described reactions, which effect a desired structural transformation,

to novel substrates when the substrates are judged to be sufficiently similar to the educts of the original reaction.

To support this kind of workflow, a database query should return analogous reactions, as well as those that exactly

match; this capability is supported by clustering related reactions. The authors describe two impediments to im-

plementing such a database: first, the most ubiquitous reactions may be omitted from machine-readable reaction

records precisely because they are so well known and, second, the judgements of molecular similarity and reaction

applicability are subjective and, therefore, the results from any particular fixed set of rules are likely to meet with

user objections. Unfortunately, the authors do not provide many details for how to address these critical issues;

however, their assertions lend anecdotal support for the design choice of tuning a system to avoid false positives

even at the expense of many false negatives.

The focus in Law et al. (2009) is a precise characterization of how the Wilcox and Levinson rules must

be extended to handle a real-world dataset. These rule extensions were derived through an iterative process

of creating a generalized reaction database from “Methods of Organic Synthesis” publications, having in-house

chemists critique the generated database, and proposing new rules to address the deficiencies of the generated

database. In effect, the available chemical transforms are derived from the literature but the rules governing

transform extraction are manually defined.

Law et al. augmented their version of the minimum reaction concept, or reaction cores, to include all atoms

which have changed attributes between reactant and product and the bonds connecting them. Attributes can

include the number or element type of neighbors, charge, and radicals. These reaction core seeds are enlarged to

produce complete reaction concepts as in Wilcox and Levinson (1986), which Law et al. term extended cores. An

example is shown in Figure 2.15. Extended cores are produced by incorporating atoms into a reaction core until

an atom with a carbon-carbon single bond is found. Additionally, the core is extended across adjacent double and

triple bonds. If the core is connected by a single bond to a heteroaromatic atom, the entire aromatic system is

added. Leaving group can be detected by finding connected unmapped atoms which are present in reactants but

not the product. The extension includes the entire set of unmapped atoms and bonds.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 46

Figure 2.15: Example from Law et al. (2009). Figure (a) depicts a sample reaction, while (b) and (c) show an extracted core and extended
core, respectively. Compare to the MXC and CXC from Figure 2.14. Law et al. note that the non-chemically-essential atom 2 is correctly not
included in the extended core; in contrast, a bond radius approach such as (Satoh and Funatsu, 1999) would have included it.

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 47

Given an extended reaction core, additional labels are computed, such as the electron withdrawing or donating

nature of non-reacting adjacent functional groups. Reaction cores are clustered by labelled subgraph isomorphism

and attributes such as permitted ring size or halogen type are grouped. The Methods of Organic Synthesis database

containing 42,333 example reactions generated 4,028 unique rules. The full Beilstein reaction database containing

4.5 million example reactions generated 285,000 cluster groups. When these groups were pruned if they had fewer

than five reaction examples, 92,781 unique rules remained. Finally, the extracted rules were augmented with 30

manually created common organic reactions, e.g., esterification and amide formations, which are typically not

reported in the literature (Lawson and Kallies, 1990). When reaction transforms are applied, subsequent checks

are performed to ensure that implausible chemical structures are not created. These checks include charge balance,

loss of aromaticity, and the creation of triple bonds in small rings.

2.8 The critical need for search guidance

The early organic synthesis planners set the fundamental design of heuristic state space search. In most plan-

ners, a target molecule is simplified by replacing matched retrons with the precursor substructures specified by

the reaction reagents. These simplifying transformations may disconnect parts of the molecule to form simpler

precursors. For example, rings may be disconnected to form linear molecules, and linear molecules may be dis-

connected to form two smaller precursors. These required precursors are, in turn, then recursively analyzed and

disconnected. The search terminates when all required precursors are sufficiently simple or are found in starting

material libraries. Some implementation details vary across previous planners. For example, the systems vary

in how the reaction libraries are constructed and in how the next precursor to analyze is chosen. The retrons

may be derived automatically or specified manually, and the search may be guided by algorithmic heuristics or

user judgements. Still, the general approach to heuristic search was remarkably consistent across most previous

attempts.

The critical confounding factors in computer aided organic synthesis planning are the accuracy of the chemi-

cal transformations and the combinatorial explosion of possible synthetic routes. It is possible to construct high

fidelity transformation libraries through meticulous and painstaking effort (Corey and Wipke, 1969, Gelernter

et al., 1977, Johnson et al., 1992, Lawson and Kallies, 1990, Ott and Noordik, 1997, Pirok et al., 2006, Takahashi

et al., 1990, Wipke et al., 1978). Furthermore, when transformation libraries are constructed by hand, the user

must trust the library author to precisely and accurately delineate the applicability of each transformation. Unfor-

tunately, chemists must believe that a proposed reaction can be successfully executed on a given set of molecules,

and chemists disagree about which reactions will succeed under different conditions. Chemists disagree with

the opinions about chemical transformations embedded in reaction libraries even when these were constructed

CHAPTER 2. PROLEGOMENA TO ANY FUTURE AUTOMATED SYNTHESIS PLANNING 48

by Nobel prize winners (Corey, 1991) and textbook authors (Corey et al., 1985). Furthermore, the derivation of

reasonable syntheses based on rules derived statistically from the literature implies that such approaches can be

sufficiently accurate to be empirically useful (Law et al., 2009).

The need for effective synthesis-graph exploration was noted early in the development of organic synthesis

planners (Gelernter et al., 1977). However, even modern planners use search algorithms of limited sophistication.

For example, Law et al. (2009) employ an exhaustive search to fixed depth. Over the last two decades, significant

development has been achieved in both algorithms and heuristics applicable to organic synthesis planning. A

number of search algorithms based on memory-efficient use of proof and disproof numbers have seen success in

calculating game-theoretic values for game states (Nagai, 2002). While these games are much simpler than chem-

istry, the computer systems employing proof-number based algorithms far exceed human capabilities (Nagai,

2002, Schaeffer et al., 2007, Seo et al., 2001). Similarly, recent developments in molecular complexity measure-

ments that incorporate starting material availability as well as difficulty of chemistry (Boda and Johnson, 2006,

Boda et al., 2007, Ertl and Schuffenhauer, 2009) provide a qualitatively new kind of heuristic guidance for organic

synthesis planners. The proper exploitation of these new techniques may lead to planners that are appropriate tools

for contexts such as retrosynthetic analysis and starting material and chemical literature searching. Therefore, the

focus of proximate research in automated organic synthesis planning should be a deeper integration of heuristic

search techniques.

Chapter 3

A declarative description of chemistry

Before we can discuss our own design of computer systems for organic chemistry, we provide a declarative model

suitable for computer representation. In contrast to previous axiomatization efforts (Masoumi and Soutchanski,

2012) , we describe a representation that is convenient for translation to and from existing cheminformatics tools.

Specifically, we choose a model of chemistry that is powerful enough to capture the way chemistry is described

in practice, as previously discussed in Sections 2.3 and 2.7.

Chemists depict molecules and reactions as annotated graphs (see Figures 2.4-2.6). Our models are similar.

We represent molecules as undirected graphs that are augmented with functions over their vertices and edges to

convey information about different kinds of atoms and bonds, respectively. Reactions describe the changes in

bonds that can be effected by the practicing chemist. Our representation can be interpreted as a generalization

of classical state space search (Russell and Norvig, 1995, Chapters 3, 11). In the STRIPS language for state

space search (Fikes and Nilsson, 1971), states and goals are represented by conjunctions of boolean variables,

while operators specify a boolean formula that must be true for the operator to be applied (called preconditions)

and a boolean formula (called effects) that describes the change to state variables when the operator is applied.

The presence or absence of particular subgraphs in a molecule take the place of sets of boolean variables in state

descriptions. Reactions replace operators, with reaction conditions corresponding to operator preconditions and

the reaction product corresponding to a postcondition of the operator. We now make these intuitions precise.

3.1 Definitions

As molecules in nature are undirected graphs, we begin by defining atoms and bonds from nodes and edges.

Definition 2 (Atom). An atom is a member of a set of labelled nodes A = {a0, a1, ...}.

49

CHAPTER 3. A DECLARATIVE DESCRIPTION OF CHEMISTRY 50

Definition 3 (Bond). A bond is an unordered pair of atoms.

Real-world atoms and bonds carry additional information. For example, real-world atoms and bonds vary

in their element type, atomic weight, electronegativity, bond order, or 3D configuration (Cahn et al., 1966). We

define a set of annotation functions to capture these kinds of information.

Definition 4 (Atom Annotation). J is a set of functions {j : A 7→ R}, annotating additional information about

atoms.

Definition 5 (Bond Annotation). K is a set of functions {k : A×A 7→ R}, annotating additional information

about bonds.

We now construct molecules out of atoms and bonds.

Definition 6 (Molecule). A molecule is a finite undirected graph, described as a tuple M = 〈V,E〉, where:

• V ⊆ A is a finite set of atoms, and

• E ⊆ (V × V) is a finite set of bonds.

In addition to the properties covered by Definitions 4 and 5, atoms and bonds also have properties which

depend on the molecule in which they are contained. For example, the electron density on each atom depends on

the connectivity of the molecule and the type of element of each atom. The electron density molecular property

would consider the entire molecule and annotate each atom with its specific electron density. Other properties,

such as membership in a ring, might annotate only a subset of atoms.

Definition 7 (Molecule Annotation). L is a set of functions {l : 〈V,E〉 7→ 2(A∪(A×A))×R}, annotating additional

information about atoms and bonds based on their molecular neighborhoods.

We now construct a definition for molecular comparison (a kind of “annotated” subgraph isomorphism) from

the standard definitions of subgraph and isomorphism (West, 2000). As a reminder, West writes

Definition 1.1.16: A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) andE(H) ⊆ E(G)

and the assignment of endpoints to edges in H is the same as in G. We then write H ⊆ G and say that

“G contains H”.

and

Definition 1.1.20: An isomorphism from a simple graph G to a simple graph H is a bijection f :

V (G) 7→ V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say “G is isomorphic to

H”, written G ∼= H , if there is an isomorphism from G to H.

CHAPTER 3. A DECLARATIVE DESCRIPTION OF CHEMISTRY 51

For molecular operations, we want to extend the notion of equivalency over a graph’s nodes and edges to also

respect to the properties of the atoms and bonds.

Definition 8 (Molecular Subgraph Isomorphism). Let M = 〈V,E〉 and M ′ = 〈V ′, E′〉 be molecules. We say

that M ′ is isomorphic to a subgraph of M , written M ′ ∼⊂M , if and only if

• there exists a subgraph M0 = 〈V0, E0〉 ⊆M , such that M ′ is isomorphic to M0, and

• under some such isomorphism f ,

– ∀j ∈ J,∀v ∈ V ′, j(v) = j(f(v)) and

– ∀k ∈ K,∀{v, u} ∈ E′, k({v, u}) = k({f(v), f(u)}) and

– ∀l ∈ L,

[(∀v ∈ V ′,∀(x, r) ∈ l(M ′), v = x⇔ (f(v), r) ∈ l(M)) and

(∀{v, u} ∈ E′,∀({x, y}, r) ∈ l(M ′), (v = x ∧ u = y)⇔ ({f(v), f(u)}, r) ∈ l(M))]

The annotations of M ′ are checked against M rather than M0 because we want the subgraph to match the

annotations of the original full molecule. For example, consider atoms that are in a ring in M ; if M0 contains half

of these, they may no longer be annotated as rings and could incorrectly match non-ring atoms in M ′.

Definition 9 (Unmapped bonds). For convenience, we name the bonds which are not mapped under molec-

ular subgraph isomorphism. Let M = 〈V,E〉 and M ′ = 〈V ′, E′〉 be molecules and M ′
∼
⊂M , as above.

Let M0 = 〈V0, E0〉 ⊆M be a subgraph of M such that M ′ is isomorphic to M0 under isomorphism f . Let

Eunmapped = E \ E0 and Vunmapped =
(⋃

uv∈Eunmapped
u
)
∪
(⋃

uv∈Eunmapped
v
)

. Then we write “M ′ ∼⊂M”

to denote the molecule 〈Vunmapped, Eunmapped〉.

A reaction definition describes the conditions necessary to enact a particular set of bond changes in a molecule.

Since the reactions are externally specified by chemists, we can constrain neither the necessary conditions nor the

possible bond changes. Reactions are also described using graphs that specify reactive sites. These reactive sites

are mapped to subgraphs found within the reagent molecules to which the reaction is applied. The reactive sites

may be thought of as analogous to operator preconditions in a search problem (Russell and Norvig, 1995, Chapter

11): in the same way that operator preconditions must be true before the operator can be applied, reactive sites

much be present in the reagents for the reaction to be applicable. Applying a reaction changes the bonds in the

reagents to the bonds specified by the product subgraph. Examples are shown in Figures 2.13, 2.14 and 2.15 and

discussed in Section 2.7.

Definition 10 (Reaction definition). A reaction is a tuple 〈P,R, φ〉, such that:

CHAPTER 3. A DECLARATIVE DESCRIPTION OF CHEMISTRY 52

• P = 〈Vp, Ep〉 is a molecule.

• R = {〈r+0 , R
−
0 〉, 〈r

+
1 , R

−
1 〉, ..., 〈r+n , R−n 〉} is a finite set of pairs, where r+i is a molecule and R−i is a set of

molecules.

• φ : Vp 7→
⋃
〈〈Vr+ ,Er+ 〉,R−〉∈R

Vr+ is an injective function providing an atom-to-atom mapping from the

atoms of P to the atoms of the r+ molecules.

P describes what is created by the reaction. The r+’s in R represent the reactive sites in the reagents that react

to form the product P . See Figure 2.5 for an example. The R−’s in R represent interfering groups: molecular

substructures which are forbidden from appearing in the reagents for the reactions to successfully proceed. See

Figure 2.13 for an example. In the reaction application (vide infra), R−’s are used to specify negative constraints

on the molecules that can form product P successfully.

Given the definition of a reaction and a particular set of reagent molecules, we can ask whether the reagents

will react in the manner described by the reaction and, if so, what product they would form. For example,

in Figure 2.6, the salicylic acid contains a subgraph that matches the alcohol active site from the esterification

reaction shown in Figure 2.5. At the same time, the complete molecule of acetic anhydride matches the anhydride

active site. The esterification reaction then modifies the bonds in these active sites to form the ester substructure,

producing aspirin. A reaction’s conditions are satisfied by a set of reagents, if the reaction’s reactive sites are

isomorphic to subgraphs of the reagents, while none of the forbidden structures are isomorphic to a subgraph of

that reagent. Examples of such interfering substructures may be seen in Figure 2.13.

Definition 11 (Reaction application). Given a set of molecules, S, and a reaction O = 〈P,R, φ〉, we write

O(S) = M to denote that applying reaction O to molecules S can yield molecule M if and only if

• P ∼⊂M , and

• ∀〈r+, R−〉 ∈ R,∃s ∈ S,
[
r+
∼
⊂ s ∧

(
r+
∼
⊂ s
)
∼
⊂M ∧ @f ∈ R−, f ∼⊂ s

]
.

We may say “S react by O to form M” or “M is produced from S by O”.

In other words, the structures formed by reaction O must be present in molecule M ; each required reactive

site r+ must be present in some molecule s in the set of starting materials S; the parts of the starting material

s which do not participate in the reaction must also appear in M ; and none of r+’s forbidden substructures can

show up in its corresponding starting material s. Note that a single starting material can contain multiple reaction

sites, as in intramolecular or polymerization reactions.

Observation 1 (Propositional encoding of reaction applicability is intractable). Testing whether a reaction can

be applied to a set of starting materials requires a test of subgraph isomorphism, which is NP-complete (Garey

CHAPTER 3. A DECLARATIVE DESCRIPTION OF CHEMISTRY 53

and Johnson, 1990). Worse, generating the set of reaction products requires enumerating all subgraphs of the

starting materials that are isomorphic to the member of R; this problem is #P-hard by reduction from the problem

of counting perfect matchings in a bipartite graph (Valiant, 1979). These properties imply that the best-known

encodings for organic chemistry into a propositional description language such as STRIPS (Fikes and Nilsson,

1971) require exponentially large operators. Of course, our work does not depend on any particular graph isomor-

phism algorithm and this observation does not preclude the possibility that domain-specific algorithms can be fast

in practice on particular examples (Cao et al., 2008).

Given the definitions of molecules, reactions and reaction applications, we can formally state the problem of

organic synthesis.

Definition 12 (Synthesis problem). A synthesis problem, Π, is a tuple 〈G,∆,Σ〉, where:

• G is a molecule.

• ∆ is a set of reaction definitions.

• Σ is a finite set of molecules.

G specifies the desired goal product. ∆ describes a library of the reactions available to the chemist to produce

molecules. Σ provides a catalog of available starting materials.

Definition 13 (Synthesis). Let Π = 〈G,∆,Σ〉. A solution to synthesis problem Π is synthesis ψ, a finite set of

pairs 〈I,O〉 providing a pairing of sets of molecules, I , to reaction definitions, O. ψ exists when:

• Every reaction definition used in the synthesis is part of the library of known reactions. Let ∆ψ =
⋃
〈I,O〉∈ψ O.

Then ∆ψ ⊆ ∆.

• The goal molecule, G, is provided as an available starting material or it is produced by a reaction, OG,

applied to OG’s required precursor molecules, IG. In other words,

(G ∈ Σ) ∨ (∃〈IG, OG〉 ∈ ψ,
[
OG(IG) = G′ ∧

(
G
∼
⊂G′ ∧G′ ∼⊂G

)]
.

• Every required precursor molecule is either available as a starting material or is provided a synthesis itself.

Let πi = 〈i,∆,Σ〉 be the synthesis problem for precursor i and ψi a synthesis for πi. Then, we require

∀i ∈ IG, (i ∈ Σ) ∨ (∃ψi, ψi ⊆ ψ − 〈IG, OG〉).

These definitions present a somewhat idealized model of organic synthesis planning, but even this expressive

description does not model chemistry completely. Molecules are physical structures and certain conformations

of the graphs cannot be practically embedded in 3-dimensional space due to, for example, torsional strain. More

detailed models could be derived from physical or quantum mechanical simulation. Our reaction definitions do

CHAPTER 3. A DECLARATIVE DESCRIPTION OF CHEMISTRY 54

not describe the procedure to effect the molecular changes they denote. We assume the reaction library contains

references into the chemical literature describing temperatures, solvents, catalysts, and so forth required to per-

form the reaction successfully. In general, even under this simplified model, the unbounded synthesis problem

is undecidable by reduction from the word problem for semi-Thue systems (Post, 1947), so we now turn our

attention to finding solutions for particular cases.

Chapter 4

Retrosynthetic search algorithms

As discussed in Chapter 3, organic syntheses can be modeled as branching paths in a discrete, fully-observable

state space. We describe a model of organic chemistry that is amenable to traditional AI techniques from game

tree search, regression, and automatic assembly sequencing. We demonstrate the applicability of AND/OR graph

search by developing the first chemistry solver to use proof-number search. This is a kind of heuristic search

that uses the shape of the search frontier to decide where to spend additional search time. Finally, we construct

a benchmark suite of organic synthesis problems collected from undergraduate organic chemistry exams, and we

analyze our solver’s performance both on this suite and in recreating the synthetic plan for a multibillion dollar

drug.

4.1 Introduction

Organic chemistry underlies medicine and materials science and provides modern conveniences in the forms of

drugs, dyes, fragrances, and pesticides. A core task in organic chemistry is the planning of organic syntheses, the

succession of chemical reactions that construct desired molecules from simple commercially-available starting

materials. No medicine used in the developed world today would exist without solving these planning problems.

Yet, despite 40 years of work by chemists on computer-aided organic synthesis Corey and Wipke (1969), Law

et al. (2009), the chemical synthesis planning problem is largely unknown in the AI community. In this paper, we

bridge that gap by modeling organic synthesis planning as discrete state-space search and show that it is amenable

to heuristic search techniques.

This paper provides three contributions. First, we introduce the AI community to organic synthesis planning,

a long-standing problem of medical and economic importance. Historically, the effort of constructing chemistry-

aware software carried too much overhead for AI researchers; today, however, a number of toolkits that encapsu-

55

CHAPTER 4. RETROSYNTHETIC SEARCH ALGORITHMS 56

late chemical knowledge can be used as blackboxes. These include free open source software packages such as

OpenBabel O’Boyle et al. (2011a) and RDKit Landrum (2006). Second, we describe the first application of proof

number search to chemical synthesis planning. Third, we offer the first public synthetic planning benchmark. To

encourage further development in this essential area, we freely distribute both our solver and benchmark. We

conclude with a discussion of the need for specific new algorithmic developments to address the challenges of the

organic synthesis planning problem.

Organic synthesis presents an interesting and challenging planning domain due to the complexity of the state

description, the cost of checking whether a state satisfies the goal conditions, and the number of operators and

their interaction. Here we provide the AI practitioner with a qualitative description of these factors. Due to lack

of space, we do not present all of organic chemistry here. For a more comprehensive survey of computer-aided

organic synthesis in particular and organic chemistry in general, we refer the reader to Todd (2005) and Clayden

et al. (2000), respectively.

Figures 2.4, 2.5, and 2.6 show typical depictions of a molecule, a reaction, and a multistep synthesis. The

“game board state” of the organic synthesis game is a molecule. Molecules are represented by graphs where

vertices correspond to atoms (of elements such as carbon, oxygen, hydrogen, etc.) and edges correspond to

bonds of different types (single, double, aromatic, etc.). The “game moves” in chemistry are reactions, which

describe the change in bonds that can be enacted on molecules. These required activating and forbidden interfering

substructures are similar to the positive and negative preconditions of planning operators. Despite eliding many

factors of chemical reactions, such as temperature, solvents, catalysts, and side products, such transformation-

based reaction descriptions capture the structural modifications that are achievable through a reaction, and are

therefore widely-used by chemists Daylight (2008), Pirok et al. (2006).

It is important to note that the same reaction can be applied to many different molecules, provided that the

molecules contain the appropriate reactive substructures. For example, the final step of Figure 2.6 is an application

of the reaction described in Figure 2.5, and the alcohol is one small piece of salicylic acid. This applicability of

reactions to many different molecules is similar to ungrounded operators from domain-independent planning.

Furthermore, one reaction may produce multiple possible products. Unlike deterministic games, where the

same move applied to the same state produces a single outcome, a reaction can match several alternative reactive

sites in a molecule. Consider again the reaction described in Figure 2.5. If it is applied to a molecule containing

two alcohol groups, we could imagine 3 distinct product molecules, where the reaction has occurred at one alcohol,

the other, or both.

Finally, one molecule may be produced from many precursors, even when using the same reaction. Every

atom in the product originates in a reagent but the converse is not true because these reaction definitions are not

assumed to be balanced or symmetric. While atoms are neither created nor destroyed in a chemical reaction,

CHAPTER 4. RETROSYNTHETIC SEARCH ALGORITHMS 57

chemists typically isolate a single product of interest, effectively ‘losing’ atoms in side-products. In Figure 2.5,

the atoms labelled 6, 7, and 8 are lost into solution and are not incorporated into the final ester product. Given

this reaction definition, there exist an infinite number of molecules that could produce the ester: any molecule

that contains an anhydride substructure can hang alternative substituents off of the 7 atom, and would not be

constrained by the specification of the product and the reaction.

4.2 A Proof Number Search-based Solver

First, we model the generation of organic syntheses as a two-player zero-sum game. This will enable us to use

Proof Number Search to find syntheses.

The organic synthesis “game” can be described as follows: the first player picks a reaction that would synthe-

size the goal molecule, if the required reagents were available. Then, the second player picks one of that reaction’s

required reagents, and demands that the first player choose a reaction that can synthesize it. The players continue

to take turns until the molecule to be synthesized is found in the library of starting materials, yielding a win for

the first player. Alternatively, if no reactions can generate the chosen molecule, the second player wins. The game

is a forced win for the first player if and only if she can construct all required reagents. Once all of the required

reagents have been constructed, she can apply the original reaction and produce the goal molecule. This recursive

construction game provides an algorithm to generate syntheses.

Game proofs, which establish a game-theoretic value for game positions, closely match the structure we

require in the production of organic synthesis. To demonstrate if a particular board configuration is a win for

one player, a game tree proof provides, for every opponent move, a response that forces a win (although the

responses can vary depending on the opponent’s move). Game tree proofs can be computed even for games

with complicated search spaces, such as games with multiple distinct paths to given board positions or reversible

moves. Proof number search and its memory-efficient variants Allis et al. (1994), Kishimoto (2010) have been

used to generate game tree proofs for large real-world problems such as checkers Schaeffer et al. (2007).

Given a two-player zero-sum game-based formulation of organic synthesis planning, it is natural to apply

AND/OR graph search. AND/OR graph search has been applied to the derivation of winning strategies in

two-player games Allis et al. (1994), Nagai (1998, 2002), Schaeffer et al. (2007) as well as problems such as

MDPs Bonet and Geffner (2006), assembly plans Homem de Mello and Sanderson (1990), and web service com-

position Liang and Su (2005). AND/OR graphs comprise two types of nodes that may be labeled as solved. An

AND node is solved if all of its children are solved, while an OR node is solved if any of its children are solved.

A solution graph therefore specifies (at least) one action for each non-goal node, which connect the initial state to

some set of goal states.

C
H

A
P

T
E

R
4.

R
E

T
R

O
S

Y
N

T
H

E
T

IC
S

E
A

R
C

H
A

L
G

O
R

IT
H

M
S

58

1

O

NH

N
H

H
O

O

O

O

F

2

OH

O

3

NH

4

O

Br

O

Br

O

5

O

6

Cl

O

7

NO

8

N

9

O

OO

10

OH

O

11

Br

Br Br

O

NH

12

OH

13

O

14

OH

15

NH

16

O O

17

O

O

18

O

O

O

O

O

19

OH

NH2
20

OH

Figure 4.1: The benchmark target molecules. Images generated directly from the problem definition using OpenBabel O’Boyle et al. (2011a).

CHAPTER 4. RETROSYNTHETIC SEARCH ALGORITHMS 59

Proof number search, or PNS is a particular kind of AND/OR graph search and is given in Algorithm 3. PNS

begins with an unevaluated root node; for organic synthesis, a root OR node is constructed for the goal molecule.

Every reaction in the reaction library is checked to determine whether it could have produced the goal molecule.

For each reaction that matches the goal, we generate possibly several sets of precursor molecules that could react

to produce the goal. Each molecule in the set of precursors is mapped via a transposition table to an OR node,

and then the set of precursor molecules is wrapped in an AND node. This AND node is connected as a child to

the original goal molecule’s OR node. In the case where a reaction only requires a single precursor, we perform

a simple memory optimization and use the precursor’s OR node as a child directly, omitting the usual wrapping

AND node. The proof and disproof numbers of the root node are updated according to Definitions 2.1 and 2.2.

For a detailed mapping of organic chemistry to AND/OR graph search, see Section 2.2.

Selection and expansion of leaves occurs as in normal PNS with several modifications. A leaf node is

considered to be a terminal win if its molecule is found in the starting material library and it is considered to

be a terminal loss if either no reactions would produce the molecule or if any required precursor set contains

an ancestor molecule in the current synthesis path. ChemAxon’s JChem 5.7.0 toolkit is used for all reaction

applications and starting material matching ChemAxon (2011). Where possible, the precursor molecules are not

grounded but are interpreted as minimal requirements over matching sets of molecules. Although the subgraph

isomorphism necessary for reaction matching is intractable in the worst case, domain-specific algorithms can be

fast in practice Cao et al. (2008). For example, Cao et al. demonstrate that tuning a molecular subgraph matching

algorithm to, for example, match rare atoms such as oxygens before common atoms such as carbons, can yield

significant improvements in runtime.

Usually, in these game proof algorithms, playing a move is considered to be free. This can lead to very large

proof trees. Using the move-cost modification from dfpn+ Nagai (2002), we define the cost of each reaction

application to be 1, to help focus the search on shallow convergent syntheses. Additionally, this captures the fact

that performing a reaction is costly in terms of chemist time.

The search space of organic chemistry forms a directed cyclical graph. In general there exist multiple alterna-

tive synthetic paths to reach a given molecule. Similarly, as with chess where board states can repeat, molecules

can be transformed via a series of reactions back into themselves. For example, oxidations and reductions are a

pair of reactions that are inverses of each other (increasing and decreasing the order of a bond). In an organic

synthesis, a cyclical synthesis implies that a molecule is consumed in its own production. Such cyclic plans are

not feasible. We add a check to terminate the investigation of a cyclical synthesis, as in games of first-player

loss Kishimoto and Müller (2004).

Definitions 2.1 and 2.2 imply that parent AND/OR nodes contain a child with equal (dis)proof counts. How-

ever, this condition is only maintained if the search space is a tree. Since the chemical search space is a graph,

CHAPTER 4. RETROSYNTHETIC SEARCH ALGORITHMS 60

the search algorithm will modify the values of one node and update the values of only one of its parents. This

can leave the other parents with (dis)proof numbers that are not equal to the (dis)proof numbers of any of their

child nodes. Such a discrepancy in values between parents and children is called inconsistency. When the search

encounters a node with (dis)proof values that are inconsistent with the values of its children, the selection or ex-

pansion process is skipped and the node’s values are recomputed from its children’s values. Often, this updating

brings the node out of consistency with its own parents, so the process is repeated until every node along the

current search path has values consistent with its children. Since this fix-up is performed only along the current

search path through the search graph, this procedure may leave (or, indeed, cause new) inconsistencies in other

pairs of parent and child nodes.

C
H

A
P

T
E

R
4.

R
E

T
R

O
S

Y
N

T
H

E
T

IC
S

E
A

R
C

H
A

L
G

O
R

IT
H

M
S

61

Problem
Instructor-provided solution Proof-number search Exhaustive search

operators unique ops depth operators unique ops depth expanded generated seconds expanded generated seconds

1 5 5 4 5 5 4 1353 59522 10166 – – –
2 4 4 4 4 4 4 13 124 7 275 1897 39
3 5 5 4 5 5 4 22 145 8 176 993 26
4 4 4 4 4 4 4 25 702 15 1256 15968 224
5 3 3 2 3 3 2 11 769 31 23 1475 51
6 7 7 7 6 5 5 188 1877 31 474 4103 61
7 10 9 6 13 12 7 378 4301 70 24495 157198 2860
8 5 5 5 5 5 5 78 1810 96 474 7684 372
9 7 7 4 7 7 4 267 4614 94 2902 39256 639
10 3 3 3 3 3 3 168 3532 105 461 8985 247
11 12 12 9 12 12 9 787 15233 228 – – –
12 10 8 6 9 7 5 422 5932 258 9548 74865 2614
13 4 4 2 4 4 4 594 53781 3732 31 2773 121
14 4 4 3 4 4 3 406 64599 5138 149 4715 219
15 10 10 6 11 10 7 499 68335 5085 – – –
16 4 4 4 – – – – – – – – –
17 5 5 3 – – – – – – – – –
18 5 5 5 – – – – – – – – –
19 6 6 6 – – – – – – – – –
20 11 9 7 – – – – – – – – –

Table 4.1: Chemical benchmark. The instructor-provided solution describes the solutions given in the exam answer keys. Total runtime is given in seconds and includes initialization and output of solution.
Dashes indicate that the problem did not complete in 6 hours.

CHAPTER 4. RETROSYNTHETIC SEARCH ALGORITHMS 62

4.3 Constructing a Public Chemistry Benchmark

Standardized benchmarks and competitions are important tools for direct comparison of a variety of algorithmic

techniques Genesereth et al. (2005), Helmert et al. (2008). Unfortunately, no standard public benchmark exists for

chemical synthesis planning. To permit principled comparison of such systems, we have created the first public

chemistry benchmark. It is released to the community under a Creative Commons license and is available for

download at www.cs.toronto.edu/∼aheifets/ChemicalPlanning.

The benchmark contains 20 synthesis problems derived from undergraduate organic synthesis examinations.

With the exception of the first problem, the benchmark problems appeared in exams at the Massachusetts Insti-

tute of Technology Course 5.13 “Organic Chemistry II” during 2001-2006. As such, the benchmark comprises

problems captured from “the wild”, in that the questions were not designed for computers; rather, the tasks

were designed to be challenging for humans and to test fundamental chemistry concepts. The original tests and

instructor-provided answer keys are distributed via MIT OpenCourseWare MIT (2003).

We derived problem 1 from primary literature, rather than from course exams. The target of problem 1 is

atorvastatin, marketed in North America as Lipitor R©. It is an interesting molecule, because atorvastatin was the

best-selling drug in history with yearly revenues in excess of USD$12 billion before its patent expiration in 2011.

The benchmark problem uses the starting materials and reactions reported by the inventors Brower et al. (1992),

Roth (2002).

Figure 4.1 shows the target molecules from our benchmark, which are analogous to goal states in automated

planning problems. Each synthesis problem also specifies a set of starting materials that are permitted (but not

required) to be used in the construction of the target. We manually encoded these target and starting materials in

a standard machine-readable format Weininger (1988). Each problem also contains a sample solution, although

multiple correct answers are generally possible. From each solution, we created a corresponding set of machine-

readable reaction files. We focused on encoding the transformations enacted by the reactions and did not attempt to

document reaction conditions, selectivities, or stereochemical effects. In principle, these data may be represented

and future editions of the benchmark could encode these reaction properties.

Table 4.1 describes the characteristics of the instructor-provided solutions for each problem. The ‘operators’

column lists the total reaction applications when the solution is flattened into a tree. The ‘unique operators’ column

lists the number of reaction applications in the solution. When there are fewer unique operator applications

than the number of operators, it means that the solution is a directed acyclic graph rather than a tree and a

subproblem was reused in different parts of the synthesis. This provides an indication of the occurrence of shared

synthetic intermediates that are used multiple times in the problem answer. ‘Depth’ describes the maximum

number of reactions separating the target molecule from any starting material. An entirely linear problem (such as

CHAPTER 4. RETROSYNTHETIC SEARCH ALGORITHMS 63

problems #2 and #8) will have the same number of operators, unique operators, and depth, whereas a branching

solution (e.g., problem #11) will have a depth that is smaller than the number of operators.

In summary, the benchmark contains 20 problems, a library of 62 unique starting materials, and 50 reaction

definitions. The benchmark is designed to be stand-alone; it is expressed in standard formats and requires no

external reaction or starting material libraries. The problems cover a range of difficulty, each requiring between

3 and 12 unique steps. The canonical instructor answers described solutions that include directed acyclic graphs,

trees, and simple sequences. The problems were developed to be difficult for undergraduate chemistry students

and, we believe, are therefore a useful testing ground for automated chemistry solvers.

4.4 Results and Discussion

Atorvastatin

Figure 4.2: Computer-generated Atorvastatin synthesis matching the synthesis reported in Brower et al. (1992) and Roth (2002).

Benchmark tests were performed on an IBM CL1350 cluster with 1,344 cores over 168 Infiniband-connected

HS21-XM BladeServers and a DCS9550 storage system. The cluster runs the CentOS operating system, version

5.1, uses OpenJDK Runtime Environment (IcedTea6 1.7.5), and manages coarse-grained parallelism with the

Portable Batch System. ChemAxon’s JChem 5.7.1 was used for the molecular manipulations ChemAxon (2011).

Each test received a maximum of 6 hours CPU time and 8GB of RAM.

The benchmark provides a range of problem difficulties. Table 4.1 shows that 5 problems completed in less

than one minute, 6 problems required between 1 minute and 5 minutes, 4 problems required between 1 hour and

3 hours, and 5 problems did not terminate within 6 hours. While problems with deep solutions generally require

CHAPTER 4. RETROSYNTHETIC SEARCH ALGORITHMS 64

more time and search effort than shallow problems, the nature of the target molecule strongly impacts the search

space. When many reactions can generate the substructures in a molecule, many more paths must be explored.

This is illustrated in problems #2 and #4; both are linear syntheses with four steps but problem #4 generated more

than 5 times as many nodes as problem #2. Furthermore, applying reactions takes a significant amount of time,

which varies depending on the molecules under consideration.

Today, organic synthesis problems are solved manually; the standard commercial solver is the human. In this

context, we compare against the gold standard, because the benchmark consists of problems taken from university

exams intended to challenge human students. Direct comparison of our solver against other chemical planners,

while desirable, is impossible. The majority of previous synthesis systems were research projects in the 1970-80s

and no longer available for comparison, since even the underlying operating systems do not necessarily run on

modern hardware Agarwal et al. (1978), Corey and Wipke (1969). The algorithms consisted of exhaustive search

moderated by ad hoc collections of forward pruning rules.

We did compare our algorithm to a reimplementation of the algorithm used by the only existing commercial

software Law et al. (2009), which is exhaustive search to a user-specified depth. We chose to reimplement the

algorithm because a license costs several tens of thousands of dollars. Our implementation of IDA∗ takes a user-

specified bound so as to adhere as closely as possible to the published Law et al. algorithm. We specify the depth

bound to be the minimum of the depths of the benchmark’s provided solution and the solution returned by our

proof-number searcher. Furthermore, we omitted node-construction to minimize algorithmic overhead and derive

the best performance from the exhaustive algorithm.

On most problems, proof number search outperforms exhaustive search in terms of nodes expanded, nodes

generated, and total time spent. For example, on problem #7, exhaustive search expanded over 64 times as many

nodes as PNS. In three cases, proof-number search solved problems on which exhaustive search was terminated

after 6 hours. In problems #13 and #14, PNS performed worse than exhaustive search. In these problems, the

solver appears to be led away from the cheapest solution by the early discovery of a molecular precursor. As can

be seen from Definitions 1 and 2, the proof number search does not optimize for shortest solutions, but rather

for minimum remaining proof burden. If a particular reagent is solved early in the tree, it is considered ‘proved’

and the cost for using it anywhere else in the search is set to 0. Therefore, by proving early on one molecule

from a complicated precursor set, the search may be driven into unfruitful areas of the search space. Integration

of heuristics such as those discussed in Section 2.6, including Bertz (1981), Hendrickson et al. (1987), and Ertl

and Schuffenhauer (2009), would help avoid such waste and speed the discovery of syntheses. Such integration

would widen the margin between PNS and exhaustive search as, by definition, exhaustive search can not leverage

heuristics to focus the search.

We observed that our solver suffers from the problems of over- and under-counting proof and disproof num-

CHAPTER 4. RETROSYNTHETIC SEARCH ALGORITHMS 65

bers. These problems are observed whenever the search space is a graph rather than a tree Kishimoto and Müller

(2004), Seo et al. (2001) When cycles occur or when intermediate nodes are shared along different parts of the

solution path, naive solutions will sum the (dis)proof numbers of leaves multiple times along overlapping paths.

This causes the search to waste time in incorrect portions of the search space and may lead to infinite loop-

ing Kishimoto (2005), Kishimoto and Müller (2008). Solutions that avoid both high computational overhead and

inaccurate proof and disproof counts are an area of active research Kishimoto (2005, 2010), Kishimoto and Müller

(2003).

4.5 Chapter Conclusion and Future Work

This paper introduces an economically- and medically-critical problem to the AI community. It is clear that

our solver does not yet exceed the abilities of a skilled human undergraduate chemistry student. However, it

can already solve a number of challenging synthesis problems, including the the expert-derived synthesis of

atorvastatin, the best selling drug in history.

Our prototype shows the feasibility of applying planning techniques to the chemical synthesis problem. We

described the first application of proof-number search to chemical synthesis planning and the first benchmark for

comparing synthesis solvers. We hope chemical synthesis planning will be a fruitful domain for AI research. To

that end, we are distributing our code and benchmark, which are available at www.cs.toronto.edu/∼aheifets/ChemicalPlanning.

A move from theory and prototype to a realistic system requires several extensions. Search efficiency could

be improved by initializing the AND/OR (dis)proof numbers with a stronger heuristic. The reaction definitions

should be expanded to encompass a broader set of reactions and the starting materials library should be scaled to a

full commercial chemical database. These additional reactions and starting materials would permit the discovery

of novel syntheses without blocking the recognition of the synthesis we report in Figure 4.2. We will investigate

the derivation of stronger heuristics in Chapter 6 but, to do so we will need to construct a large set of synthesis

examples from which to derive our domain-specific heuristics.

Chapter 5

Compilation of synthesis and chemical

data

The patent literature is a rich catalog of biologically-relevant chemicals; many public and commercial molecu-

lar databases contain the structures disclosed in patent claims. However, patents are an equally rich source of

metadata about bioactive molecules, including mechanism of action, disease class, homologous experimental se-

ries, structural alternatives, or the synthetic pathways used to produce molecules of interest. Unfortunately, this

metadata is discarded when chemical structures are deposited separately in databases.

SCRIPDB is a chemical structure database designed to make this metadata accessible. SCRIPDB provides

the full original patent text, reactions, and relationships described within any individual patent, in addition to the

molecular files common to structural databases. We discuss how such information is valuable in medical text

mining, chemical image analysis, reaction extraction, and in silico pharmaceutical lead optimization. SCRIPDB

may be searched by exact chemical structure, substructure, or molecular similarity and the results may be restricted

to patents describing synthetic routes. SCRIPDB is available at http://dcv.uhnres.utoronto.ca/SCRIPDB/search/

5.1 SCRIPDB

U.S. patent information is in the public domain and describes innovations in the medical, biological, chemical, and

agricultural fields. Such relevant and accessible material is ideal for scientific analysis and, indeed, databases such

as PubChem (Wang et al., 2009) and ChEBI (de Matos et al., 2010, Degtyarenko et al., 2008) contain chemical

structures disclosed by patents. While such databases are highly useful, structural databases are insufficient for a

number of scientific investigations.

66

CHAPTER 5. COMPILATION OF SYNTHESIS AND CHEMICAL DATA 67

The extraction of component structures from a patent discards information about chemical relationships.

These relationships can be explicitly labelled, such as a molecule’s role as reagent or product in a chemical

synthesis. Relationships may also be implicitly embedded in the context of the complete patent. For example,

molecules that co-occur in drug patent claims are likely to have similar biological behavior. Splitting a patent into

component structures needlessly removes information about chemical relationships.

These exemplar relationships have been valuable in statistical analyses for automated reaction extraction (Law

et al., 2009, Wilcox and Levinson, 1986) and bioisostere discovery (Southall and Ajay, 2006). Reaction extraction

characterizes the molecular transformations that occur within a set of syntheses. Bioisostere discovery catalogs

molecular substituents that participate in similar biological interactions. Such analyses require access to large

datasets, which are often unavailable, proprietary, or expensive.

In addition to the relationships among a patent’s molecular structures, a patent’s data files are directly useful.

One use of patent files is the creation of data sets for optical structure recognition. The task in optical structure

recognition is to parse a chemical image and recover the depicted molecular structure. The training and tests sets

therefore require correctly matched pairs of images and molecular structure files. As a final example, a patent’s

written contents can serve as a target for text analytics. Patent descriptions and claims constitute a large corpus of

biomedical text, coarsely annotated by, e.g., patent classification and drug-disease pairs.

To address these gaps in available metadata, we have created SCRIPDB. While providing intuitive searching

of the patent literature, we have been careful not to eliminate underlying information. Users of the database may

download the full text of the patent as well as molecular structure files and images. Additional summary files were

generated and augment, rather than replace, the original data. Thus, SCRIPDB permits researchers to effectively

access the full information contained in the patent literature.

The United States Patent and Trademark Office (USPTO) provides full patent text, drawings, and, since 2001,

chemical structures in complex work units. This data became available as a free bulk download, hosted on Google

servers, in June 2010. The raw data files comprise every granted patent, numbering several thousand per week,

and totaling over 10 terabytes of data. However, most patents are not relevant to the biological, chemical, or

medical domains.

Since 2001, patented chemical structures can be described using standard molecular file formats. The USPTO

makes disclosed molecules available as either MDL Molfiles (MOL) or ChemDraw binary CDX files. We used

the presence of these chemical structure files to identify patents of potential interest. Figure 5.1 shows the amount

of data in SCRIPDB, as measured by the quantity of CDX files (Figure 5.1a), individual structures (Figure 5.1a),

and patents (Figure 5.1b). These numbers are consistent with previous analyses of patent data (Li et al., 2010).

A particular structure will often be described with both a CDX and Molfile. However, the information con-

tained in such parallel files is not always identical. For example, a CDX file can label a molecule’s role in a

CHAPTER 5. COMPILATION OF SYNTHESIS AND CHEMICAL DATA 68

Figure 5.1: Cumulative SCRIPDB content. Although SCRIPDB includes patents from 2011, we show data through 2010, the last complete
year. (a) Left panel shows the number of ChemDraw CDX structure files, and the structures described therein, available in SCRIPDB for
various years. SCRIPDB contains 4,814,913 CDX files from 2001 through 2010, comprising 10,840,646 molecules. Duplicate molecules
were filtered from each patent but not across patents, as described in the text. (b) Right panel shows the number of patents and details the
subset containing reactions. For 2001 through 2010, SCRIPDB contains 107,560 patents, of which 25,048 contain synthetic reactions.

reaction as reagent or product, whereas a Molfile cannot. We provide both CDX and Molfile data formats, as well

as original TIFF and generated SVG images. For additional convenience, we collated the individual structure files

into one structure-data file (SDF) per patent. During collation, the generated SDF files were filtered to remove du-

plicate molecules. The filtering ensures that duplicated structures are removed from individual patents’ SDF files

but not across patents, as shared molecules may be used to uncover legitimate relationships among the patents.

Figure 5.2: Example Markush structure from US Patent
6,268,504 (Raveendranath et al., 1999) defining a chemical
class via substituent, positional, and frequency variations.

Patents often describe sets of molecules rather

than, or in addition to, specific structures. Markush

structure notation is commonly used to succinctly de-

scribe large (or infinite) molecular classes by choos-

ing constituent molecular fragments from alternatve

substituents, positions, frequencies, or homologies.

The enumeration and comparison of Markush classes

are significant challenges for cheminformatics sys-

tems (Barnard and Wright, 2009). For example,

Markush structures typically depict variable substituent placement as bonds that cross rings, as in Figure 5.2.

These bonds frequently appear in Molfiles as separate propane molecules laid over the core scaffold. SCRIPDB

provides basic Markush handling by extracting the molecular core and canonicalizing variable substituents, which

permits Markush structures to be found via substructure searches. The original Markush structure is then retriev-

able from the original patent’s structure or image files.

Raw patent data was downloaded from Google’s bulk download of USPTO granted patents with embed-

CHAPTER 5. COMPILATION OF SYNTHESIS AND CHEMICAL DATA 69

ded image data (http://www.google.com/googlebooks/uspto-patents-redbook.html). Filtering, collation, and de-

duplication were performed on an IBM CL1350 cluster with 1,344 cores over 168 Infiniband-connected HS21-

XM BladeServers and a DCS9550 storage system. The cluster runs the CentOS operating system, version 5.1,

and manages coarse-grained parallelism with the Portable Batch System. SDF files were generated and duplicate

structures were removed using OpenBabel, SVN revision 4487 (Guha et al., 2006). OpenBabel was also used

to generate SVG files and compute canonical SMILES strings (http://www.daylight.com/smiles/) for display of

retrieved search results.

The web interface to SCRIPDB was implemented in Python 2.6 using the Django web application framework,

version 1.1 (Forcier et al., 2008). Chemistry-specific search functionality, such as substructure searches or struc-

tural similarity using the Tanimoto coefficient (Tanimoto, 1958) of OpenBabel FP2 linear structural fingerprints,

is provided via integration with Pybel (O’Boyle et al., 2008). Search structures may be specified via SMARTS

queries, uploaded Molfiles, or via the interactive ChemWriter molecular editor (http://metamolecular.com/chemwriter/).

ChemWriter is implemented in pure Javascript and permits SCRIPDB to be accessed from any major browser for

desktop or iPad without the installation of external plugins.

Figure 5.3: Structures per patent in SCRIPDB. While 34,789 patents contain ten or fewer structures, two-thirds of patents contain more than
ten and 1,296 patents contain more than a thousand structures.

New patents are granted each week, providing a steady stream of additional data for SCRIPDB. Here, we re-

port results to the end of 2010, which is the last complete year of patent data. At the end of 2010, SCRIPDB con-

tained 107,560 patents, including 4,814,913 nonredundant CDX structure files. Many structure files describe mul-

tiple molecules which, after removal of duplicate molecules within a patent, yield a total of 10,840,646 molecules.

Not only does this constitute a significant amount of total data (Li et al., 2010) but the rate of structure disclo-

CHAPTER 5. COMPILATION OF SYNTHESIS AND CHEMICAL DATA 70

sure appears to be growing. Both 2009 and 2010 had record numbers of molecules disclosed, at 1,259,097 and

1,639,522 structures, respectively. SCRIPDB dat statistics are summarized in Figure 5.1.

However, focusing solely on the chemical structures ignores valuable chemical information. For many ap-

plications, molecular relationships need to be analyzed at various levels of granularity; for example, within a

single CDX file, a particular patent, a group of patents that refer to a specific disease, or within the entirety of the

database. As seen in Figure 5.1, patents typically contain multiple structural files which, in turn, contain multiple

structures. For example, US Patent 6,884,815 contains 8,187 structure files (Thurkauf et al., 2003).

Figure 5.4: Number of CDX data files with that contain various numbers of reaction arrows.

Figure 5.3 shows the distribution of molecules per patent. The largest group contains patents that describe

relatively few molecules (specifically, 10 or fewer). However, most patents catalog larger structural series. Two-

thirds of patents contain more than 10 structures, over half of patents contain more than 20 structures, and almost

1,300 patents describe more than 1,000 structures each. A manual examination of a sample of patents shows that

these structures often describe molecular analogues produced in the context of a medicinal chemistry optimization

program.

An important relationship described in CDX files is chemical synthesis. Figure 5.1b details the subset of

patents which contain reactions. These are the patents that contain a CDX file with a ReactionStep object

(http://www.cambridgesoft.com/services/documentation/sdk/ chemdraw/cdx/ReactionStep.htm). Of the 107,560

patents from 2001 to 2010, SCRIPDB contains 25,048 patents that describe syntheses.

Fundamental molecular roles, such as reagent and product, are lost when a synthesis is split into separate

structures. These relationships may be difficult to rederive, especially in multistep syntheses. Figure 5.4, which

shows the number of reaction steps in SCRIPDB’s syntheses, demonstrates that synthetic pathways requiring

multiple reaction steps occur frequently in the patent literature. The 25,048 synthesis-containing patents describe

a total of 341,764 individual reaction steps. While the most common are single-step syntheses, 52,462 syntheses

(27.6%) have at least two reaction steps.

CHAPTER 5. COMPILATION OF SYNTHESIS AND CHEMICAL DATA 71

Figure 5.5: Sample of search results for molecules containing an acridine substructure.

5.2 Discussion

In addition to their direct value in intellectual property licensing (Chen et al., 2009) and competitive business anal-

ysis (Hattori et al., 2008), patents can serve as a useful resource for a variety of academic research. We examine

the datasets used in previous research and show that the data available in SCRIPDB is sufficient, quantitatively and

qualitatively, to provide value for future investigations. Additionally, the information in patents is complementary

to data available in the conventional academic literature (Thangaraj, 2007), suggesting additional insight may be

derived from integration with existing datasets. Specifically, we survey patent data as a tool for the development

of chemical image parsing, biological text mining, reaction extraction, and bioisostere discovery.

5.2.1 Patents as a source of chemical images

The problem of optical structure recognition is to automatically extract molecular structure information from

images. A necessary resource in the training and evaluation of such systems is a set of molecular images for

which the true molecular structure is already known. Ideally, the images are representative of chemical images as

commonly used in practice.

Validation sets comprising 6,185 images (Filippov and Nicklaus, 2009) and 454 images (Valko and Johnson,

2009) were recently reported in the literature. By comparison, SCRIPDB provides millions of CDX structure and

TIFF image files. This comprises a validation set several orders of magnitude larger than previously reported,

CHAPTER 5. COMPILATION OF SYNTHESIS AND CHEMICAL DATA 72

even after eliminating possibly-confounding complex synthetic schemes. Furthermore, SCRIPDB contains SVG

images produced by OpenBabel in addition to the original patent’s TIFF images. This redundancy permits testing

structure recognition algorithms for robustness to the idiosyncrasies of alternative image generation tools.

5.2.2 Patents as biomedical literature

Statistical analysis of the biomedical literature requires large quantities of freely accessible documents. Much

of the biological text mining research has therefore used PubMed abstracts of journal articles while more recent

full-text analyses have focused on Open Access journals (Verspoor et al., 2009). A large corpus of 162,259 full-

text journal articles in HTML were used in the TREC Genomics track (Hersh and Voorhees, 2009). The 107,560

patents in SCRIPDB constitute a document collection of comparable size.

Additionally, patents are interestingly complex. Patents are inherently semistructured and are partially an-

notated by their embedded chemical structures, gene sequences (Li et al., 2010), mathematical equations, and

data tables. Patents also contain citations to related papers (Griffin et al., 2011) and patents, permitting co-citation

analysis. Patent relationships may be derived and analyzed based on shared terms in patent text, shared molecules,

patent assignee (Southall and Ajay, 2006) or ontological categorization (http://www.uspto.gov/web/offices/opc/documents/

classescombined.pdf).

5.2.3 Patents as a reaction database

Libraries of chemical transforms are used for combinatorial library design (Pirok et al., 2006), static synthetic

feasibility (Podolyan et al., 2010), and full retrosynthetic analysis (Law et al., 2009). Although such libraries

can be constructed by hand (Corey and Wipke, 1969), automated extraction is an effective and labor-saving

alternative (Law et al., 2009, Satoh and Funatsu, 1999, Wang et al., 2001, Wilcox and Levinson, 1986). Such

systems determine molecular substructures that are modified in the same manner across many different syntheses.

These modifications can then be treated as putative reactions, predicting that if the same molecular substructure is

found in a new molecule, it can be changed in the same way. Automated transform extraction therefore requires

a large corpus of example syntheses within which to find consistent molecular changes.

In this capacity, SCRIPDB with its 341,764 reactions compares favorably to the 42,333 reactions in the Meth-

ods in Organic Synthesis database recently used for reaction extraction (Law et al., 2009) or the 30,530 CCR

reactions used to characterize functional group reactivity (Tanaka et al., 2010). While smaller than commercial

databases containing millions of reactions, SCRIPDB has the virtue of being freely accessible.

CHAPTER 5. COMPILATION OF SYNTHESIS AND CHEMICAL DATA 73

5.2.4 Patents as a bioisostere catalog

After finding an initial lead molecule, medicinal chemists will typically create and test a large series of analogous

compounds, seeking to increase binding affinity; improve absorption, distribution, metabolism, excretion, and

toxicity profiles; or avoid the intellectual property restrictions of competitors’ patents. One systematic approach

for exploring chemical space is to substitute bioisosteres, which are molecular fragments that have similar shape

and chemical properties. For example, hydrogen and fluorine have similar Van der Waals radii and the same

valence. Exchanging a hydrogen with a flourine permits the medicinal chemist to maintain the same molecular

shape while optimizing the molecule’s charge distribution.

There is strong interest both in techniques to determine bioisosteres (Langdon et al., 2010, Sheridan, 2002)

and in idea-generation tools that propose alternative molecules en masse by modifying a lead molecule in silico

using the same approach as a medicinal chemist (Stewart et al., 2006). Southall and Ajay investigated bioisosteric

replacements in kinase patents by analyzing 116,550 compounds (Southall and Ajay, 2006). The maximum

common substructure was computed for pairs of compounds and the remainder of the molecules were identified

as exchangeable chemical replacements.

Southall and Ajay were interested in the research strategies of drug companies, so only compared compounds

found in patents assigned to different companies. In principle, a similar analysis could be performed for the com-

pound series within a single patent. Each patent defines a set of bioisosteric replacements which were determined

to be reasonable, interesting, and synthetically feasible by a medicinal chemist. Figure 5.3 demonstrates that

SCRIPDB contains sufficient patents with large chemical series to extract sensible chemical replacements.

5.3 Chapter Conclusion and Future Work

The impetus of intellectual property protection creates a deluge of patents that carries enormous quantities of

chemical and biological information. While patented molecules are accessible via chemical databases, the ex-

traction of component structures from a patent needlessly removes information about chemical relationships.

SCRIPDB is designed to make such metadata broadly accessible. We examined the information used in medical

text mining, chemical image parsing, reaction extraction, and the development of computational tools for lead op-

timization. We demonstrated that the quantity and quality of SCRIPDB’s data compares favorably with existing

commercial and free datasets. In many cases, it is complementary to existing data.

In the future, we plan to reduce the manual intervention necessary for the incorporation of new patents. In ad-

dition, we wish to pursue integration both with other value-adding databases such as ChEMBL (Warr, 2009) and

CDIP (http://ophid.utoronto.ca/cdip/) and with additional countries’ patent offices. Currently SCRIPDB incor-

CHAPTER 5. COMPILATION OF SYNTHESIS AND CHEMICAL DATA 74

porates only patents from the United States, because the USPTO provides distinct structure files. Robust optical

recognition of chemical structures would permit future integration with patent offices that provide molecules as

images, such as the European Patent Office, the Japanese Patent Office, World Intellectual Property Organization,

the UK Intellectual Property Office and the Canadian Intellectual Property Office.

SCRIPDB is available at http://dcv.uhnres.utoronto.ca/SCRIPDB/search/

Chapter 6

Domain-specific heuristics for synthetic

feasibility

6.1 Introduction

Chemists can imagine lots and lots of different molecules. Modern computer tools, such as de novo design or lead

elaboration software (Langdon et al., 2010, Leach et al., 2006, Meanwell, 2011, Patani and LaVoie, 1996, Segall

et al., 2011, Sheridan, 2002, Stewart et al., 2006, Wagener and Lommerse, 2006), help automate the process of

brainstorming useful molecules. In some sense, they are too successful: that is, such tools can quickly suggest

millions of molecular candidates, which is far too many for a human chemist to carefully analyze.

Consider Abbott’s DrugGuru software as a case study (Stewart et al., 2006). Stewart et al. culled 186 molec-

ular transformation rules from the medicinal chemistry literature. These describe pairs of “swappable” molecular

substructures, such as replacing a hydrogen with a fluorine or a 5-carbon ring with a 6-carbon ring, that experi-

enced medicinal chemists would consider as similar. Given an initial molecule, the software applies these rules

to generate a list of similar-yet-novel molecules, which may be better tolerated by the organism or by patent-

granting authorities. However, even this small set of carefully chosen rules can generate many molecules. For

example, three applications of the 186 replacement rules described in (Stewart et al., 2006) would yield roughly(
186
3

)
= 1, 055, 240 molecules1. Worse, when the software was evaluated by medicinal chemists, most of the

suggested molecules were considered too difficult to synthesize and it was found that

“[...] incorporation of synthetic chemistry knowledge [...] was the single most requested improve-

1While all rules would not be applicable to a given molecule, some rules (such as moving heteroatoms around a ring) would generate many
alternative molecules.

75

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 76

ment.” (Stewart et al., 2006)

In such a setting, there is a critical need to quickly eliminate from consideration molecules which are too

difficult to synthesize. Truly impossible molecules can be eliminated by checking for the presence of molecular

subgraphs that have been shown to be highly unstable (Nalin de Silva and Goodman, 2005). However, such

filters leave large numbers of plausible yet unattractive molecules. Sadly, the ubiquitous economic constraints of

time, money, resources, and available personnel compel us to explore the space of molecules in the most efficient

manner possible. In addition to e.g. estimates of a molecule’s effectiveness at interacting with a particular disease

target as in Appendix B, ease of production is an important criteria for ranking of proposed molecules. That is,

even in the case of a set of molecules that are constructible in principle, we would like to know which molecules

may be made quickly and efficiently for further testing.

The synthetic feasibility of a molecule (sometimes called synthetic accessibility, synthetic complexity, or

synthetic tractability) measures the ease of its production. Many factors impact the time and resources needed

for a molecule’s construction, including the number of chemical reactions that need to be performed to make the

molecule, the level of skill required to perform the reactions successfully, the yield of the needed reactions, the cost

of required reagents and catalysts, the difficulty of cleanly separating the desired molecule from other by-products,

and even the irritation of the chemist at working with smelly or explosive compounds. Unsurprisingly, it is difficult

to summarize all of these factors simultaneously. Indeed, several of these factors are subjective (e.g., difficulty,

inconvenience) or will vary between chemists or organizations (e.g., reaction yield, reagent cost). To control for

such factors, existing synthetic feasibility heuristics are tuned to recapitulate scores assigned to molecules by

(groups of) human experts. However, human judgement is expensive to gather and rife with cognitive biases that

limit the interpretation and applicability of synthetic feasibility estimators that are based on human opinions.

We take a fundamentally different approach. First, throughout this work, we approximate the synthetic fea-

sibility of a molecule, which is difficult to quantify, with the number of synthetic steps needed to make that

molecule. The time and effort needed to make a molecule scale with the number of chemical reactions that must

be performed to produce it, and the number of synthetic steps in a given synthesis is both objective and quantifi-

able. Additionally, predicting the number of steps needed to synthesize a molecule can serve as a useful guidance

in automated retrosynthetic analysis (Cook et al., 2012, Corey and Wipke, 1969, Heifets and Jurisica, 2012a),

particularly as heuristic initialization of proof numbers in solvers such as the one described in Chapter 4.

We begin by constructing a database of organic syntheses described in US patents, as described in Chapter 5.

For each molecule in each synthesis, we label the molecule with the number of synthetic steps needed to synthesize

it. Through automated annotation of large databases, we are able to assemble a synthetic feasibility dataset that

is an order of magnitude larger than previous efforts. Our data comprises 43,976 labeled molecules, compared to

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 77

the previous largest data set of 3,980 labeled molecules described in Takaoka et al. (2003).

These labels provide exact values for the number of steps required to synthesize any molecule present in the

data set. Of course, we are most interested in evaluating the synthetic feasibility of molecules which have never

been synthesized. Therefore, we need a means to generalize from the labeled molecules in our data set and to

predict synthetic feasibility of unlabeled molecules. Using techniques from machine learning and computational

linguistics, we construct a statistical model to predict synthetic feasibility and demonstrate that it exhibits accuracy

and consistency comparable to groups of human experts.

6.1.1 Humans, eh?

As discussed in Section 2.6, many techniques have been proposed for synthetic feasibility estimation (Barone

and Chanon, 2001, Bertz, 1981, 1983, Boda and Johnson, 2006, Boda et al., 2007, Ertl and Schuffenhauer, 2009,

Huang et al., 2011, Randić and Plavić, 2002). These typically relate synthetic feasibility to the frequency of par-

ticular subgraphs in the evaluated molecule. Unfortunately, the evaluation of heuristic predictions is not straight-

forward. The underlying “gold standard” for synthetic feasibility has been based on human opinion, and human

opinion is notoriously difficult to use.

In fields as diverse as medicinal chemistry and movie ratings, human opinions have been shown to depend on

the context (e.g., which other options are presented simultaneously) (Lajiness et al., 2004) and are known to vary

over time (Koren, 2010). Even when people are presented with the same data at the same time, their opinions

vary significantly. In a study where molecules were being selected for further investigation by medicinal chemists

and could be rejected for any reason (such as difficulty of synthesis, unacceptable complexity, interference in

screening experiments, or other unsuitability for further development), Lajiness et al. found that the expected

agreement between chemists’ selections was only approximately 24%.

Worse, humans are not consistent with themselves. In the same study, a set of compound information had been

duplicated and, therefore, evaluated multiple times by the medicinal chemists. The authors report that chemists

selected the same compounds only 50% of the time. Similar results were reported in a study by Kutchukian

et al. (2012), where medicinal chemists were asked to select, from several large sets of compounds, subsets of

lead molecules which they would be willing to develop further. A subset of 227 compounds was present in

each large set, providing the capability to assess selection consistency. Kutchukian et al. (2012) report that the

similarity between chemists’ own selections of the 227 compounds ranged from 0.37 to 0.82, with an average of

0.52. While not particularly consistent, it is substantially better than inter-chemist agreement, where the similarity

ranged from 0.05 to 0.52, with an average similarity of 0.28.

The results of studies on the consistency of human judgment in synthetic feasibility assessment vary. The

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 78

largest study to date showed correlation coefficients between the scores assigned by five chemists to 3,980 com-

pounds range from 0.40 to 0.56 (Takaoka et al., 2003). On a set of 40 molecules, Ertl and Schuffenhauer (2009)

report that the r2 among 9 chemists ranged from 0.450 to 0.892, with an average of 0.718. On a set of 100

molecules, Boda et al. (2007) report that the scores given by 5 chemists range between 0.73 and 0.84. Factors

that could influence consistency of scores include the diversity of kinds of molecules and the diversity of chemist

expertise. (It is interesting that the largest data set showed the least consistency in scores.)

The variation in human opinions has been traditionally dealt with by averaging the scores given by a set of

people. However, it is unclear that the average opinion is more correct than that of a single chemist: when the

molecule requires specific techniques from e.g., fluorine or carbohydrate chemistry, the opinion of a chemist with

relevant experience should be preferred to the average of an arbitrary group.

Figure 6.1: Chart from Boda et al. (2007) depicting minimum, maximum, and average synthetic accessibility scores by five medicinal chemists.
Structures are sorted by average score. Molecules of particularly wide score disagreement are labeled. (This is Figure 2.10, duplicated here
for reader convenience.)

Additionally, as can be seen in both Figure 6.1 and Figure 6.2, chemist agreement varies with the molecule’s

average score. Chemists agree that the simplest molecules are possible to make; chemists also agree that the most

complex molecules are undesirably difficult. But, except for these absolute easiest and hardest molecules, we find

a 2 to 3 fold range in manual synthetic feasibility assessment. That is, some people will give 3 where another

gives 6. Additionally, molecules have large overlaps in score range. This is particularly problematic because it

implies that a group of scores cannot dependably differentiate molecule complexity.

In practice, the large-scale extraction of opinions from human experts is costly and time-consuming. Data sets

size and diversity is limited by economics and expediency. Both contribute to concerns about generalizability.

Data sets sizes have been too small to permit the creation of meaningful held-out validation sets. In many cases,

synthetic feasibility estimators were trained and tested on the same data points (Barone and Chanon, 2001, Bertz,

1981, 1983, Randić and Plavić, 2002). Diversity is a subtler issue but, when the test set molecules are very similar

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 79

Figure 6.2: Chart from Ertl and Schuffenhauer (2009) depicting the average of chemist scores for 40 test molecules, in blue. The error bars
denote the standard error of the mean of scores by 9 chemists. Therefore, to translate to standard deviation the bars would need to be tripled
in size. Structures are sorted by average score. Molecules of particularly wide score disagreement between the average chemist score, in blue,
and their software’s scores, in red, are labeled.

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 80

to the molecules in the training data, a practitioner may be justifiably concerned about the generalizability of

validation results.

6.1.2 Objective measures of synthetic feasibility

To address the problems of limited size, limited diversity, and limited consistency, let us decline to use manually-

labelled synthetic datasets. Instead, we begin with the postulate that, to first-order approximation, the synthetic

feasibility should correlate with the number of steps required to synthesize a molecule. Given an organic synthesis,

the number of steps to reach each molecule ascribes a label to that molecule. If we can extract syntheses from

chemical databases, such as those described in Chapter 5, then we can label each molecule within a synthesis with

the number of reactions required to built it. These labels are empirically and objectively derived, the number of

steps in a synthesis are not a matter of opinion, and a single synthesis yields many labels. Given a large enough

dataset of syntheses, we can efficiently and economically create large independent training and test sets.

Unlike existing synthetic feasibility data where two chemists may have differing opinions on molecular dif-

ficulty, the number of steps in a synthesis is consistent and objective. Furthermore, human-labelled rankings of

molecules - typically on a scale of 1 to 10 - do not contain intrinsic meaning. A molecule with a score of 6 is

unlikely to be exactly twice as difficult as a molecule scored as a 3. In contrast, a molecule that requires 6 steps

does require exactly twice as many steps as a molecule requiring 3. Scores that are physically meaningful allow

the users of the synthetic feasibility estimations to interpret the predictions. The number of synthetic steps has a

precise, real, and relevant interpretation, and serves as an meaningful approximation for synthetic difficulty.

Admittedly, a count of the number of steps does not capture all aspects of synthetic feasibility. In focusing on

consistent universal properties of the molecular synthesis, this approach ignores reaction difficulty. For example,

some reactions are toxic, explosive, expensive, odorous, low yielding, long running, or finicky. Unfortunately,

no general synthetic feasibility algorithm would be capable of completely capturing this information. Different

chemists have different experience and aptitude; a chemist with experience in carbohydrate chemistry and a

chemist experienced in working with fluorine would likely assign differing difficulties to each other’s chemistry.

Reaction yields are known to vary widely across groups (Wernerova and Hudlicky, 2010). Similarly, the cost of

a catalyst for an academic lab will be different than the cost for Pfizer’s purchasing department. Therefore, any

synthetic feasibility algorithm must be parameterized for the specific organization that wants to account for such

factors. The current described approach is extensible to track cost, yield, or to assign differing difficulties for each

reaction, where such information is available. It is possible that such tuning data can be be extracted automatically

from electronic lab notebooks (Christ et al., 2012).

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 81

6.2 Materials and Methods

Figure 6.3 depicts the steps we require to make predictions on synthetic feasibility. The first five steps concern

extracting reactions from the raw real-world data, while the second five process it into a form suitable for use in

synthetic feasibility prediction.

6.2.1 Data collection

Patents have recently been identified as a useful source of synthetic information, as 23% of chemical patents

include syntheses (Heifets and Jurisica, 2012b, Jessop et al., 2011). An example is shown in Figure 6.4. Ad-

ditionally, these syntheses are described in the machine-readable CambridgeSoft ChemDraw (CDX) format, in

United States patents with “Complex Work Units”. Importantly, the United States explicitly places its patents

in the public domain. This free and open access permits the independent validation of scientific results that is

integral to the concept of Open Data (O’Boyle et al., 2011b).

The core difficulty to the data-driven approach presented here is the collection of the labelled data. SCRIPDB

contains ChemDraw files with the capability of representing syntheses but this metadata is nearly always missing

or inaccurate. For example, about half of the CDX files that contain arrows do not list ReactionStep information,

without which it is impossible to ascribe reagents and products to a reaction. However, the TIF files are unam-

biguous because the drawings are the preferred medium of information exchange for chemists. Therefore, we

visually interpret the layout of the CDX files directly. This is not quite a machine vision task because the CDX

files directly describe molecular structures, positions, and the locations of synthetic arrow heads and tails, as de-

picted in Figure 6.5. We read this information by parsing the CDX file rather than by analyzing the patent images,

thereby avoiding the need to solve the challenging problem of chemical image to structure translation (Filippov

and Nicklaus, 2009). Specifically, we use the NextMove CDX File Parser (NextMove Software, 2010) to trans-

late binary CDX files into an machine-parsable and human-readable text format. We parse the bounding boxes

from the text files and annotate the molecules in the patents with their locations. In this way, we avoid low level

machine vision problems, such as edge detection, and build a simpler and more robust system.

Our goal is the assignment of relationships and roles to the molecules based on their geometric positions.

Because we are dealing with real-world data, the examples can be quite convoluted (as seen in Figure 6.6) and a

challenge to label molecules as products or reagents. We perform this labeling by solving a system of constraints,

governing how far a product or reagent can be from the terminus of an arrow to be considered participating in the

reaction, where a ‘+’ can be legally placed to denote a charge versus the combination of molecules, and what role

is played by molecules over or under arrows.

The process begins by reading molecular fragments, free text, and reaction arrows. Bounding boxes are

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 82

Figure 6.3: Data flow schematic depicting the processing steps in each of the collection, cleaning, labeling, and modeling stages.

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 83

Figure 6.4: Example synthesis from US Patent 7,238,717 (Fleming et al., 2007). “Procedure A (Synthesis of Weinreb Amides)” is described
in the patent as: “ A substituted anthranilic acid (24 mmol) was dissolved in acetonitrile (200 mL), 1.05 equivalents of N,O dimethylhydrox-
ylamine hydrochloride, 1.05 equivalents of EDC, 0.05 equivalents of dimethylaminopyridine and 1.0 equivalent of triethylamine were added
and the reaction was stirred at room temperature overnight. The acetonitrile was removed by rotary evaporation and the residue was partitioned
between ethyl acetate and water. The organic layer was washed with brine then concentrated to a residue. The residue was chromatographed
on silica gel (ethyl acetate as eluent) to give the product. Typical yields are 70-90%”.

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 84

Figure 6.5: Available bounding boxes around geometric entities in the ChemDraw files distributed with USPTO patents.

Figure 6.6: Difficult visual parsing example. Which molecules are reagents and which are products, for which reaction step?

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 85

computed for each, from the size of contained atoms or text. The geometric centre and area of each box is

computed and stored, and arrows are assigned a direction, i.e. left, right, up, down or diagonal combinations of

these.

To maximize the accuracy of the extracted syntheses, we currently only process the simplest of synthetic

representations. Syntheses must begin at the top of the CDX page area and flow down. We eliminate curved

(‘arc’) arrows, multiple arrows that are connected by line segments, arrows that point to other arrows, or arrows

that overlap with lines because unique directions cannot be easily assigned, as in Figure 6.6. We also reject

CDX files that contain text boxes with both characters and a ‘+’ sign, because it is unclear whether this notation

describes charges, ions or a list of reagents. Text boxes containing only a ‘+’ are kept. We remove text boxes

that contain Roman numerals and whose area is much smaller than the average bounding box area, as these are

common numbering schemes in patents. If the bounding boxes of two or more molecular fragments overlap or

if the molecules appear on opposite sides of a text ‘+’, then these molecules are grouped and their behavior as

reagents or products are assigned together. Alternatively, if no fragments remain after filtering, we terminate the

processing of the CDX file.

Once we have a clean set of molecules and arrows, we assign the product and reagent relationships to each

reaction arrow. First, we calculate the average distance between the edges of bounding boxes containing either

molecules or arrows. Then, for the head (tail) of each reaction arrow, we select as possible products (reagents)

those molecules with an edge closer than 2 standard deviations of the average distance. Additional constraints are

then considered. If the arrow points directly down, a molecule is assigned as a reagent if it is located above the

arrow or if it is to the side of the arrow with the center of its bounding box between the arrow head and the arrow

tail; molecules are assigned as products if they are below the arrow. If the arrow points directly to the right (left),

a molecule is assigned as a reagent if it is to the left (right) of the molecule or if it is above or below the arrow with

the center of its bounding box between the arrow head and the arrow tail; molecules are assigned as products if

they are to the right (left) of the arrow. Alternatively, If the arrow points right and there is no molecule directly to

the right, the closest molecule below the arrow is assigned as the product. For diagonal arrows, a ray is extended

and the first molecule that intersects the ray from the head (tail) of the arrow is considered a product (reagent) An

example is given in Figure 6.7

Once each reaction arrow is assigned products and reagents, the relationship is written out in standard SMILES

format. The shape of the entire synthesis may be elucidated by following products generated in one step which

are used as reagents in the next step.

Additionally, we augment the visual processing depicted in Step 2 of Figure 6.3 with text analysis of patents

using OPSIN (Jessop et al., 2011, Lowe et al., 2011). OPSIN will read text descriptions of chemical syntheses

and generate reaction steps similar to the output of our visual processing. However, OPSIN only processes the

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 86

Figure 6.7: CDX reading example. First bounding boxes (in blue) are computed for each molecule. Then the minimum distance between
fragments is measured (in green), and used to compute mean and standard deviation for inter-molecule distance. Molecules intersecting with
2 standard deviations from an arrow head or tail (dashed purple arrow) are considered possible reagents or products, and are classified as
described in the text. The three bottom molecules overlap and, therefore, are grouped into an enclosing bounding box (in orange). Because
this box encloses an arrow, these molecules are rejected. Similarly, because the central arrow intersects line segments (in the center black
circles) we cannot assign unique direction for the arrow and it is rejected.

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 87

XML format used in patents from 2005 onward. An example of the patent input text is given in the caption of

Figure 6.4.

6.2.2 Data cleaning

Once the synthesis from each patent is read, several steps are taken to ensure high quality output data. We

begin by unifying the results from each patent are into one consistent global representation, since molecules are

not described identically across all companies and all chemists. We use OpenBabel (O’Boyle et al., 2011a) to

generate canonical SMILES string representations for every molecule, and then match identical structures found

in different patents. For example, the product of a synthesis found in one patent may be used as a starting material

in a different patent. Merging the two syntheses yields a better reflection of synthetic feasibility.

An important special case for molecular and synthetic correspondence in patents occurs when a synthesis

crosses the page boundary of the physical patent document. Under such circumstances, the chemical representa-

tion of the synthesis is also split into two or more CDX files. In the patents, these will end up being sequentially

numbered CDX files. We detect arrows that point off of the end of a CDX file and “glue” it together with the

subsequent CDX file into a single synthesis.

We validate the extracted reactions by using the Indigo toolkit (GGASoftware, 2012) to perform an atom-

to-atom mapping between products and reagents. The atom mapping describes the structural changes caused by

the reaction. If a reaction product contains an unmapped atom, it is because the toolkit could not find a suitable

reagent responsible for the presence of the atom. We discard any reaction that has a product containing any

unmapped atoms. For example, in Figure 6.5, the author of the patent has collapsed several reaction steps above

the first arrow; if such collapsing is too aggressive, the mapping algorithm will not be able to find an appropriate

relationship between reagents and products, and reject the reaction step. This helps ensure that each arrow in

the patent actually encodes (close to) one reaction step. This mapping-based filter may eliminate reasonable

reactions, but it is more important to minimize the chance that that computer “invents” unrealistic chemistry than

the computer failing to translate a particular reaction (which can be mitigated through redundancy in the data).

To help clean the data, we focus on the subset of elements that are commonly used in organic chemistry.

Cheminformatic software packages can be overzealous in their attempts to translate the chemistry found in

the free-form text in real-world ChemDraw files. For example, tert-butyl (tBu) has been observed to be trans-

lated into a compound containing boron and uranium. Additionally, a compound with two alkyl substituents,

Ra and Rb, may be translated into a molecule containing radium and rubidium. We reduce the occurrence of

such errors by using RDKit (Landrum, 2006) to filter out reactions containing compounds that are frequently

mistranslated ([Ra][Rb][Re][Rh][Ru][V][W][Y]), the noble gases ([He][Ne][Ar][Kr][Xe][Rn]), lanthanoids, and

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 88

actinoids, which rarely appear in organic syntheses.

6.2.3 Data labeling

Figure 6.8: Illustrative schematic of organic synthesis. Although there are 8 reaction arrows depicted, the A→B reaction is repeated four
times and it is likely that only 5 reactions were run at the bench. Assuming that A and C are starting materials, Algorithm 5 labels A and C as
requiring zero steps, B requiring 1, D requiring 2, E requiring 3, F requiring 4, and G requiring 5.

Given a set of syntheses, we must compute the minimal number of reactions needed for each molecule. We

use a message-passing paradigm, with the following intuition. Each molecule has a list of reactions in which

it participates as a reagent. When a cheaper path to creating a molecule is discovered, the cost is assigned to

the molecule and the molecule announces its new cost to each of the reactions in which it participates. These

reactions compute a new total reaction cost and announce the new cost to their product(s). Each product, in turn,

computes a new minimal cost and, if this is lower than the old cost, informs the reactions in which it participates.

The algorithm terminates when no new messages get sent.

Finally, computation of the minimal synthetic cost is complicated because the synthesis may be a directed

acyclic graph, as shown in Figure 6.8, rather than a tree. That is, key intermediate molecules may be used several

times in a synthesis. These intermediates are synthesized once in large quantities and reused throughout the

synthesis, so the chemist will only incur the synthetic cost once. Therefore, the proper synthetic feasibility for

molecule G in Figure 6.8 is 5 reactions; however, naively counting the number of reactions arrows would yield a

score of 8.

This problem is related to the overcounting problem of (dis)proof-numbers. When cycles occur or when

intermediate nodes are shared along different parts of the solution path, naive solutions will sum the (dis)proof

numbers of leaves multiple times along overlapping paths (Kishimoto, 2005, Kishimoto and Müller, 2004, 2008,

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 89

Algorithm 5: Proof Set Search-based algorithm for computing minimal synthesis size.

1 procedure ComputeMinimalSyntheticEffort
Input: M , the set of all molecules

2 SM , the set of all starting material molecules
3 foreach m ∈M do
4 m.precursors←∞
5 foreach s ∈ SM do
6 UpdateMoleculeRequiredSet(s, {})
7 foreach m ∈M do
8 m.synthesisSize← |m.precursors|

9 procedure UpdateMoleculeRequiredSet
Input: m, the molecule with a new synthetic route

10 P , the set of all reactions needed to synthesize m
11 if |P | < |m.precursors| then
12 m.precursors← P
13 foreach r ∈ m.participatingReactions do
14 UpdateReactionRequiredSet(r)

15 procedure UpdateReactionRequiredSet
Input: r, the reaction with a newly-available reagent

16 if ∀m ∈ r.reagents,m.precursors <∞ then
17 x =

⋃
m∈r.reagents m.precursors

18 foreach p ∈ r.products do
19 UpdateMoleculeRequiredSet(p, {r} ∪ x)

Seo et al., 2001). Solutions that avoid both high computational overhead and inaccurate proof and disproof counts

are an area of active research (Kishimoto, 2005, 2010, Kishimoto and Müller, 2003). We solve this issue with a

new message-passing algorithm, which is inspired by Proof-Set Search (Müller, 2002), and which uses dynamic

programming to maintain a frontier of reactions used to produce each molecule. Unlike Proof-Set Search, which

was not practical for game proofs due to large overhead, the algorithm is sufficient for the analysis of syntheses

because the average industrial pharmaceutical synthesis is relatively short, at only 8.1 steps (Carey et al., 2006)

and display a small branching factor, when compared with game proofs.

The minimum synthetic effort computation is shown in Algorithm 5. As in Proof-Set Search (Müller, 2002),

the score of a node is represented by its set of required precursors, rather than a single integer. Rather than adding

single integer scores, synthetic paths are computed by taking the union of these precursor sets which ensures that

key intermediates are counted once. The synthetic feasibility is then simply the size of the precursor sets (line 8).

Briefly, we begin with a bipartite graph comprising a set of nodes representing molecules and a set of nodes

representing reactions. Each molecule node maintains the set of reactions in the current best path to synthesize

the node, and a list of outbound links to the reactions in which it participates as a reagent. Every molecule is

initialized to have an infinitely difficult synthetic path, denoting no currently known synthetic route has been

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 90

discovered (line 4). Starting materials do not need to be synthesized so, after initialization, starting materials have

their best synthesis reduced to the empty set (line 6). When the path length of a molecule drops below its current

best synthetic cost (line 11), the molecule sends a message to the reactions for which it is a reagent (line 14). If

any such reaction has a noninfinite path for each required reagent, it computes the union of syntheses for each

required reagent (line 17) plus itself and sends a message with this new synthesis to its products (line 19).

Because reactions are invertible (e.g., oxidation and reduction), organic synthesis space contains cycles.

Message-passing algorithms are, in general, not guaranteed to converge under such conditions. However, for

a message to be propagated on line 14 of Algorithm 5, the cost of the molecule must have been reduced (due to

the inequality on line 11 and the assignment on line 12. Termination of Algorithm 5 is guaranteed because the

number of steps to synthesize any molecule cannot drop below zero; therefore messages must eventually stop

being sent.

An additional consideration is the set of starting materials, which the message passing algorithm requires as

input. Trivially, the leaves of the synthetic tree may be considered starting materials; in Figure 6.8, this design

decision would correspond to molecules A and C. However, data sets are rarely complete. In our case, the

patent data begins in 2001. If the synthesis for molecule C had been published in 2000, this analysis would

mislabel the advanced intermediate as a basic starting material. This error propagates: the computed cost for any

synthesis using molecule C would be underestimated. To prevent mislabeling complicated molecules as starting

materials, we define only simple molecules as starting materials; specifically, we consider starting materials to

be molecules with no more than 10 carbon atoms. It is important to note that there is no universal set of starting

materials: the same molecules that are considered starting materials inside of pharmaceutical companies are the

final synthetic products of the fine chemical manufacturing industry. As with reaction yields, the set of available

starting materials must be determined by the requirements and resources of each specific organization. That said,

our approach still captures the idea used by starting material oriented estimators (Baber and Feher, 2004), that

molecular complexity that can be purchased rather than build is easier on the practicing chemist.

6.2.4 Data modeling

The output of the preceding step yields a pathLength label for each molecule, although molecules can have

∞ path length in cases where no synthetic path exists from starting materials. Each molecule, including interme-

diates, produced in the syntheses is labelled with the number of synthetic steps that were required to create the

molecule. These labelled molecules will comprise our large, objectively-derived, and physically-meaningful data

set.

However, learning directly from molecules is an unexplored problem. Supervised machine learning algorithms

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 91

typically take as training input a vector of real-valued features and a label to be learned. Therefore, the first

step in constructing a statistical model of synthetic feasibility is translating molecules into a vector of features.

Generally, the performance of a statistical model depends critically on the selected features; to ensure that our

results are both easily reproducible and independent from manual feature tuning, we have chosen our features to

be commonly-used structural fingerprints. Structural fingerprints enumerate all subgraphs of a given molecule up

to some fixed size. These subgraphs are assigned unique IDs, which are consistent across different molecules.

A given molecule’s fingerprint is the sparse vector of present subgraph IDs, with each ID associated with the

number of times that subgraph appears in the molecule. To enable reproducibility, we use standard toolkits and

implementations. Specifically, we use the cheminformatics toolkit RDKit (Landrum, 2006) to generate Morgan

fingerprints (Morgan, 1965) of radius 2, which correspond roughly to the ubiquitous ECFP4 (Rogers and Hahn,

2010) implementation of structural fingerprints.

We construct a feature vector, where each entry corresponds to the presence of a given molecular substructure.

The value of each entry is the number of times the substructure is found in the molecule. The length of the

feature vector is determined by the size of the set of all substructure fingerprints found in the training data. Taking

molecules as “sentences” and substructures as “words”, the use of substructure counts precisely corresponds to

the “bag of words” model used ubiquitously in computational linguistics, information retrieval, and computer

vision (Manning and Schütze, 1999, page 237). More precisely, the radius 2 fingerprints correspond to linguistic

length 5 n-grams, although obviously words in a sentence are arranged in a linear sequence, whereas the fingerprint

subgraphs can be branched or cyclical. Although such features show strong conditional dependence, “bag of

words”-based statistical models have been frequently shown to work well and, under certain conditions, achieve

optimal performance (Domingos and Pazzani, 1997).

We used scikits-learn (Pedregosa et al., 2011) to implement our feature selection, machine learning models,

parameter-based grid search, testing, and crossvalidation. We evaluated the performance of a number of statis-

tical models provided by scikits-learn including support vector machines with linear and RBF kernels, linear-

regression, stochastic gradient descent for least squares fit, random forest, k-nearest neighbor, and baseline pre-

diction of the mean training label. Because the training data is highly imbalanced, we also implemented stratified

(or balanced) random forests (Chen et al., 2004). We also built a version of stratified random forests where under-

sampling was performed using cost-proportionate rejection sampling, where the cost of misclassifying a molecule

was inversely proportional to frequency of a molecule’s class Zadrozny et al. (2003). For the purposes of sampling

classes, molecules were grouped by label, except labels 8 and above were clumped together because they were so

few. For statistical models with tunable hyperparameters, we evaluated several options, e.g. number of neighbors

for kNN of 3, 5, and 10.

As in gene expression and text analysis, the number of features often exceeds the number of data points. We

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 92

adopted a standard technique from computational linguistics, namely to prune any feature that lacked a sufficient

number of examples in the training data. This keeps rare substructures that only occur in families of related

molecules with similar synthetic paths from being used as identifying characteristics. In our results, we required

each feature to be present in at least 100 molecules.

We experimented with additional forms of feature selection to reduce the dimensionality of the data. We

also explored using PCA to project the data to a lower dimensional representation and then keeping only the

top-K features, and we used scikit-learn’s univariate feature selection to prune all but the top 10% of features.

Neither approach substantively changed the results, although fewer features sometimes led to faster completion

of training. In some cases, this improved runtime permitted algorithms to complete where using the full feature

set did not.

6.3 Results

We augmented the database described in Chapter 5 with patent applications and recent patents. In total, our dataset

comprised 337,284 patents and patent applications, of which 128,149 had arrows in one of their CDX files. Often,

patents have more than one CDX file with an arrow; in total, these patents yielded 1,238,217 synthesis-containing

CDX files.

These CDX files are processed as described in section 6.2.1; 789,345 reactions are extracted via the visual

processing, including duplicates from patents and patent applications. Additionally, 203,036 reactions are found

via OPSIN text analysis. 52,082 reactions are eliminated by our structural filters. Reaction mapping eliminates

405,430 (or 43%) of the remaining reactions. After deduplicating reactions, we are left with 334,753 unique

reactions.

We then split this data into a training set, an internal test set, and a held-out external validation set. Typically,

evaluation of machine learning performance is conducted with cross-validation and a held-out data set. However,

our data points are highly correlated: adjacent molecules in a synthesis are likely to be very similar. Therefore,

in addition to standard random folds, we use a partitioning based on time (Sheridan, 2013) which is meant to

model the practical use of the prediction system. Consider a chemist in December of 2009. She would have

access to everything published up to that point, and the question is whether she would be able to predict the

synthetic feasibility for the molecules of 2010. Therefore, we split the reactions into a training set comprising

the data published before 2007, an internal test set comprising the data published before 2009, and a validation

set comprising everything in our initial patent data. We ran the labeling procedure for each set. Since a molecule

could be published twice (e.g., disclosed in a patent application in 2006 and again in the granted patent in 2010),

we ensured the novelty of the test and validation sets by eliminating any molecule present in the training or test,

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 93

respectively.

0
10

00
0

20
00

0

22901

9521

4150
2024821 436 210 93 33 23 5 4 2

1 2 3 4 5 6 7 8 9 10 11 12 13

Path length distribution (N=40,223)

Path lengths

M

ol
ec

ul
es

Figure 6.9: Distribution of the labels for molecules in the training data.

The labeling procedure prunes many reactions because of our strict requirement that starting materials contain

no more than 10 carbon atoms. In the training data we find syntheses for 40,223 molecules, with the synthetic

difficulty depicted in Figure 6.9. As can be seen, the path lengths follow a roughly geometric distribution with

the synthetic difficulty highly skewed toward short syntheses. This is to be expected from our labeling of inter-

mediates during the construction of our dataset (and in contrast to previous reports that only described the final

molecule (Carey et al., 2006, Christ et al., 2012, Roughley and Jordan, 2011)); a 5-step linear synthesis also con-

tains a 4-step synthesis of the penultimate molecule, the 4-step contains a 3-step and so on. This skew has not

been discussed in previous work describing the manually-curated synthetic feasibility datasets. The internal test

set data permits us to label 43,976 molecules, with 3,109 molecules not present in the training data. The validation

data permits us to label 49,048 molecules, with 5,280 molecules not present in the internal test set data.

As discussed, the number of features is greater than the number of molecules. In the training data, 40,223

molecules contain 75,624 features. In the internal test set, the 43,976 training examples have 81,542 features.

Most of these are singletons; when we prune any feature that is not present in 100 molecules, we keep 1,422

features for the training set and 1,509 features in the internal test. (When we use a particular set as training, any

novel features in the test molecules are ignored.) Not only does reducing the feature counts make the learning

process tractable, but it reduces the likelihood of overfitting. As can be seen from Figure 6.9, the cutoff of 100

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 94

Algorithm Internal Test Cross Validation Parameters
RMSE Weighted

RMSE
RMSE Weighted

RMSE
PCA Percentile Settings

kNN 1.09 11.02 0.93 12.26 Y Y k=3
SRF 1.97 12.47 1.94 6.63 N N e=20,s=100

CPRSRF 1.84 12.73 1.99 5.37 N N e=500
RF 0.95 25.70 - - N N e=40

GBR 0.98 27.05 0.99 18.10 N N –
SVM 1.00 31.11 - - N Y kern=RBF

baseline 1.21 48.83 1.23 33.22 N N –

Table 6.1: The best synthetic feasibility prediction algorithms on the internal test set. The first three were chosen as the algorithms that yielded
the lowest weighted RMSE and, for comparison, the second three yielded the lowest RMSE. Cross validation was performed on 3 runs of 5
folds; some algorithms did not complete due to the increased computational time and are denoted with dashes. kNN is k-nearest neighbor; SRF
is stratified random forest; CPRSRF is cost-proportionate rejection sampling random forest; RF is random forest; GBR is gradient boosted
regressor; SVM is support vector machine. PCA and Percentile describe feature selection methods. Under “Settings”, k denotes the number
of neighbors, e the number of estimators in an ensemble method, and s the size of the (up- or down-) sampled classes.

molecules is quite strict; in particular, it implies that even if there were a feature that uniquely identified the

molecules labeled 8 or above, our statistical models would not be able to use the feature.

As discussed in Section 6.1.1, standard practice is to compare heuristics against the average of scores given

by a group of chemists. Figures 6.1 and 6.2 demonstrate that these averages have real values rather than categor-

ical values. We could treat the prediction task as a classification problem rather than regression: our machine-

generated labels are ordinal. Indeed one could see an advantage in framing the synthetic feasibility prediction

problem as a classification task, since a synthesis of 4.5 steps has no physical meaning. However, a predicted

score of 4.5 is meaningful: namely that the molecule looks more difficult than what the model considers to be

4-step molecules but less difficult than 5-step molecules. Therefore, we keep to established practice and treat the

prediction as a regression.

As is typical in regression tasks, we report root mean squared error on our internal test set, rather than clas-

sification metrics such as precision and recall. However, because we have a skewed distribution, nearly all of the

score comes from the data points with a label of 1 or 2. The effect is that the systems are tuned to predict low

scores, and predictions for molecules with high labels become very inaccurate. In fact, a baseline prediction of

the mean label (1.76) performs fairly well in terms of RMSE. Therefore, we additionally computed a weighted

RMSE where rare data points are overweighted so that every score label has equal weight. (This is equivalent to

scoring, e.g. the score 13 molecules in Figure 6.9 11,450.5 times each.)

We used the internal test set to choose hyperparameter settings for our machine learning algorithms. The

results of the best parameter settings for the algorithms are reported in Table 6.1. We then used those settings to

train on the data in the training and internal data, and report RMSE for the external validation set. We also tested

the algorithms on 3 runs of 5-fold cross validation. However, due to redundancy in the data, cross validation

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 95

overestimates the accuracy of the predictions (Sheridan, 2013).

2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

pca−kNN

Measured

P
re

di
ct

ed

(a) R2 = 0.728, p-value <2.2e-16

2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

stratified−random−forest−e20−s100

Measured

P
re

di
ct

ed

(b) R2 = 0.292, p-value <2.2e-16

2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

cost−proportionate−rejection−sampling−e500

Measured

P
re

di
ct

ed

(c) R2 = 0.358, p-value <2.2e-16

2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

random−forest−40

Measured

P
re

di
ct

ed

(d) R2 = 0.920, p-value <2.2e-16

Figure 6.10: The predictive performance on the automatically-labelled training data for the top 3 algorithms from Table 6.1 and random forest
for comparison. The plots were generated with R; the linear fit, R2 and p-values were computed using R’s lm linear model.

6.4 Discussion

The first question for a machine learning method is whether the features it has available are sufficient to capture

the variation in the data. We show in Figure 6.10 the predictions of the machine learning systems on their training

data (that is, data they have already seen). Distinct trends can be seen, but there remains significant variation in

the predictions.

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 96

2 4 6 8 10

0
2

4
6

8
10

12
14

pca−kNN

Measured

P
re

di
ct

ed

(a) R2 = 0.157, p-value <2.2e-16

2 4 6 8 10
0

2
4

6
8

10
12

14

stratified−random−forest−e20−s100

Measured

P
re

di
ct

ed

(b) R2 = 0.153, p-value <2.2e-16

2 4 6 8 10

0
2

4
6

8
10

12
14

cost−proportionate−rejection−sampling−e500

Measured

P
re

di
ct

ed

(c) R2 = 0.203, p-value <2.2e-16

2 4 6 8 10

0
2

4
6

8
10

12
14

random−forest−40

Measured

P
re

di
ct

ed

(d) R2 = 0.364, p-value <2.2e-16

Figure 6.11: The predictive performance on the automatically-labelled external validation data for the top 3 algorithms from Table 6.1 and
random forest for comparison. The plots were generated with R; the linear fit, R2 and p-values were computed using R’s lm linear model.

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 97

2 4 6 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

pca−kNN

Measured

P
re

di
ct

ed

(a) R2 = 0.001, p-value = 0.8622

2 4 6 8
2

3
4

5
6

stratified−random−forest−e20−s100

Measured

P
re

di
ct

ed

(b) R2 = 0.471, p-value = 1.018e-06

2 4 6 8

2
3

4
5

6

cost−proportionate−rejection−sampling−e500

Measured

P
re

di
ct

ed

(c) R2 = 0.600, p-value = 4.445e-09

2 4 6 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

random−forest−40

Measured

P
re

di
ct

ed

(d) R2 = 0.209, p-value = 0.003

Figure 6.12: The predictive performance on the manually scored data from Ertl and Schuffenhauer (2009) for the top 3 algorithms from
Table 6.1 and random forest for comparison. The plots were generated with R; the linear fit, R2 and p-values were computed using R’s lm
linear model. For comparison, Ertl and Schuffenhauer (2009) report that the r2 among 9 chemists on these 40 molecules ranged from 0.450
to 0.892, with an average of 0.718.

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 98

The mean of the predictions is higher for the algorithms that are aware of the skewed data distribution. (This

can be seen in the intercept of the linear model.) This leads to a better accuracy for higher-labelled molecules. For

example, the cost-proportionate forest has a quite good accuracy for high-cost molecules; this effect

is summarized in the nearly-doubled weighted RMSE between CPRSRF and the unbalanced random forest

in Table 6.1 There seems to be a trade-off in accuracy between the numerous low-cost molecules and the rare high-

cost molecules. This is apparent when we compare the stratified and cost-proportionate forests

to the performance of pca-kNN: e.g., the cost-proportionate forest has a very tight grouping for the

molecules labelled above 8 but a larger spread for molecules labelled 1, 2, and 3. Similar trends are present for

the external validation set in Figure 6.11. As expected, these trends are weaker, but each of these trends is still

statistically-significant.

More interesting is the performance of the predictors, depicted in Figure 6.12, on the set of 40 manually-

labelled molecules from Ertl and Schuffenhauer (2009). In some sense, this is the most rigorous test of predictor

performance, because humans must be convinced that the predictions of the model correspond to labels they

would give. Additionally, these molecules and labels were generated independently of our labeling procedure

and, therefore, provide an important check against systemic errors or biases. This data set is also interesting

because, in contrast to our data, contains as many difficult molecules as easy ones. On this dataset, the relative

performance of the imbalance-aware algorithms (stratified and cost-proportionate forests) is

even better than the imbalance-blind algorithm (k nearest neighbor and random forests). Impor-

tantly, our algorithmic performance is comparable to the inter-chemist score agreement for this data set. Ertl and

Schuffenhauer (2009) report that the amount of variance that one chemist would explain for another chemist’s

scores ranged from 0.450 to 0.892. The cost-proportionate and stratified forests have an R2 of

0.471 and 0.600, respectively, and fall within the range of agreement between human experts.

6.5 Chapter Conclusion and Future Work

We have developed a method to economically generate large amounts of synthetic feasibility data that avoids

problems with human biases and inconsistency. We have demonstrated that the data carries real information about

synthetic feasibility, by demonstrating predictions in agreement with that of human chemists.

Currently, our system requires ChemDraw files from the Complex Work Units of US patents and patent

applications. Much larger data sources already exist, such as patents from other countries and synthesis schemes

in Wikipedia images. Such data could be harnessed by extending our processing to read images of chemical

structure directly (Filippov and Nicklaus, 2009), rather than from CDX bounding boxes. Even without additional

programatic effort, the amount of US patent data increases yearly, as shown in Figure 5.1, so the techniques

CHAPTER 6. DOMAIN-SPECIFIC HEURISTICS FOR SYNTHETIC FEASIBILITY 99

described here should improve over time.

In addition to the quantity of data available for analysis, the accuracy of predictive methods hinge critically

on the features presented to the statistical learner. Here, I presented machine learning methods with standard

structural features from computational chemistry, the ECFP-style subgraphs of radius 1 and 2. These structures

were designed for predicting pharmacokinetics and pharmacodynamics, rather than synthetic feasibility. It would

be interesting to see if other molecular features, designed specifically for synthetic feasibility, would be better at

predicting the effort needed to make a given molecule.

Chapter 7

Summary & Conclusion

Organic synthesis planning is a difficult problem. In fact, the general case is undecidable. It may therefore seem

foolhardy to devote a PhD to solving the problem computationally. However, we may still have hope because we

can build useful tools without needing to solve all instances optimally.

Unfortunately, even the creation of algorithms that are useful in practice is challenging. Organic chemistry

is far larger than most problems investigated today, whether we measure the number of variables in our state

descriptions, the size of the search space, the average branching factor, or the computational effort to determine

attainment of goal nodes. Additionally, in computer science, we are used to leveraging pre-defined data sets or on

working on problems where data collection is straight-forward. Chemistry is a rich and complicated field, with

most information not publicly available, and it is laborious to encode a sufficiently large subset in formats that are

amenable to automated analysis.

Despite these difficulties, computer science can contribute to organic synthesis planning. First, as shown

in Chapter 5, we can - with effort - compile and analyze far larger datasets than a person ever could. The ex-

tracted information is useful for efforts in medical text mining, chemical image parsing, reaction extraction, the

development of computational tools for lead optimization, and - most importantly for our efforts - the derivation

of synthetic feasibility heuristics. Powerful heuristics have yielded the biggest impact in other applications of

automated computer reasoning and, since chemistry is such a large domain, they are particularly important here.

I present two novel heuristic classes for organic synthesis. In Chapter 4, we describe proof-number-based

search which chooses which search nodes to expand so as to minimize required exploration effort. It is a heuristic

method which balances the effort of finding syntheses for needed molecules against the effort to show that a

current line of attack is doomed to fail because a needed molecule is unsynthesizable. This was the first application

of proof-number methods to chemical synthesis planning and we showed that it outperformed previous unguided

100

CHAPTER 7. SUMMARY & CONCLUSION 101

search systems. However, the efficiency of proof number search is improved if the proof numbers are heuristically

initialized to values that are close to the eventual effort needed for that node. To push the utility of heuristic search

further, more precise heuristics are needed.

I therefore set out to derive a heuristic to predict the synthetic effort for a molecule, which could be used to

initialize the proof number search. Previous heuristics were based on human opinions, and people have opinions

which often do not correlate with other people or, indeed, with their own opinions when asked later. There is a

distinct lack of ground truth in this field. I therefore built the database described in Chapter 5 with the express

purpose of extracting information about syntheses. This need informed the core design decision that differentiates

my database from other databases of molecules such as PubChem (Wang et al., 2009): to track metadata about

the molecular relationships, which permits the extraction of reactions and, therefore, syntheses.

Having assembled the largest extant dataset that describes how hard it is to make molecules, I could now create

my predictor of synthetic feasibility. This heuristic is given in Chapter 6, where I derive a heuristic to predict

synthetic feasibility from this objective data. Without the database assembled in Chapter 5, this fundamentally

new approach would have been impossible. Previous synthetic feasibility assessment systems were based on

manually-annotated molecular scores, often on a scale from 1 to 10. Such rankings are not directly comparable to

synthetic effort and it is not straightforward to incorporate such scores in heuristic search algorithms. In contrast,

our heuristic is the first to use the same units for prediction as a heuristic planner would use for searching: number

of required synthetic steps. It is therefore the first heuristic to be appropriate to serve as the heuristic in an heuristic

search planner (that is, the h in f(n) = g(h) + h(n)). However, even as a stand alone tool, metrics for synthetic

feasibility can prove be useful for chemists who want to rank or filter sets of molecules.

Indeed, as with every PhD thesis, much future research remains to be done. I describe new approaches for ret-

rosynthetic search and synthetic feasibility heuristic estimators. The proper exploitation of these new techniques

may lead to planners that are more powerful than previous attempts. Therefore, the ultimate goal of research in

automated organic synthesis planning should be a deeper integration of heuristic search techniques.

While the investigations described in this thesis extend the range of what is currently possible, much more

effort will need to be invested to make practical contributions to chemistry. Improvements can also be made

within each of the research topics investigated in this dissertation. Reaction libraries must become larger, and

the predictive accuracy of the synthetic feasibility heuristics could be improved. A statistical model’s predictive

ability depends on the quantity and quality of data with which it was built. The well known quip that there is no

data like more data holds here, too, and the databases I build could be extended with synthesis data from other

sources, such as patent offices in other nations, academic papers, and Wikipedia. Indeed, the amount of US patent

data grows each week, so simply waiting and applying the techniques I describe in Chapters 5 and 6 will yield

more data. The approaches and databases described herein should scale as more information becomes available

CHAPTER 7. SUMMARY & CONCLUSION 102

and their utility should scale along with it.

Even so, most of the existing data is excluded from analysis because the syntheses do not begin at sufficiently

simple starting materials. New machine learning algorithms for learning relative rankings directly, rather than

assigning scores as in Chapter 6, could additionally leverage this excluded data. Also, we used standard chem-

informatic features to aid in the reproducibility of this work, but the accuracy of statistical models often hinges

on features tuned to particular domains. Finally, the largest public collection of syntheses is a by-product of the

work described in this thesis; the accuracy and utility of generated retrosynthetic analyses could be improved by

extracting transformations from these, as described in Section 2.7.

These steps would maximize the benefit of merging Proof-Number-Search with powerful heuristic initializa-

tions and help achieve what is always our hope: to transcend what is currently possible.

Appendices

103

Appendix A

Glossary

Actions Operations which may be performed by an agent to affect the world.

Arc An edge in a graph. A 2-set of graph nodes. A directed edge is a 2-tuple, with a distinguished start and end

node.

Automated perception Perception is the recognition of prespecified structures of interest. For example, in mam-

malian and computer vision, low level perceptual filters detect lines at specific angles. Automated percep-

tion is programatic perception.

Best first heuristic search When an evaluation function exists for states in a search problem, and the choice of

which node to expand in the search is the node with the best evaluation.

Branched planning domain Any planning problem where solutions are composed of independent subsolutions.

For example, for a plan to succeed in nondeterministic planning, a plan has to properly account for the

various possible outcomes of taking a specified action. Alternatively, in game proofs, a (possibly different)

response may be necessary for any opponent move.

Bredt’s rule In bridged rings which contain fewer than 8 atoms, a double bond cannot be connected to a bridge-

head atom.

Checking whether a state satisfies the goal conditions Applying the goal test to a state.

Domain-independent planning A subfield of artificial intelligence which investigates the automated discovery

of solutions to problems. These solutions take the form of sets of actions that are chosen depending on

the state of the world. In contrast to other fields of artificial intelligence, where knowledge specific to the

domain helps guide the discovery of solutions, domain-independent planning derives its guidance only at

104

APPENDIX A. GLOSSARY 105

planning time from the description of the domain and problem. For example, domain-specific chess players

may use large database of chess openings. In contrast, domain-independent planners may solve a simplified

(relaxed) chess game to derive insights for the full game.

Hierarchical Task Network (HTN) planning A style of planning where complex actions are recursively de-

composed into sets of smaller actions, with dependencies specified between the smaller actions.

Independently Not connected with another or with each other; separate. (Apple Dictionary version 2.1.3)

Markov Decision Problem The problem of calculating an optimal policy in an accessible, stochastic environ-

ment with a known transition model (Russell and Norvig, 1995).

Masked Hidden.

Non-deterministic planning A planning problem where a single action may lead to a set of states. For example,

flipping a coin may lead to one future world where the coin landed showing its obverse or another future

world where the coin landed showing its reverse.

Ordinal regression A type of regression for predicting relative orderings. Commonly, the output is a predicted

ranking over a set of items, but some algorithms return a partial ordering rather than a total ordering.

Probabilistic interpretation (in nondeterministic planning) Nondeterministic planning permits actions to have

multiple outcomes. Often, these outcomes have some probability distribution associated with their occur-

rence. If we accept solutions which merely may succeed (or seek the solution with maximum likelihood

of success), then we can choose algorithms which reason over the probabilities of the outcomes of actions.

However, if we seek solutions which are guaranteed to succeed, then we must ignore the probabilities of the

outcomes and reason only about worst-case possibilities. See Section 2.2.3 for a more in depth discussion.

Pseudorings When two or more rings are fused in a molecule, the outer boundary is also a ring and may be

labelled as such by naive cheminformatics programs. However, this ring is usually not thought of as a ring

by practicing chemists. For example, most reactions that depend on whether a group of atoms are in a ring

operate on the smaller constituent rings and not the “convex hull” ring.

Retrosynthetic disconnections A retrosynthesis proceeds backwards to simple starting materials from the goal

molecule. Therefore, a retrosynthetic disconnection corresponds to the formation of bonds in the forward,

synthetic direction.

Situation calculus “Situation calculus is the name for a particular way of describing change in first-order logic.

It conceives of the world as consisting of a sequence of situations, each of which is a ‘snapshot’ of the state

APPENDIX A. GLOSSARY 106

of the world.” (Russell and Norvig, 1995). For a more complete description, see (Russell and Norvig, 1995,

Chapter 11).

State description Information about the world that uniquely determines a state. In planning problems, such

information is often represented as conjunctions of Boolean predicates. In chess, for example, the game

state would be described by the positions of the pieces, whether castling for each player is still permitted

(whether each side has moved its king and rooks), and which player’s turn it is to move.

Strategic bonds In a retrosynthetic analysis, the bonds which decompose the molecule into substantially simpler

pieces.

Synthetic accessibility The ease of producing a molecule. (Also called synthetic accessibility, synthetic com-

plexity, or synthetic tractability.)

Synthetic scheme See ‘synthesis’.

Synthesis A succession of chemical reactions that constructs a desired molecule from simple commercially-

available starting materials.

Synthesis planning problem The determination of a synthesis, given a goal molecule, a set of reactions known

to the chemist, and a set of available starting materials.

Transition model The set of probabilities associated with the possible transitions between states after any given

action (Russell and Norvig, 1995).

Appendix B

Which molecules should be built?

Molecular appropriateness is an orthogonal approach to minimizing the number of molecules we need to consider

for synthetic feasibility analyses. Judgements of molecular appropriateness for interaction with particular protein

targets hinge on an understanding of the critical amino acid residues that govern ligand binding. In this appendix,

I describe a tool to find conserved resides in protein active sites, and a demonstration of its use in the previously-

undescribed annotation of basic residues in the binding of NAD.

Ligand-based active site alignment is a widely adopted technique for the structural analysis of protein-ligand

complexes. However, existing tools for ligand alignment treat the ligands as rigid objects even though most

biological ligands are flexible. We present LigAlign, an automated system for flexible ligand alignment and anal-

ysis. When performing rigid alignments, LigAlign produces results consistent with manually annotated structural

motifs. In performing flexible alignments, LigAlign automatically produces biochemically reasonable ligand

fragmentations and subsequently identifies conserved structural motifs that are not detected by rigid alignment.

B.1 Introduction

Comparison of macromolecular structures yields insights into protein function and evolutionary relationships.

These comparisons are typically performed after a global alignment of the target protein structures. Unfortunately,

the non-local geometric constraints imposed by a global alignment will often prevent the discovery of locally

conserved active site structure. This behavior is undesirable in the context of studying protein-ligand binding

as active sites are often more conserved than the global protein shape Denessiouk et al. (1998), Kobayashi and

Go (1997). One solution is to restrict alignment to the active site which induces a local alignment and reveals

functionally relevant conserved structures.

One established method of local alignment is the ligand-based alignment of protein active sites. In ligand-

107

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 108

based alignment, two or more protein-ligand complexes are superimposed by computing the transformations

between the bound ligand of each complex. The computed transformations are then applied to the unbound

proteins. The superimposed structures can then be examined to identify conserved geometric relationships among

chemically similar residues. Consistent arrangements of amino acids provide evidence of shared protein function.

We define two categories of ligand-based protein alignment: rigid and flexible. The rigid alignment of two

protein complexes requires first determining a pairwise atom correspondence between the two ligands and then

identifying the single transformation which minimizes the Root Mean Square Deviation (RMSD) of the corre-

sponding atoms. Previous work in ligand-based protein alignment has used the rigid model. In contrast, this

work presents the first algorithm for flexible ligand-based protein alignment. In the flexible model, each ligand is

considered a group of rigid fragments connected by hinges. After automatically identifying the hinge locations, a

rigid ligand-based protein alignment is performed for each rigid fragment. Conceptually, the flexible model inde-

pendently aligns the subcavities surrounding corresponding rigid fragments, thereby allowing the identification of

conserved structure proximal to each fragment. We propose that flexible ligand-based protein alignment should

be the method of choice when comparing complexes with flexible ligands.

Rigid ligand-based alignment of proteins has been used to uncover the evolutionary history between protein

families Nebel et al. (2007), to predict protein function Nebel et al. (2007), to extract common structural patterns

for ligand binding Carugo and Argos (1997), Denessiouk et al. (2001), Kuttner et al. (2003), and to explain

enzymatic substrate specificity Koehler et al. (1997). These investigations considered ligands with only a single

chemical moiety: heme in human cytochrome P450 CYP17 Nebel (2005, 2006), adenine Denessiouk et al. (2001),

Kuttner et al. (2003), Nebel et al. (2007), and the bioactive conformation of Glutathione S-Transferase inhibitor

analogues Koehler et al. (1997). Their approaches consisted of two phases. In the first phase, they performed a

rigid alignment of these rigid ligands to produce a single superposition of the complexes. In the second phase,

a number of closely related strategies were employed to identify conserved binding motifs. For example, after

alignment, Kuttner et al. discovered conserved regions by iteratively identifying and removing the most densely

populated 1.5Å sphere of protein atoms. As in k-median clustering, an exemplar atom was chosen for each

group of atoms near the center of the group. In another example, Nebel computed atom clusters by iterative

pairwise protein comparison and elimination of distant or chemically dissimilar atoms, similar to average-linkage

hierarchical agglomerative clustering. After the clustering terminated, a consensus virtual atom denoting the

cluster was generated by averaging the positions of the remaining atoms. In contrast to these examples of explicit

clustering, Koehler et al. estimated and compared the electrostatic and lipophilic potentials within the aligned

binding sites.

The previous work succeeded because it applied a rigid alignment to effectively rigid ligands. Flexible ligands

may be effectively rigid if, in practice, they exclusively bind in highly similar poses Koehler et al. (1997). For

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 109

example, in the rigid alignment of the flexible ligand NAD, Carugo and Argos report conserved structure around

the well-aligned adenine moiety but not near the disordered nicotine nucleotide Carugo and Argos (1997). In

other words, conserved structure is only found where the ligands happen to assume highly similar conformations.

Therefore, rigid ligand-based protein alignment and its use of a single computed transformation is not ideal for the

study of flexible ligands. Unfortunately, there are a large number of ligands with at least one internal hinge, and

these ligands bind in widely varying conformations Erickson et al. (2004), Kahraman et al. (2007), Najmanovich

et al. (2008), Stockwell and Thornton (2006).

We present a new algorithm, LigAlign, for both rigid and flexible ligand-based protein alignment and com-

parison. Our work is the first to use the flexible alignment of ligands to detect conserved protein structure. Lig-

Align automatically computes an atom correspondence, identifies hinges, determines rigid fragments, computes

the transformation for each fragment, and detects clusters of conserved residues. LigAlign implements a novel

method for computing the correspondence between ligand atoms using a neighborhood-aware bipartite matching.

LigAlign efficiently locates hinge sites using dynamic programming and branch-and-bound search and detects

conserved residue clusters via clique enumeration. Notably, the use of dynamic programming for flexible ligand

alignment was previously investigated for pharmacophoric inference over unbound ligands in the Pharmagist sys-

tem Schneidman-Duhovny et al. (2008). While Pharmagist’s analysis does not involve protein structure nor does

it perform a ligand-based protein alignment, its dynamic programming approach to rigid fragment assembly is

similar to LigAlign’s use of dynamic programming to identify hinge sites.

We first validate our ligand alignment and cluster detection on the rigid heme system analyzed by Nebel Nebel

(2006) and show that LigAlign can automatically generate a set of residue clusters consistent with the manually

annotated profile. We then compare rigid and flexible ligand alignment of the proteins from the Carugo and

Argos test set Carugo and Argos (1997). When LigAlign performs a rigid alignment, the results are consistent

with previously described binding patterns. More importantly, when LigAlign performs a flexible alignment, it

identifies additional clusters of conserved residues that are undetected by rigid superposition.

LigAlign’s source code is freely available under the GNU LGPL at

http://compbio.cs.toronto.edu/ligalign. LigAlign is implemented in Python and supported on Apple OS X, Linux,

and MS Windows. Our software is implemented as an extension to the PyMOL molecular visualization soft-

ware DeLano (2002) permitting integration with other PyMOL-based tools and allowing the user to easily gener-

ate high quality visualizations of the alignments.

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 110

1) Ligand
Correspondence

a) Find ligands
Input proteins

b) Construct topological vectors

c) Select maximally similar ligandsd) Atom mapping via
Kuhn-Munkres

2) Ligand
Alignment

a) Fragment flexible ligands:
memoize fragment RMSD, branch-and-bound

3) Cluster
Detection

a) Compute residue
centroids

b) Compute pair-wise centroid
distances and prune long edges

c) Enumerate clustersd) Filter on size and
chemical similarity

b) Rigidly align each fragment

Output proteins

Figure B.1: LigAlign Flowchart. The three stages of ligand-based active site alignment, namely ligand correspondence, ligand alignment, and
cluster detection, are shown along with the techniques used to accomplish each stage.

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 111

B.2 System and methods

Flexible ligand-based protein alignment and analysis (which we will now simply refer to as flexible alignment) in

LigAlign consists of three stages (Figure B.1). Stage 1, ligand correspondence (Section B.2.1), computes a map-

ping between the atoms of the bound ligands in each input structure. Stage 2, ligand alignment (Section B.2.2),

automatically detects hinges and aligns the identified rigid fragments of each ligand. Finally, Stage 3, cluster

detection (Section B.2.3), identifies structurally and chemically conserved residues.

B.2.1 Correspondence of bound ligands

The goal of the ligand correspondence stage (Figure B.1) is to identify a set of ligands (one per protein complex)

and an associated mapping between the corresponding atoms of each ligand. While the selected ligands are not

required to be identical, they should be similar enough that when superimposed, they induce a clear alignment on

their bound proteins and facilitate the identification of conserved protein structure. An automated system should

select the most sensible single ligand from the multiple molecules frequently present in each Protein Data Bank

(PDB) file. In practice, we find that LigAlign identifies the desired ligand from each protein complex, avoiding

manual intervention.

Ligand extraction

The LigAlign system extracts the set of ligands that is most self-consistent across the submitted structures. This

ligand extraction problem may be solved by reduction to weighted maximal-clique where nodes represent ligands

and edge weights are proportional to the computed ligand similarity. Unfortunately, solving the NP-complete

maximal-clique problem is prohibitively expensive when aligning multiple proteins with many ligands.

Instead of an exhaustive search, our ligand extraction algorithm identifies a pivot ligand in the first protein

complex (the pivot protein) and the ligand from each non-pivot protein that is most similar to this pivot. We first

eliminate a number of distracting molecules by assuming that ligands of interest must contain at least six heavy

(i.e., non-hydrogen) atoms. Ligands with fewer than six heavy atoms, such as lone metal ions or water, carry too

little information to unambiguously align the proteins. To identify the pivot ligand, we compute a distance score

(described in Section B.2.1) between each ligand in the pivot protein and every ligand in each non-pivot protein.

The pivot ligand is chosen as the ligand in the pivot protein that minimizes the sum of the distance scores between

itself and the most similar ligand in each non-pivot protein. Ties are broken in favor of larger ligands.

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 112

Atomic and molecular similarity

Our algorithms for atom correspondence and ligand extraction require distance measures that are both accurate

and robust to minor structural variations. LigAlign derives its measures of atomic and molecular distance from

a novel graph-based neighborhood comparison. For every atom, we generate a topology vector encoding the

molecular branching and connectivity of its local neighborhood. Specifically, we count the number of atoms at

each bond distance from the starting atom (Figure B.2). This count can be computed efficiently using the Floyd-

Warshall all-pairs distance algorithm Floyd (1962). The molecular topology vector is defined as the average of

the constituent atomic fingerprints.

The atomic and molecular distances are defined as the weighted L1 distance over these topology vectors. We

take the difference of the atom counts at each bond distance and sum the weighted difference, with the weight, w,

decreasing linearly with the bond distance, where

w = (maximum bond distance− atom pair distance). This ensures that differences in two atoms’ local neighbor-

hoods have a greater impact on their correspondence than remote differences. When mapped atoms are identified

as the same element, we provide a bonus and reduce the distance score by the largest computed L1 weight (i.e.,

the maximum bond distance in the molecule), thereby improving the similarity. The molecular distance score

is used in Ligand Extraction (Section B.2.1) and the atomic distance score is used in Ligand Atom Mapping

(Section B.2.1).

Minimal bond distanceMinimal bond distanceMinimal bond distance

1 2 3

A 3 3 3

B 3 5 1

C 3 4 2

A

B

C

1

11

22

2

3

3
3

Figure B.2: Topological vectors encode atom counts as a function of bond distance from a selected atom. For example, the numbers next to
the atoms depict the minimal bond distance from atom A. The topology vector for B is [3, 5, 1] indicating three atoms at distance 1, five atoms
at distance 2, and one atom at distance 3.

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 113

Ligand atom mapping

Once the ligands have been extracted, a mapping or correspondence is computed between the atoms of the pivot

ligand and the atoms of each non-pivot, or query, ligand. Ideally, one could determine a correspondence directly

from the atom names in the PDB files. Unfortunately, the oftentimes arbitrary naming of equivalent atoms Bottoms

and Xu (2008), Kleywegt (1999), Stockwell and Thornton (2006) and the desire to compare similar but not

identical ligands (e.g., analogs from SAR studies Koehler et al. (1997)) makes this approach problematic.

LigAlign computes an atomic correspondence using the neighborhood-based atomic topology vectors de-

scribed in section B.2.1. We perform a weighted bipartite matching between the atoms in the query ligand and

the atoms in the pivot ligand with edge weights equal to the atomic distance score. We solve for the minimal cost

matching in polynomial time with the Kuhn-Munkres algorithm Munkres (1957). The minimal cost matching

defines an atom-to-atom correspondence, or mapping, for the atoms in the query ligand to the atoms in the pivot

ligand. The computed mappings are injective but may be partial when not all atoms of the query or pivot ligands

have a corresponding atom in the other molecule.

This neighborhood-based scoring function can yield ties in symmetric molecular regions, e.g. the ortho and

meta positions of six-membered para-substituted rings, which can produce multiple equally consistent correspon-

dences. Although the neighborhood connectivity and the minimal-cost matchings are identical for symmetric

regions, these alternative atom mappings will yield different ligand alignments. We break these ties by selecting

the mapping that generates the smallest global RMSD after rigid alignment.

B.2.2 Ligand alignment

After the ligands have been selected and mapped in the ligand correspondence stage (Section B.2.1) we compute

the transformations that yield the minimal RMSD between the bound ligands. We will discuss the flexible case

in Section B.2.2. In the rigid case, given the atoms of the query, Vq , and pivot, Vp, and an atom-to-atom corre-

spondence m : Vq 7→ Vp (such as the mapping defined in Section B.2.1), we define the RMSD of the rigid ligands

as

RMSD (Vq,m) =

√∑
(v,u)∈MappedAtoms(Vq,m) distance(v, u)2

|MappedAtoms (Vq,m) |
(B.1)

MappedAtoms (Vq,m) = {(v, u) | v ∈ Vq, u = m(v)} . (B.2)

If the ligands are not identical, the mapping will be incomplete, i.e., m will be undefined for some atoms in

Vq . Therefore, this score is only computed over mapped atoms, as determined by Eq. (B.2). Given an atomic

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 114

correspondence, the transformation that minimizes the RMSD between two rigid ligands can be computed in

closed form Kabsch (1978). Directly computing a minimal-RMSD ligand alignment, without an atomic mapping

as computed in section B.2.1, is NP-hard Schneidman-Duhovny et al. (2008).

Fragmentation of flexible ligands

Our algorithm models molecular flexibility by splitting ligands into a set of rigid fragments connected by flexible

hinges. Each rigid fragment is aligned independently and is not constrained by the alignment of the other frag-

ments. The user may either specify a limit on the number of hinges or allow LigAlign to automatically determine

the number of fragments. In the second case, LigAlign iteratively increases the number of hinges until the im-

provement in RMSD gained by the incorporation of additional hinges is below a threshold amount1. Because the

system lacks foreknowledge of the correct hinge placements, LigAlign performs a complete search of possible

hinge placements. Similar to other flexible ligand analyses Schneidman-Duhovny et al. (2008), this search is

exhaustive; however, dynamic programming and branch-and-bound techniques typically prune the search space

efficiently.

A bond connecting atoms x and y decomposes Vq into two subsets: a rigid molecular fragment, Fx,y,Vq , and

the possibly empty remainder of the molecule, Rx,y,Vq
. We can efficiently compute the RMSD between Fx,y,Vq

and the corresponding part of the pivot ligand using Eq. (B.1) because Fx,y,Vq
is rigid. Because the Fx,y,Vq

and

Rx,y,Vq subsets may be of different sizes, the contributions to the achievable RMSD for the entire molecule must

be weighted by the number of atoms in each piece. If we have fewer than the maximum number of allowed hinges,

we attempt to further reduce the RMSD of Rx,y,Vq
by splitting it into smaller pieces.

Fx,y,Vq = {q | q ∈ Vq, q has a path to x which does not include y} . (B.3)

Rx,y,Vq = Vq \ Fx,y,Vq . (B.4)

FlexibleRMSD (Vq,m, bonds, k) =

RMSD (Vq,m) if k = 0

min(x,y)∈bonds

√√√√√√√ 1
|Vq| ·

 RMSD
(
Fx,y,Vq ,m

)2 · |Fx,y,Vq | +

FlexibleRMSD
(
Rx,y,Vq ,m, bonds, k − 1

)2 · |Rx,y,Vq |

 if k ≥ 1 .

(B.5)

Equation (B.5) simultaneously determines which bonds should have hinges and computes the minimal RMSD

of the two ligands after flexible alignment. The recursive description presented allows caching of partial solu-

1The default threshold is 10%.

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 115

tions for molecular fragments and necessary intermediate computations such as RMSD scoring. Memoizing the

best fragmentation for a particular molecular piece yields an exponential reduction in the search space, especially

in long chain or branched molecules. In the extreme case of a linear molecule, this dynamic programming for-

mulation reduces the runtime from exponential to polynomial, analogous to CKY parsing of context-free gram-

mars Kozen (1997). Furthermore, the alternative extreme case, a ligand composed mainly of conjugated ring

systems such as heme, is also handled quickly. As a consequence of Eq. (B.3), rings are treated as rigid fragments

and no time is spent attempting to split them.

The recursive search for the best hinges in a molecular fragment has a worst-case time exponential in the

number of hinges. Fortunately, the RMSD(·) function of Eq. (B.5) is non-negative and can be used to compute a

lower bound on the FlexibleRMSD of the current fragmentation. This allows us to implement an efficient branch-

and-bound search over possible fragmentations. The current implementation of LigAlign incorporates all of the

algorithmic extensions described in this section.

B.2.3 Residue cluster extraction via clique detection

The result of the second stage (Section B.2.2) is a set of ligands split into rigid fragments and a set of transfor-

mations capable of aligning these fragments. The third stage of flexible alignment and analysis in LigAlign is the

identification of common chemical or structural protein features. In the case of flexible ligand-based alignment,

each rigid fragment and its accompanying protein is superimposed against the pivot ligand and the pivot pro-

tein. Common features can be found by identifying regions of the active site where several proteins have placed

chemically similar amino acids. These residue clusters are identified and reported by LigAlign. The now-aligned

proteins are examined for conserved residue clusters and these clusters are displayed through the PyMOL inter-

face to the user. Although, for clarity, we restrict our discussion here to protein residues, LigAlign will report

clusters of solvent molecules. An example is found in Section B.3.2.

For k proteins, residue cluster detection is an instance of k-Partite 3-D matching, an NP-hard problem Shatsky

et al. (2006). Our algorithm for computing residue clusters, which completes quickly on typical test cases, is exact

and complete, and therefore requires exponential time in the worst case. LigAlign computes the centroids of each

residue in each protein, as in SPASM Kleywegt (1999), and creates a graph with a node corresponding to each

centroid. Weighted edges connect nodes from one protein to nodes from the other proteins, where the edges have

weight proportional to the Euclidian distance between the centroids. Edges with a distance above a specified

threshold are removed (see next paragraph). Possible clusters are then determined by enumerating cliques in this

graph. Cliques are ranked so as to maximize cardinality and, secondarily, minimize total edge weight. Any clique

that is a proper subset of another clique is removed.

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 116

We extend this basic algorithm in three ways. First, the requirement that every protein must contribute to

every cluster is often too restrictive. Therefore, LigAlign accepts a lower bound on the fraction of input proteins

that must have a residue present in a cluster for the cluster to be reported. Second, as the diameter of the cluster

increases, the biological significance of the cluster is likely to decrease. Our clustering algorithm takes a bound for

the maximum acceptable cluster diameter to prevent reporting of biologically meaningless large-diameter clusters.

We remove edges from the centroid-distance graph if the distance between the aligned residues is more than the

user-specified maximum cluster diameter. This pruning ensures that the distance between every pair of clustered

residues is smaller than the maximum diameter while simultaneously improving runtime. Although clusters that

are proper subsets of another cluster are removed, it is possible that reported clusters can partially overlap. For

example, given a set of core residues and several outliers, multiple alternative clusters may be reported with

a different outlier in each cluster. Such boundary cases can occur regardless of the chosen maximum cluster

diameter. Instead of arbitrarily selecting only one of the overlapping clusters, LigAlign returns all clustering

alternatives.

Finally, the third extension allows the user to specify chemical constraints on the membership of residue

clusters. Depending on the biological system, residues with different chemical properties may or may not be

considered meaningful evidence of a conserved template. LigAlign includes three measures of residue similarity

for filtering returned clusters. The least restrictive measure is geometric, which requires no chemical similarity. A

second measure categorizes amino acids into chemical classes and requires that all residues in a cluster belong to

the same group. We use the same seven non-exclusive chemical classes as Nebel: acidic (D, E), basic (R, H, K),

amidic (N, Q), nonpolar (L, V, A, G, I, M, P), aromatic (F, W, Y), hydroxyl (S, R, Y), and sulphide bond forming

(C) Nebel (2006). The third measure of similarity requires all residues in a cluster to be the same amino acid type.

These requirements are applied during clique generation to prune prospective clusters and further speed cluster

detection.

B.3 Results and discussion

We performed a series of experiments using LigAlign in both its rigid and flexible alignment modes to study the

structures of two protein families. We first examined the cytochrome P450 active site and its rigid heme cofactor.

As validation, we directly compared the structural motifs found by LigAlign to those previously described Nebel

(2006). We then examined LigAlign’s performance on the more difficult case of the NAD-binding proteins orig-

inally investigated by Carugo and Argos Carugo and Argos (1997). Although NAD is a flexible ligand, we first

performed a rigid ligand-based protein alignment to allow comparison to previous work. We then performed a

flexible ligand alignment on the NAD-binding protein family and compared the flexible results to those obtained

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 117

via rigid alignment.

B.3.1 Heme

We demonstrate LigAlign’s ability to extract biologically significant residue motifs from the structure of human

cytochrome P450 CYP17 by performing an alignment of the rigid heme moiety in PDB files 1BU7, 1H5Z, 1N97,

1PQ2, and 1W0G. We validate LigAlign’s results by comparing the detected clusters to results previously reported

by Nebel Nebel (2006). The patterns discussed by Nebel are the P450 conserved tetrapeptide G-x-[DEH]-T, the

E-x-x-R and P-E-R-F motifs, and the P450 cysteine heme-iron ligand signature [FW]-[SGNH]-x-[GD]-{F}-[RKHPT]-{P}-C-[LIVMFAP]-[GAD].

These patterns are highlighted with boxes and labeled 1, 2, 3, and 4, respectively, in Figure B.3. Pattern 4 is

PROSITE database pattern PS00086 Hulo et al. (2008), and its conserved cysteine residue is marked with an

arrow.

Figure B.3 shows our results for this system. The first five rows of Figure B.3 show a sequence alignment

of 1BU7, 1H5Z, 1N97, 1PQ2, and 1W0G, as computed by MUSCLE Edgar (2004) using default settings. The

residues are colored by MUSCLE according to the standard Clustal coloring rules. LigAlign’s clusters are shown

in the middle five rows. These are the residues selected from each protein by LigAlign via ligand alignment and

cluster detection2. The acceptable cluster diameter was set at 2.5Å to permit direct comparison with previously

reported results, as described below. LigAlign pruned any clusters with less than 80% representation from the

proteins (i.e., fewer than four out of the five proteins considered). LigAlign was set to reject clusters of residues

that were not of the same chemical class. This experiment completed in approximately 2 minutes on our test

system, a 2.53GHz MacBook Pro laptop running OS X 10.6.2.

LigAlign detects clusters that match the entirety of the G-x-[DEH]-T and E-x-x-R motifs and the P450 cysteine

heme-iron ligand signature. For patterns 1 and 2, LigAlign’s reported patterns include the known motif. Ligalign

reports G-x-E-T for pattern 1, additionally specifying a glutamic acid, and E-x-L-R for pattern 2, additionally

specifying a leucine. These extensions to the known patterns reflect the conservation of the residues present in

our five selected proteins. As seen by examining the first five rows of Figure B.3, this particular set of P450

homologous proteins shows consistent clusters of glutamic acid and leucine. A different set of input proteins

would be required to discover patterns as permissive as the known motifs.

On pattern 3, LigAlign’s performance matches Nebel’s results, with both systems finding the proline and

phenylalanine of the P-E-R-F motif. LigAlign does not detect the glutamic acid or arginine amino acids of the

pattern. These residues turn out to be less spatially conserved than the proline and phenylalanine. The glutamic

acid residues form a cluster with a diameter of 4.32Å and the arginine amino acids form a cluster with a diameter
2The simplicity of using LigAlign is demonstrated by the fact that this experiment required only two commands. Ligand alignment

was performed with the command “ligalign 1pq2, 1w0g, 1bu7, 1h5z, 1n97”. Clusters were computed and reported with the
command “ligalign find template 2.5, 0.8, chemical, 1pq2, 1w0g, 1bu7, 1h5z, 1n97” .

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 118

1 2

3 4 Cys/PS00086

Figure B.3: A sequence alignment of P450 homologs and extracted patterns, as computed by MUSCLE Edgar (2004) using default settings.
The colors correspond to the default Clustal coloring scheme. Four biologically-significant regions Nebel (2006) are boxed and numbered and
the conserved cysteine residue from PROSITE pattern PS00086 is marked. The first five rows comprise the input proteins; the next five rows
show the subset of residues marked as conserved by LigAlign; the last two rows are the conserved residues in the results reported by Nebel.

of 2.69Å. LigAlign detects these clusters only when run with a larger acceptable diameter. Under the set cutoff of

2.5Å, LigAlign correctly prunes both the glutamic acid and arginine residues of pattern 3.

We detect a number of residue clusters that fall outside of the four previously discussed patterns. These

clusters are colored in light grey in Figure B.4. Although the residues are not contained in the four discussed

patterns, examination of Figure B.4 shows that such clusters have good spatial and chemical agreement. These

clusters are unsurprising, given that this set of proteins shows consistent sequence alignments outside of the four

patterns (Figure B.3).

The last two rows of Figure B.3 are reproduced from Nebel’s best template extraction results. T1.25 is

determined from clusters formed from the atoms of the active site by merging the nearest atoms of the same

elemental type, as long as these atoms are within 1.25Å. T1.25 lists all residues containing any such clustered

atom. Our acceptable cluster diameter of 2.5Å was selected to correspond to T1.25, since LigAlign defines

cluster size in terms of maximum diameter and Nebel’s agglomerative clustering bound determines a radius.

Tg2.0 reports the clusters Nebel generated from residue centroids, rather than atoms, with a distance bound of

2.0Å.

Nebel performs cluster detection on atoms rather than amino acids and, for sequence representation, chooses

a single exemplar from the set of amino acids that contributed atoms to the cluster. LigAlign reports the residues

of the original proteins, thereby avoiding the need to choose a single (possibly misleading) residue to represent

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 119

Figure B.4: A ligand-based alignment of P450 homologs showing the shared heme moiety (colored tan) surrounded by the residue clusters
detected by LigAlign. The patterns labelled in Figure B.3 are distinguished by color. Pattern 1 is shown in purple; pattern 2 is dark blue;
pattern 3 is green; and pattern 4 is presented in red. Clustered residues which are not members of one of these patterns are shown in light grey.

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 120

clusters that may contain several different amino acids. This explicit presentation of residues makes the variation

within clusters clear and can be helpful in determining if clusters are missing representative residues due to

variation in chemical class (such as the serine in pattern 4 of 1PQ2) or diverged spatial placement (as with pattern

3 of 1W0G).

B.3.2 Nicotinamide adenine dinucleotide

NAD is a ubiquitous protein ligand and is known to adopt multiple conformations Stockwell and Thornton (2006).

To demonstrate the impact of flexible alignment, we compared the results of LigAlign’s flexible and rigid align-

ments of NAD. Before this comparison, we first validated the clusters reported under rigid alignment against

previously known binding patterns. Carugo and Argos describe nicotinamide adenine dinucleotide binding motifs

present in a wide variety of NAD-dependent proteins Carugo and Argos (1997). They perform a rigid minimal-

RMSD alignment of 21 NAD cofactors and visually determine consistent patches of enzyme residues and solvent

atoms that fall within 4.5Å of any NAD atom. These results are summarized in NAD-binding sequence patterns

such as G-x-G-x-x-G or G-x-x-G-x-x-G Bottoms et al. (2002), where the ‘x’ represents any amino acid and reflects

the variability exhibited in the residue sites.

Rigid NAD alignment

We use LigAlign to rigidly align the NAD ligand of the 21 proteins examined by Carugo and Argos, which are

listed in Table B.1, and automatically extract clusters of conserved residues. Like Carugo and Argos, we specify

1HDX as the pivot ligand conformation. We choose a maximum cluster diameter of 3.0Å and prune clusters

that lack residues from at least half of the proteins. We also keep clusters only when the residues are in the same

chemical class. The ligand alignment and cluster detection for the 21 NAD-binding proteins required just under 24

minutes of runtime on our test system. The aligned NAD ligands and extracted clusters are shown in Figure B.5.

The disorder in the alignment of the nicotine and nicotine ribose moieties is clearly visible, as noted by Carugo

and Argos. Groups of water molecules, which are visible near the diphosphate and adenine moieties, are also

detected by LigAlign. These are structurally conserved solvent molecules responsible for mediating hydrogen

bonding Bottoms et al. (2002), Carugo and Argos (1997).

An alternative presentation of the extracted residue clusters is shown in Table B.1. Table B.1 lists 17 clusters

comprising the residues extracted as conserved by LigAlign. Cluster numbers are assigned such that the residue

positions in the pivot protein are non-decreasing. For each cluster, the amino acid type and sequence position

of the participating residues are reported. These clusters are generated by post-processing the original clusters

reported by LigAlign. Similar to Carugo and Argos, any cluster consisting of residues further than 4.5Å from the

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 121

C1

C2

C3

C4

C5
C6

C7

C8
C9

C10

C11

C12

C13

C14
C16

C17

Figure B.5: A rigid minimal-RMSD ligand-based alignment of the NAD ligand from the 21 NAD-binding proteins listed in Table B.1. The
shared NAD ligand is colored tan. Consistent clusters of residues are shown surrounding the ligand. Hydrophobic residues (LVAGIMP) are
depicted as orange lines; acidic residues (DE) are shown as pink lines. Red spheres correspond to the location of structurally conserved water
molecules.

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 122

PDB ID C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

1HDX – – G199 L200 G201 G202 V203 G204 V222 D223 I224 I269 – V292 ?377 – ?385
1BMD A132 A245 G10 A11 G13 – I15 G16 L40 E41 I42 G87 A88 V128 ?334 – ?342
1DHR A133 – G13 G14 G16 A17 L18 – I36 D37 V38 A83 G84 – ?241 ?245 ?248
1EMD V121 M227 G7 A8 G10 G11 I12 G13 – D34 I35 A77 G78 I117 ?314 ?317 ?316
1GD1 A120 – G7 – G9 – I11 G12 – D32 L33 – G97 – ?336 ?380 ?352
1GEU – – G174 – – L203 – – – E197 M198 A260 G262 I178 ?452 – –
1GGA A134 – G8 – G10 – I12 – V36 D37 M38 – G111 – ?361 – –
1HDG A120 – G7 – G9 – I11 G12 – D32 L33 – G97 – ?336 ?422 ?369
1HDR A136 – G16 G17 G19 A20 L21 L21 V39 D40 V41 A86 G87 – ?244 ?247 ?249
1HLP V140 P249 G27 A27A G29 – V31 G32 V51 D52 I53 A96 G97 – ?330 – –
1LDM V140 I249 G27 V28 G29 A30 V31 G32 V51 D52 V53 A96 G97 V136 ?330 ?373 –
1LDN V140 I251 G27 A28 G29 – V31 G32 I51 D52 A53 A96 G97 A136 ?352 ?364 ?356
1LLD V127 I240 G14 A15 G16 A17 V18 G19 – D39 I40 A83 G84 I123 ?320 – ?324
1PSD V265 V112 G158 – G160 – I162 G163 – D181 I182 V211 P212 A238 ?450 – ?566
1LVL P268 – A263 – G180 – – I182 – – – V264 – – ?460 – ?583
2HSD – I217 G13 G14 – G17 L18 G19 A36 D37 V38 A88 G89 I137 ?256 – –
2NAD V309 V150 A198 A199 G200 – I202 G203 – D221 – – P256 A283 ?394 ?578 ?409
2NPX – – G156 – G158 L185 – I162 – D179 – – – – ?818 – ?1147
2OHX L309 – G199 L200 G201 G202 V203 G204 V222 D223 I224 I269 – V292 ?403 ?616 ?477
4MDH A132 A245 G10 A11 G13 – I15 A16 L40 D41 I42 G87 – V128 ?335 ?396 ?362
9LDT V142 I250 G28 V29 G30 A31 V32 G33 V52 D53 V54 A98 G99 V138 ?401 ?442 ?424

Diameter 3.99 2.59 3.00 2.29 4.09 2.98 3.76 4.41 2.86 3.45 3.65 3.18 3.61 3.69 0.00 2.91 3.38
Carugo et al. – – S1 S2,3 S4 S5 S6 S7 S8 S9 S10 S11,15S12,16 – – – –

Table B.1: Merged clusters as detected after rigid superposition of bound NAD ligands. Diameter is the maximum pairwise distance of
residue centroids in a cluster in Angstroms. Residues of type ‘?’ are either water or small-molecule ligands. Entries in grey are further than
4.5Å from any of their protein’s NAD atoms. The last row shows the correspondence of LigAlign’s clusters with the conserved interacting
positions reported by Carugo and Argos Carugo and Argos (1997). Cluster 15 has a representative from each protein and a cluster diameter
of 0Å because it is the bound NAD ligand. Cluster 16 is a water molecule also reported by Carugo and Argos (See Fig 11 Carugo and Argos
(1997), ibid.). Cluster 17 corresponds to a structurally-conserved water molecule described by Bottoms et al. Bottoms et al. (2002).

aligned ligands is discarded. When a cluster lies on the boundary, with some residues further than 4.5Å, Carugo

and Argos report the distant residues; we highlight such residues in grey in Table B.1.

As discussed in section B.2.3, LigAlign reports alternative clusterings of outlier residues which, when visual-

ized, produce the appearance of a single larger cluster. Merging the overlapping clusters produces a list of clusters

that more closely matches the presentation shown in Figure B.5. In the case when overlapping clusters cannot be

unambiguously merged (i.e., when one protein contributes different amino acids to each of the different clusters)

we report the cluster of larger cardinality, breaking ties to favor the cluster with smaller diameter. The diameters

of the merged clusters are listed in Angstroms in the second to last row of Table B.1, and the original clusters may

be inspected in Tables 1 through 22 of the supplementary material.

The final row of Table B.1 shows the correspondence between LigAlign’s clusters and the sequence positions

reported by Carugo and Argos. Carugo and Argos manually identify 17 residue sites, labelled S1 through S17,

as interacting with NAD. The clusters reported by LigAlign include interacting positions manually identified by

Carugo and Argos. In particular, columns C5, C8, and C13 of Table B.1 correspond to the glycines in the binding

motif of G-x-G-x-x-G. Carugo and Argos’ positions S13, S14, and S17 were not identified by LigAlign as these

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 123

clusters contained residues from fewer than half of the proteins considered.

LigAlign also reports several clusters, C1, C2, and C14, which were not described by Carugo and Argos.

Although we cannot use Carugo and Argos’s results to validate these clusters, Figure B.5 shows they are as

spatially and chemically consistent as the other detected clusters.

Flexible NAD alignment

The rigid alignment results of Section B.3.2 are consistent with those previously reported in the literature. Of

course, a rigid alignment of a flexible ligand, such as NAD, has inherent limitations. Having verified our clustering

methodology for rigid molecules, we next used LigAlign to perform a fragment-based flexible alignment of NAD.

Adenine

Adenine ribose

Phosphates

Nicotine ribose

Nicotine

Figure B.6: Fragmentation of the bound NAD ligand from 1HDR (each rigid fragment is shown in a different color), after fragmentation
but before alignment to the green pivot NAD ligand in 1HDX. The NAD moieties of nicotine, nicotine ribose, nicotine phosphate, adenine
phosphate, adenine ribose, and adenine are labeled.

As in the rigid case, we took 1HDX as the pivot conformation, used a maximum cluster diameter of 3.0Å,

and pruned clusters of disparate chemical type or with residue representation from fewer than half of proteins.

We used the default minimum fragment size of 6 heavy atoms. Rather than specify a number of fragments

for partitioning NAD, we used LigAlign’s default behavior to iteratively increase the number of hinges inserted

until the incremental RMSD improvement from additional hinges was less than 10%. Given the set parameters,

LigAlign automatically determines a fragmentation that yields a minimal RMSD alignment against the pivot

ligand conformation. The fragmentation for the NAD ligand of 1HDR is shown in Figure B.6. In some cases,

such as 9LDT or 1LDN, the bound conformation of the ligand is sufficiently similar to the conformation of NAD

in 1HDX, that the ligand is not fragmented. In this situation, alignment proceeds identically to the rigid case. In

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 124

PDB ID C1 C2 C3 C4 C5 C6

1HDX G199 G201 V203 I269 – ?385
1BMD 1 G10 G13 I15 G87 H186 ?342
1DHR 3 – A149 – G84 – –
1EMD 4 I97 – I75 – – –
1GD1 3 – – – – R10 –
1GEU 1 – – – – – ?478
1GGA 4 – – – – R11 –
1HDG 3 – – – – R10 –
1HDR 1 – A152 – A86 – –
1HLP 2 – A34 A250 – – –
1LDM 1 G27 G29 V31 A96 H193 –
1LDN 1 G27 G29 V31 A96 H193 ?356
1LLD 1 G14 G16 V18 A83 H180 ?324
1PSD 2 G158 G160 I162 – H292 ?566
1LVL 4 – A313 – – – –
2HSD 3 V107 – – G89 – –
2NAD 2 A198 G200 I202 – H332 ?409
2NPX 2 – – – – – ?900
2OHX 1 G199 G201 V203 I269 – ?477
4MDH 1 G10 G13 I15 G87 H186 ?362
9LDT 1 G28 G30 V32 A98 H195 ?424
Diameter 2.96 3.55 3.01 2.93 2.90 2.73

Table B.2: Merged clusters (see discussion in section B.2.3 and B.3.2) as detected after rigid superposition of fragments containing the nicotine
moiety. Entries in grey are further than 4.5Å from any of their protein’s nicotine fragment’s atoms. Residues of type ‘?’ in cluster C6 are
conserved waters.

the proteins under consideration, the largest number of fragments required is 4. Each of these fragments can be

independently aligned to the pivot. The fragment alignments induce a fragment-based superposition of the bound

proteins, which can be searched for clusters of amino acids.

Once we have fragmented the ligands, we generate a protein alignment for each moiety by superimposing the

fragment containing the moiety under consideration against the pivot. The consistent residues around each moiety

can be determined by examining each alignment in turn. Among common natural ligands, NAD is particularly

flexible and contains six distinct moieties (nicotine, nicotine ribose, nicotine phosphate, adenine phosphate, ade-

nine ribose, and adenine). The large number of rigid fragments creates a significant amount of clustering data.

Tables 5 through 22 in the supplementary material list the overlapping clusters discovered when the superposition

of each moiety is independently considered. As expected, the fragment-based alignments of the adenine, adenine

ribose, and phosphate moieties find clusters consistent with those discovered through rigid alignment, since a

rigid alignment achieves a close superposition of these moieties Carugo and Argos (1997). A fragment-based

alignment of the nicotine ribose also finds clusters consistent with the rigid alignment.

In the case of the nicotine fragment, however, our flexible results diverge from the rigid analysis. Carugo and

Argos note a high variability in the orientation of this moiety and the shape of the surrounding active site pocket.

Using rigid alignment, they find no consistent positions near the nicotine. Using LigAlign’s fragment-based

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 125

alignment, we can avoid the disorder induced by rigid ligand alignment on the position and orientation of the

nicotine moiety. After flexible alignment, LigAlign suggests a new structurally conserved group corresponding

to cluster C5 in Table B.2, shown in Figure B.7. The amino acids in cluster C5 are close enough to be considered

part of the active site and Carugo and Argos group the arginine residues with their S5 position. However, when

the nicotines are precisely aligned, a structurally and chemically consistent cluster of basic residues becomes

apparent.

As demonstrated by NAD, a rigid alignment of a complete ligand gives no guarantee that constituent ligand

moieties will be meaningfully aligned. In contrast, flexible ligand-based alignment does not suffer from this

disadvantage. By separately aligning each moiety, additional conserved structural relationships can be identified.

C1

C2
C3

C4

C5

C6

Figure B.7: A protein alignment using only the nicotine moiety of the NAD ligand (shown in a dashed circle). The shared NAD ligand is
colored tan. The misalignment induced by nicotine alignment on the non-nicotine moieties is apparent. Consistent clusters of residues, as
listed in Table B.2, are shown surrounding the ligand. The underlined C5 cluster was identified by flexible alignment but was not detected by
rigid alignment. Hydrophobic residues (LVAGIMP) are depicted as orange lines; basic residues (RHK) are blue lines. Red spheres correspond
to the location of structurally conserved water molecules.

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 126

B.4 Chapter Conclusion and Future Work

The structural analysis of protein families relies on the ability to accurately align corresponding regions of in-

dividual structures. Ligand-based protein alignment has emerged as one solution for this alignment problem.

Unfortunately, while state-of-the-art methods succeed for rigid ligands, their performance falls short for ligands

which bind in multiple conformations. For flexible ligands, a rigid ligand-based protein alignment can induce an

apparent disorder in the residues surrounding each ligand moiety causing clustering to fail.

In this paper, we presented LigAlign, a new software system for the structural analysis of protein active sites

via ligand-based protein alignment. When performing rigid alignments, LigAlign produces automatically gener-

ated results consistent with manually annotated, biologically relevant structural motifs. When performing flexible

alignments, LigAlign automatically produces biochemically reasonable ligand fragmentations and identifies con-

served structural motifs that are not detected by the rigid alignment. This scenario was demonstrated for the

flexible ligand NAD. The adoption of LigAlign as a tool for structural biologists could uncover similar examples

of non-obvious amino acid structural conservation.

Several subproblems of flexible ligand-based protein alignment (such as ligand correspondence, unmapped

ligand alignment, and cluster detection) are NP-hard and therefore likely to have a worst case exponential run-

time. In LigAlign, a series of optimizations including branch-and-bound search, dynamic programming, and

memoization allow the typical execution to complete quickly. Looking forward, several improvements and de-

sign alternatives may be possible. For example, LigAlign currently computes ligand correspondences using a

maximal bipartite matching based on neighborhood similarity. While this technique is robust to structural and

naming discrepancies, it is not guaranteed to properly map ligands that share only small fragments. A ligand

mapping technique based on maximal common substructure detection could address this limitation. Unfortu-

nately, maximal common substructure detection is NP-complete and it is unknown if new molecularly optimized

algorithms Cao et al. (2008) will complete sufficiently quickly on large ligands, such as heme.

It may also be possible to improve the clustering step. LigAlign finds clusters of residue and solvent centroids

based on geometric proximity and filtered by chemical similarity. These tests are currently binary, where a residue

will be either accepted into a cluster or rejected as inconsistent. An alternative would be to use a soft assignment

of residue membership to clusters, producing a real-valued consistency score. For example, clusters could be

judged based on BLOSUM scores Kleywegt (1999) producing a non-binary measure of cluster acceptability.

We believe LigAlign is a useful tool for the structural biology community and we encourage structural biolo-

gists to use it. LigAlign runs under the PyMOL molecular viewing program. This integration allows the user to

easily generate and interact with the types of figures found in this manuscript. LigAlign is supported on Apple

OS X, Linux, and MS Windows. The source code is freely available under the GNU LGPL. LigAlign is available

APPENDIX B. WHICH MOLECULES SHOULD BE BUILT? 127

for download at http://compbio.cs.toronto.edu/ligalign

Bibliography

K.K. Agarwal, T.D.L. Larsen, and H.L. Gelernter. Application of chemical transforms in SYNCHEM2, a

computer program for organic synthesis route discovery. Comp. & Chemistry, 2(2):75–84, 1978. ISSN

0097-8485. doi: DOI:10.1016/0097-8485(78)87005-3. URL http://www.sciencedirect.com/

science/article/B6TFV-44W5DTW-K0/2/acdf20f7b805b27335df83408703a4a0.

L.V. Allis, M. van der Meulen, and H.J. van den Herik. Proof-number search. Artificial Intelligence, 66:91–124,

1994.

Tharun Kumar Allu and Tudor I. Oprea. Rapid evaluation of synthetic and molecular complexity for in silico

chemistry. Journal of Chemical Information and Modeling, 45(5):1237–1243, 2005. doi: 10.1021/ci0501387.

URL http://pubs.acs.org/doi/abs/10.1021/ci0501387.

J.C. Baber and Miklos Feher. Predicting synthetic accessibility: Application in drug discovery and development.

Mini-reviews in Medicinal Chemistry, 4:681–692, 2004.

John M. Barnard and P. Matthew Wright. Towards in-house searching of markush structures from patents. World

Patent Information, 31(2):97 – 103, 2009. ISSN 0172-2190. doi: DOI:10.1016/j.wpi.2008.09.012. URL

http://www.sciencedirect.com/science/article/pii/S0172219008001385.

René Barone and Michel Chanon. A new and simple approach to chemical complexity. application to the synthesis

of natural products. J. Chem. Inf. Comput. Sci., 41:269–272, 2001.

Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig, Ilya N. Shindyalov,

and Philip E. Bourne. The protein data bank. Nucleic Acids Res, 28:235–242, 2000.

Steven H. Bertz. The first general index of molecular complexity. J. Am. Chem. Soc., 103:3599–3601, 1981.

Steven H. Bertz. On the complexity of graphs and molecules. Bulletin of Mathematical Biology, 45(5):849–855,

1983.

128

http://www.sciencedirect.com/science/article/B6TFV-44W5DTW-K0/2/acdf20f7b805b27335df83408703a4a0
http://www.sciencedirect.com/science/article/B6TFV-44W5DTW-K0/2/acdf20f7b805b27335df83408703a4a0
http://pubs.acs.org/doi/abs/10.1021/ci0501387
http://www.sciencedirect.com/science/article/pii/S0172219008001385

BIBLIOGRAPHY 129

Edward S. Blurock. Computer-aided synthesis design at RISC-Linz: automatic extraction and use of reaction

classes. Journal of Chemical Information and Computer Sciences, 30(4):505–510, 1990.

Krisztina Boda and A. Peter Johnson. Molecular complexity analysis of de novo designed ligands. J. Med. Chem.,

49:5869–5879, 2006.

Krisztina Boda, Thomas Seidel, and Johann Gasteiger. Structure and reaction based evaluation of synthetic

accessibility. J. Comput. Aided Mol. Des, 21:311–325, 2007.

Blai Bonet and Hector Geffner. Labeled RTDP: Improving the convergence of real-time dynamic programming.

In Enrico Giunchiglia, Nicola Muscettola, and Dana S. Nau, editors, ICAPS, pages 12–31. AAAI, 2003. ISBN

1-57735-187-8.

Blai Bonet and Hector Geffner. An algorithm better than AO*? In Manuela M. Veloso and Subbarao Kambham-

pati, editors, AAAI, pages 1343–1348. AAAI Press / The MIT Press, 2005. ISBN 1-57735-236-X.

Blai Bonet and Hector Geffner. Learning depth-first search: A unified approach to heuristic search in deterministic

and non-deterministic settings, and its application to MDPs. In ICAPS, pages 142–151. AAAI, 2006.

Christopher A Bottoms and Dong Xu. Wanted: unique names for unique atom positions. PDB-wide analysis of

diastereotopic atom names of small molecules containing diphosphate. BMC Bioinformatics, 9 Suppl 9:S16,

2008. ISSN 1471-2105 (Electronic); 1471-2105 (Linking). doi: 10.1186/1471-2105-9-S9-S16.

Christopher A Bottoms, Paul E Smith, and John J Tanner. A structurally conserved water molecule in Rossmann

dinucleotide-binding domains. Protein Sci, 11(9):2125–2137, Sep 2002. ISSN 0961-8368 (Print); 0961-8368

(Linking). doi: 10.1110/ps.0213502.

Philip L. Brower, Donald E. Butler, Carl F. Deering, Tung V. Le, Alan Millar, Thomas N. Nanninga, and Bruce D.

Roth. The synthesis of (4R-cis)-1,1-dimethylethyl 6-cyanomethyl-2,2-dimethyl-1,3-dioxane-4-acetate, a key

intermediate for the preparation of CI-981, a highly potent, tissue selective inhibitor of HMG-CoA reduc-

tase. Tetrahedron Letters, 33(17):2279–2282, 1992. ISSN 0040-4039. doi: DOI:10.1016/S0040-4039(00)

74189-X. URL http://www.sciencedirect.com/science/article/B6THS-42HGSX2-6N/

2/bc8c8a2735d89334846d94fb8e96820a.

Daniel Bryce and Subbarao Kambhampati. A tutorial on planning graph based reachability heuristics. AI Maga-

zine, 28(1):47–83, 2007.

L. Michael Cacace. Fortune Global 500 Rankings. In Fortune.

http://money.cnn.com/magazines/fortune/global500/2009/industries/, July 2009.

http://www.sciencedirect.com/science/article/B6THS-42HGSX2-6N/2/bc8c8a2735d89334846d94fb8e96820a
http://www.sciencedirect.com/science/article/B6THS-42HGSX2-6N/2/bc8c8a2735d89334846d94fb8e96820a

BIBLIOGRAPHY 130

R. S. Cahn, Christopher Ingold, and V. Prelog. Specification of Molecular Chirality. Angewandte Chemie Inter-

national Edition in English, 5(4):385–415, April 1966. ISSN 0570-0833. doi: 10.1002/anie.196603851. URL

http://dx.doi.org/10.1002/anie.196603851.

M. Campbell. Knowledge Discovery in DEEP BLUE. Communications of the ACM, 42(11):65–67, 1999.

Yiqun Cao, Tao Jiang, and Thomas Girke. A maximum common substructure-based algorithm for searching and

predicting drug-like compounds. Bioinformatics, 24(13):i366–74, Jul 2008. ISSN 1367-4811 (Electronic);

1367-4811 (Linking). doi: 10.1093/bioinformatics/btn186.

John S. Carey, David Laffan, Colin Thomson, and Mike T. Williams. Analysis of the reactions used for the

preparation of drug candidate molecules. Org. Biomol. Chem., 4:2337–2347, 2006. doi: 10.1039/B602413K.

URL http://dx.doi.org/10.1039/B602413K.

Oliviero Carugo and Patrick Argos. NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding.

Proteins, 28(1):10–28, May 1997. ISSN 0887-3585 (Print); 0887-3585 (Linking).

ChemAxon. JChem 5.7.1. http://www.chemaxon.com, 2011.

Chao Chen, Andy Liaw, and Leo Breiman. Using random forest to learn imbalanced data. Technical Report 666,

Department of Statistics, UC Berkeley, July 2004.

Ying Chen, Scott Spangler, Jeffrey Kreulen, Stephen Boyer, Thomas D. Griffin, Alfredo Alba, Amit Behal, Bin

He, Linda Kato, Ana Lelescu, Cheryl Kieliszewski, Xian Wu, and Li Zhang. Simple: A strategic information

mining platform for licensing and execution. Data Mining Workshops, International Conference on, 0:270–275,

2009. doi: http://doi.ieeecomputersociety.org/10.1109/ICDMW.2009.36.

Clara D. Christ, Matthias Zentgraf, and Jan M. Kriegl. Mining electronic laboratory notebooks: Analy-

sis, retrosynthesis, and reaction based enumeration. Journal of Chemical Information and Modeling, 52

(7):1745–1756, 2012. doi: 10.1021/ci300116p. URL http://pubs.acs.org/doi/abs/10.1021/

ci300116p.

Jonathan Clayden, Nick Greeves, Stuart Warren, and Peter Wothers. Organic Chemistry. Oxford University Press,

2000.

Anthony Cook, A. Peter Johnson, James Law, Mahdi Mirzazadeh, Orr Ravitz, and Aniko Simon. Computer-aided

synthesis design: 40 years on. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1):79–

107, 2012. ISSN 1759-0884. doi: 10.1002/wcms.61. URL http://dx.doi.org/10.1002/wcms.61.

E. J. Corey. General methods for the construction of complex molecules. Pure Appl. Chem., 14(1):19–38, 1967.

http://dx.doi.org/10.1002/anie.196603851
http://dx.doi.org/10.1039/B602413K
http://pubs.acs.org/doi/abs/10.1021/ci300116p
http://pubs.acs.org/doi/abs/10.1021/ci300116p
http://dx.doi.org/10.1002/wcms.61

BIBLIOGRAPHY 131

E. J. Corey and W. Todd Wipke. Computer-Assisted Design of Complex Organic Syntheses. Science, 166(3902):

178–192, 1969. doi: 10.1126/science.166.3902.178. URL http://www.sciencemag.org/content/

166/3902/178.short.

E. J. Corey, Alan K. Long, Theodora W. Greene, and John W. Miller. Computer-assisted synthetic analysis.

selection of protective groups for multistep organic syntheses. The Journal of Organic Chemistry, 50(11):

1920–1927, 1985. doi: 10.1021/jo00211a027. URL http://pubs.acs.org/doi/abs/10.1021/

jo00211a027.

Elias J. Corey. The Logic of Chemical Synthesis: Multistep Synthesis of Complex Carbogenic Molecules (Nobel

Lecture). Angewandte Chemie International Edition in English, 30(5):455–465, December 1991. ISSN 1521-

3773. doi: 10.1002/anie.199104553. URL http://dx.doi.org/10.1002/anie.199104553.

Elias J. Corey and Xue-Min Cheng. The Logic of Chemical Synthesis. Wiley, 1995.

Daylight. Daylight Chemical Information Systems, Inc. http://www.daylight.com/daycgi tutorials/smirks examples.cgi,

2008.

Paula de Matos, Rafael Alcántara, Adriano Dekker, Marcus Ennis, Janna Hastings, Kenneth Haug, Inmaculada

Spiteri, Steve Turner, and Christoph Steinbeck. Chemical entities of biological interest: an update. Nucleic

Acids Research, 38(suppl 1):D249–D254, 2010.

Kirill Degtyarenko, Paula de Matos, Marcus Ennis, Janna Hastings, Martin Zbinden, Alan McNaught, Rafael

Alcántara, Michael Darsow, Mickaël Guedj, and Michael Ashburner. Chebi: a database and ontology for chem-

ical entities of biological interest. Nucleic Acids Research, 36(suppl 1):D344–D350, 2008. doi: 10.1093/nar/

gkm791. URL http://nar.oxfordjournals.org/content/36/suppl_1/D344.abstract.

W.L. DeLano. The PyMOL Molecular Graphics System. http://www.pymol.org, 2002.

K A Denessiouk, J V Lehtonen, and M S Johnson. Enzyme-mononucleotide interactions: three different folds

share common structural elements for ATP recognition. Protein Sci, 7(8):1768–1771, Aug 1998. ISSN 0961-

8368 (Print); 0961-8368 (Linking). doi: 10.1002/pro.5560070811.

K A Denessiouk, V V Rantanen, and M S Johnson. Adenine recognition: a motif present in ATP-, CoA-, NAD-,

NADP-, and FAD-dependent proteins. Proteins, 44(3):282–291, Aug 2001. ISSN 0887-3585 (Print); 0887-

3585 (Linking).

Pedro Domingos and Michael Pazzani. On the optimality of the simple bayesian classifier under zero-one loss.

Machine Learning, 29:103–130, 1997. ISSN 0885-6125. doi: 10.1023/A:1007413511361. URL http:

//dx.doi.org/10.1023/A%3A1007413511361.

http://www.sciencemag.org/content/166/3902/178.short
http://www.sciencemag.org/content/166/3902/178.short
http://pubs.acs.org/doi/abs/10.1021/jo00211a027
http://pubs.acs.org/doi/abs/10.1021/jo00211a027
http://dx.doi.org/10.1002/anie.199104553
http://nar.oxfordjournals.org/content/36/suppl_1/D344.abstract
http://dx.doi.org/10.1023/A%3A1007413511361
http://dx.doi.org/10.1023/A%3A1007413511361

BIBLIOGRAPHY 132

Robert C Edgar. MUSCLE: a multiple sequence alignment method with reduced time and space complexity.

BMC Bioinformatics, 5:113, Aug 2004. ISSN 1471-2105 (Electronic); 1471-2105 (Linking). doi: 10.1186/

1471-2105-5-113.

J. Eiblmaier, H. Kraut, H. Saller, H. Matuszczyk, , and P. Loew. Reaction classification, an enduring success

story. In 50 Years of Computers in Organic Chemistry: Symposium in Honor of James B. Hendrickson, National

Meeting Anaheim Spring 2011. American Chemical Society, 2011.

Jon A Erickson, Mehran Jalaie, Daniel H Robertson, Richard A Lewis, and Michal Vieth. Lessons in molecular

recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J Med Chem, 47(1):

45–55, Jan 2004. ISSN 0022-2623 (Print); 0022-2623 (Linking). doi: 10.1021/jm030209y.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on

molecular complexity and fragment contributions. Cheminformatics, 1(8), 2009.

Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem

solving. Artif. Intell., 2(3/4):189–208, 1971.

Igor V. Filippov and Marc C. Nicklaus. Optical structure recognition software to recover chemical information:

Osra, an open source solution. Journal of Chemical Information and Modeling, 49(3):740–743, 2009. doi:

10.1021/ci800067r. URL http://pubs.acs.org/doi/abs/10.1021/ci800067r.

Paul Fleming, Geraldine C. B. Harriman, Zhan Shi, and Shaowu Chen. Ccr9 inhibitors and methods of use thereof.

U.S. Patent Trademark Office, US 7,238,717, 2007.

Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962. ISSN 0001-0782. doi: http:

//doi.acm.org/10.1145/367766.368168.

Jeff Forcier, Paul Bissex, and Wesley Chun. Python Web Development with Django. Addison-Wesley Professional,

1 edition, 2008. ISBN 0132356139, 9780132356138.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. ISBN 0716710455.

H.L. Gelernter, A. F. Sanders, D. L. Larsen, K.K. Agarwal, R. H. Boivie, G. A. Spritzer, and J. E. Searleman.

Empirical explorations of SYNCHEM. Science, 197(4308):1041–1049, September 1977.

Michael R. Genesereth, Nathaniel Love, and Barney Pell. General game playing: Overview of the AAAI compe-

tition. AI Magazine, 26(2):62–72, 2005. URL http://games.stanford.edu/competition/misc/

aaai.pdf.

http://pubs.acs.org/doi/abs/10.1021/ci800067r
http://games.stanford.edu/competition/misc/aaai.pdf
http://games.stanford.edu/competition/misc/aaai.pdf

BIBLIOGRAPHY 133

GGASoftware. Indigo 1.1.8. http://ggasoftware.com, 2012.

Thomas D. Griffin, Stephen K. Boyer, and Isaac G. Councill. Annotating patents with medline mesh codes via

citation mapping. In Hamid R. Arabnia, editor, Advances in Computational Biology, volume 680 of Advances

in Experimental Medicine and Biology, pages 737–744. Springer New York, 2011. ISBN 978-1-4419-5913-3.

URL http://dx.doi.org/10.1007/978-1-4419-5913-3_82. 10.1007/978-1-4419-5913-3 82.

Rajarshi Guha, Michael T. Howard, Geoffrey R. Hutchison, Peter Murray-Rust, Henry Rzepa, Christoph Stein-

beck, Jörg Wegner, and Egon L. Willighagen. The blue obelisk – interoperability in chemical informat-

ics. Journal of Chemical Information and Modeling, 46(3):991–998, 2006. doi: 10.1021/ci050400b. URL

http://pubs.acs.org/doi/abs/10.1021/ci050400b.

Eric A. Hansen and Shlomo Zilberstein. LAO*: A heuristic search algorithm that finds solutions with loops. Artif.

Intell., 129(1-2):35–62, 2001.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths.

IEEE Transactions on Systems, Science, and Cybernetics, SSC-4(2):100–107, 1968.

Kazunari Hattori, Hiroaki Wakabayashi, and Kenta Tamaki. Predicting key example compounds in competi-

tors’ patent applications using structural information alone. Journal of Chemical Information and Modeling,

48(1):135–142, 2008. doi: 10.1021/ci7002686. URL http://pubs.acs.org/doi/abs/10.1021/

ci7002686. PMID: 18177028.

Abraham Heifets and Igor Jurisica. Diversity as a first-class ranking measure in automated bioisosteric replace-

ment. In Abstracts of Papers, 242nd ACS National Meeting & Exposition, Denver, Colorado, United States,

August 28-September 1 2011.

Abraham Heifets and Igor Jurisica. Construction of new medicines via game proof search. In Jörg Hoffmann and

Bart Selman, editors, AAAI. AAAI Press, 2012a.

Abraham Heifets and Igor Jurisica. Scripdb: a portal for easy access to syntheses, chemicals and reactions in

patents. Nucleic Acids Research, 40(Database-Issue):428–433, 2012b.

Abraham Heifets and Ryan H. Lilien. Ligalign: Flexible ligand-based active site alignment and analysis. Journal

of Molecular Graphics and Modelling, 29(1):93 – 101, 2010. ISSN 1093-3263. doi: 10.1016/j.jmgm.2010.05.

005. URL http://www.sciencedirect.com/science/article/pii/S1093326310000756.

Malte Helmert, Minh Do, and Ioannis Refanidis. International planning competition. http://ipc.informatik.uni-

freiburg.de/Results, 2008.

http://dx.doi.org/10.1007/978-1-4419-5913-3_82
http://pubs.acs.org/doi/abs/10.1021/ci050400b
http://pubs.acs.org/doi/abs/10.1021/ci7002686
http://pubs.acs.org/doi/abs/10.1021/ci7002686
http://www.sciencedirect.com/science/article/pii/S1093326310000756

BIBLIOGRAPHY 134

James B. Hendrickson, Ping Huang, and A. Glenn Toczko. Molecular complexity: a simplified formula adapted

to individual atoms. Journal of Chemical Information and Computer Sciences, 27(2):63–67, 1987. doi: 10.

1021/ci00054a004. URL http://pubs.acs.org/doi/abs/10.1021/ci00054a004.

William Hersh and Ellen Voorhees. Trec genomics special issue overview. Information Retrieval, 12:1–15, 2009.

ISSN 1386-4564. URL http://dx.doi.org/10.1007/s10791-008-9076-6. 10.1007/s10791-

008-9076-6.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic search. J.

Artif. Intell. Res. (JAIR), 14(253-302), 2001.

L.S. Homem de Mello and A.C. Sanderson. AND/OR graph representation of assembly plans. IEEE Transactions

on Robotics and Automation, 6(2):188 –199, Apr 1990. ISSN 1042-296X. doi: 10.1109/70.54734.

Qi Huang, Lin-Li Li, and Sheng-Yong Yang. Rasa: A rapid retrosynthesis-based scoring method for the assess-

ment of synthetic accessibility of drug-like molecules. Journal of Chemical Information and Modeling, 51

(10):2768–2777, 2011. doi: 10.1021/ci100216g. URL http://pubs.acs.org/doi/abs/10.1021/

ci100216g.

Tomas Hudlicky and Josephine W. Reed. The Way of Synthesis: Evolution of Design and Methods for Natural

Products. Wiley-VCH, 2007.

Nicolas Hulo, Amos Bairoch, Virginie Bulliard, Lorenzo Cerutti, Beatrice A Cuche, Edouard de Castro, Corinne

Lachaize, Petra S Langendijk-Genevaux, and Christian J A Sigrist. The 20 years of PROSITE. Nucleic Acids

Res, 36(Database issue):D245–9, Jan 2008. ISSN 1362-4962 (Electronic); 1362-4962 (Linking). doi: 10.1093/

nar/gkm977.

David Jessop, Sam Adams, and Peter Murray-Rust. Mining chemical information from open patents. Journal

of Cheminformatics, 3(1):40, 2011. ISSN 1758-2946. doi: 10.1186/1758-2946-3-40. URL http://www.

jcheminf.com/content/3/1/40.

A. Peter Johnson, Chris Marshall, and Philip N. Judson. Starting material oriented retrosynthetic analysis in

the LHASA program. 1. general description. Journal of Chemical Information and Computer Sciences, 32

(5):411–417, 1992. doi: 10.1021/ci00009a003. URL http://pubs.acs.org/doi/abs/10.1021/

ci00009a003.

W. Kabsch. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Cryst Section

A, 34(5):827–828, Sep 1978. doi: 10.1107/S0567739478001680. URL http://dx.doi.org/10.1107/

S0567739478001680.

http://pubs.acs.org/doi/abs/10.1021/ci00054a004
http://dx.doi.org/10.1007/s10791-008-9076-6
http://pubs.acs.org/doi/abs/10.1021/ci100216g
http://pubs.acs.org/doi/abs/10.1021/ci100216g
http://www.jcheminf.com/content/3/1/40
http://www.jcheminf.com/content/3/1/40
http://pubs.acs.org/doi/abs/10.1021/ci00009a003
http://pubs.acs.org/doi/abs/10.1021/ci00009a003
http://dx.doi.org/10.1107/S0567739478001680
http://dx.doi.org/10.1107/S0567739478001680

BIBLIOGRAPHY 135

Abdullah Kahraman, Richard J Morris, Roman A Laskowski, and Janet M Thornton. Shape variation in protein

binding pockets and their ligands. J Mol Biol, 368(1):283–301, Apr 2007. ISSN 0022-2836 (Print); 0022-2836

(Linking). doi: 10.1016/j.jmb.2007.01.086.

Y. Kawano. Using similar positions to search game trees. In Games of No Chance, volume 29. MSRI Publications,

1996.

Akihiro Kishimoto. Correct and Efficient Search Algorithms in the Presence of Repetitions. PhD thesis, University

of Alberta, March 2005.

Akihiro Kishimoto. Dealing with infinite loops, underestimation, and overestimation of depth-first proof-number

search. AAAI, 2010.

Akihiro Kishimoto and Martin Müller. Df-pn in go: An application to the one-eye problem. In H. Jaap van den

Herik, Hiroyuki Iida, and Ernst A. Heinz, editors, ACG, volume 263 of IFIP, pages 125–142. Kluwer, 2003.

ISBN 1-4020-7709-2.

Akihiro Kishimoto and Martin Müller. A general solution to the graph history interaction problem. AAAI, pages

644–649, 2004.

Akihiro Kishimoto and Martin Müller. About the completeness of depth-first proof-number search. In H. Jaap

van den Herik, Xinhe Xu, Zongmin Ma, and Mark H. M. Winands, editors, Computers and Games, volume

5131 of Lecture Notes in Computer Science, pages 146–156. Springer, 2008. ISBN 978-3-540-87607-6.

G J Kleywegt. Recognition of spatial motifs in protein structures. J Mol Biol, 285(4):1887–1897, Jan 1999. ISSN

0022-2836 (Print); 0022-2836 (Linking). doi: 10.1006/jmbi.1998.2393.

N Kobayashi and N Go. ATP binding proteins with different folds share a common ATP-binding structural motif.

Nat Struct Biol, 4(1):6–7, Jan 1997. ISSN 1072-8368 (Print); 1072-8368 (Linking).

R T Koehler, H O Villar, K E Bauer, and D L Higgins. Ligand-based protein alignment and isozyme specificity of

glutathione S-transferase inhibitors. Proteins, 28(2):202–216, Jun 1997. ISSN 0887-3585 (Print); 0887-3585

(Linking).

Yehuda Koren. Collaborative filtering with temporal dynamics. Commun. ACM, 53(4):89–97, April 2010.

ISSN 0001-0782. doi: 10.1145/1721654.1721677. URL http://doi.acm.org/10.1145/1721654.

1721677.

Richard E. Korf. Iterative-deepening A∗: An optimal admissible tree search. In IJCAI, pages 1034–1036, 1985.

http://doi.acm.org/10.1145/1721654.1721677
http://doi.acm.org/10.1145/1721654.1721677

BIBLIOGRAPHY 136

Richard E. Korf. Linear-space best-first search: Summary of results. AAAI, 1992.

Dexter Kozen. Automata and computability. Springer, New York, 1997. ISBN 0387949070 (hardcover : alk.

paper). URL http://www.loc.gov/catdir/enhancements/fy0815/96037409-d.html.

Daren Krebsbach, Herbert L. Gelernter, and Scott McN. Sieburth. Distributed heuristic synthesis search. Journal

of Chemical Information and Computer Sciences, 38(4):595–604, 1998.

Peter S. Kutchukian, Nadya Y. Vasilyeva, Jordan Xu, Mika K. Lindvall, Michael P. Dillon, Meir Glick, John D.

Coley, and Natasja Brooijmans. Inside the mind of a medicinal chemist: The role of human bias in compound

prioritization during drug discovery. PLoS ONE, 7(11):e48476, 11 2012. doi: 10.1371/journal.pone.0048476.

URL http://dx.doi.org/10.1371%2Fjournal.pone.0048476.

Yosef Y Kuttner, Vladimir Sobolev, Alexander Raskind, and Marvin Edelman. A consensus-binding structure

for adenine at the atomic level permits searching for the ligand site in a wide spectrum of adenine-containing

complexes. Proteins, 52(3):400–411, Aug 2003. ISSN 1097-0134 (Electronic); 1097-0134 (Linking). doi:

10.1002/prot.10422.

Michael S. Lajiness, Gerald M. Maggiora, and Veerabahu Shanmugasundaram. Assessment of the consistency

of medicinal chemists in reviewing sets of compounds. Journal of Medicinal Chemistry, 47(20):4891–4896,

2004. doi: 10.1021/jm049740z. URL http://pubs.acs.org/doi/abs/10.1021/jm049740z.

Greg Landrum. Rdkit: Open-source cheminformatics. http://www.rdkit.org, 2006.

Sarah R. Langdon, Peter Ertl, and Nathan Brown. Bioisosteric replacement and scaffold hopping in lead gener-

ation and optimization. Molecular Informatics, 29(5):366–385, 2010. ISSN 1868-1751. doi: 10.1002/minf.

201000019. URL http://dx.doi.org/10.1002/minf.201000019.

James Law, Zsolt Zsoldos, Aniko Simon, Darryl Reid, Yang Liu, Sing Yoong Khew, A. Peter Johnson, Sarah Ma-

jor, Robert A. Wade, and Howard Y. Ando. Route designer: A retrosynthetic analysis tool utilizing automated

retrosynthetic rule generation. J. Chem. Inf. Model, 49(3):593–602, 2009. doi: 10.1021/ci800228y. URL

http://pubs.acs.org/doi/abs/10.1021/ci800228y.

Alexander J. Lawson and Hartmut Kallies. Multistep reactions: the RABBIT approach. Journal of Chemical

Information and Computer Sciences, 30(4):426–430, 1990. doi: 10.1021/ci00068a013. URL http://pubs.

acs.org/doi/abs/10.1021/ci00068a013.

Andrew G. Leach, Huw D. Jones, David A. Cosgrove, Peter W. Kenny, Linette Ruston, Philip MacFaul,

J. Matthew Wood, Nicola Colclough, and Brian Law. Matched molecular pairs as a guide in the opti-

http://www.loc.gov/catdir/enhancements/fy0815/96037409-d.html
http://dx.doi.org/10.1371%2Fjournal.pone.0048476
http://pubs.acs.org/doi/abs/10.1021/jm049740z
http://dx.doi.org/10.1002/minf.201000019
http://pubs.acs.org/doi/abs/10.1021/ci800228y
http://pubs.acs.org/doi/abs/10.1021/ci00068a013
http://pubs.acs.org/doi/abs/10.1021/ci00068a013

BIBLIOGRAPHY 137

mization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral expo-

sure. Journal of Medicinal Chemistry, 49(23):6672–6682, 2006. doi: 10.1021/jm0605233. URL http:

//pubs.acs.org/doi/abs/10.1021/jm0605233.

Weizhong Li, Hamish McWilliam, Ana Richart de la Torre, Adam Grodowski, Irina Benediktovich, Mickael

Goujon, Stephane Nauche, and Rodrigo Lopez. Non-redundant patent sequence databases with value-added

annotations at two levels. Nucleic Acids Research, 38(suppl 1):D52–D56, 2010. doi: 10.1093/nar/gkp960.

URL http://nar.oxfordjournals.org/content/38/suppl_1/D52.abstract.

Qianhui Althea Liang and Stanley Y. W. Su. AND/OR graph and search algorithm for discovering composite web

services. Int. J. Web Service Res., 2(4):48–67, 2005.

Daniel M. Lowe, Peter T. Corbett, Peter Murray-Rust, and Robert C. Glen. Chemical name to structure: Opsin,

an open source solution. Journal of Chemical Information and Modeling, 51(3):739–753, 2011. doi: 10.1021/

ci100384d. URL http://pubs.acs.org/doi/abs/10.1021/ci100384d.

C.D.A. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. Mit Press, 1999.

ISBN 9780262133609. URL http://books.google.ca/books?id=YiFDxbEX3SUC.

Alberto Martelli and Ugo Montanari. Additive AND/OR graphs. In IJCAI, pages 1–11, 1973.

Arman Masoumi and Mikhail Soutchanski. Reasoning about chemical reactions using the situation calculus.

In AAAI Fall Symposium Series, 2012. URL https://aaai.org/ocs/index.php/FSS/FSS12/

paper/view/5635.

Nicholas A. Meanwell. Synopsis of some recent tactical application of bioisosteres in drug design. Journal of

Medicinal Chemistry, 54(8):2529–2591, 2011. doi: 10.1021/jm1013693. URL http://pubs.acs.org/

doi/abs/10.1021/jm1013693.

MIT. MIT OpenCourseWare. http://ocw.mit.edu, 2003.

H. L. Morgan. The generation of a unique machine description for chemical structures-a technique de-

veloped at chemical abstracts service. Journal of Chemical Documentation, 5(2):107–113, 1965. doi:

10.1021/c160017a018. URL http://pubs.acs.org/doi/abs/10.1021/c160017a018.

Martin Müller. Proof-set search. In Jonathan Schaeffer, Martin Müller, and Yngvi Björnsson, editors, Computers

and Games, volume 2883 of Lecture Notes in Computer Science, pages 88–107. Springer, 2002. ISBN 3-540-

20545-4.

http://pubs.acs.org/doi/abs/10.1021/jm0605233
http://pubs.acs.org/doi/abs/10.1021/jm0605233
http://nar.oxfordjournals.org/content/38/suppl_1/D52.abstract
http://pubs.acs.org/doi/abs/10.1021/ci100384d
http://books.google.ca/books?id=YiFDxbEX3SUC
https://aaai.org/ocs/index.php/FSS/FSS12/paper/view/5635
https://aaai.org/ocs/index.php/FSS/FSS12/paper/view/5635
http://pubs.acs.org/doi/abs/10.1021/jm1013693
http://pubs.acs.org/doi/abs/10.1021/jm1013693
http://pubs.acs.org/doi/abs/10.1021/c160017a018

BIBLIOGRAPHY 138

Martin Müller. Proof-set search. In Computers and Games, volume 2883, pages 88–107. Lecture Notes in

Computer Science, 2003.

J. Munkres. Algorithms for the Assignment and Transportation Problems. J Soc Ind and App Math, 5(1):32–38,

March 1957.

Ayumu Nagai. A new AND/OR Tree Search Algorithm Using Proof Number and Disproof Number. In

Ian Frank, Hitoshi Matsubara, Morihiko Tajima, Atsushi Yoshikawa, Reijer Grimbergen, and Martin

Müller, editors, Complex Games Lab Workshop, pages 40–45. Electrotechnical Laboratory, Machine In-

ference Group, Tsukuba, Japan, 1998. URL http://www.cs.ualberta.ca/˜{}mmueller/cgo/

cg98-workshop/Nagai.pdf.

Ayumu Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its Applications. PhD thesis, University of

Tokyo, 2002.

Rafael Najmanovich, Natalja Kurbatova, and Janet Thornton. Detection of 3D atomic similarities and their use in

the discrimination of small molecule protein-binding sites. Bioinformatics, 24(16):i105–11, Aug 2008. ISSN

1367-4811 (Electronic); 1367-4811 (Linking). doi: 10.1093/bioinformatics/btn263.

Takashi Nakayama. Computer-assisted knowledge acquisition system for synthesis planning. Journal of Chemical

Information and Computer Sciences, 31(4):495–503, 1991. doi: 10.1021/ci00004a011. URL http://pubs.

acs.org/doi/abs/10.1021/ci00004a011.

K. M. Nalin de Silva and Jonathan M. Goodman. What is the smallest saturated acyclic alkane that cannot be

made? Journal of Chemical Information and Modeling, 45(1):81–87, 2005. doi: 10.1021/ci0497657. URL

http://pubs.acs.org/doi/abs/10.1021/ci0497657.

Dana S. Nau, Yue Cao, Amnon Lotem, and Héctor Muñoz-Avila. SHOP: Simple hierarchical ordered planner. In

Thomas Dean, editor, IJCAI, pages 968–975. Morgan Kaufmann, 1999. ISBN 1-55860-613-0.

Jean-Christophe Nebel. Modelling of P450 active site based on consensus 3D structures. Int Conf Biomed Eng,

February 2005.

Jean-Christophe Nebel. Generation of 3D templates of active sites of proteins with rigid prosthetic groups.

Bioinformatics, 22(10):1183–1189, May 2006. ISSN 1367-4803 (Print); 1367-4803 (Linking). doi: 10.1093/

bioinformatics/btl040.

Jean-Christophe Nebel, Pawel Herzyk, and David R Gilbert. Automatic generation of 3D motifs for classifica-

tion of protein binding sites. BMC Bioinformatics, 8:321, 2007. ISSN 1471-2105 (Electronic); 1471-2105

(Linking). doi: 10.1186/1471-2105-8-321.

http://www.cs.ualberta.ca/~{}mmueller/cgo/cg98-workshop/Nagai.pdf
http://www.cs.ualberta.ca/~{}mmueller/cgo/cg98-workshop/Nagai.pdf
http://pubs.acs.org/doi/abs/10.1021/ci00004a011
http://pubs.acs.org/doi/abs/10.1021/ci00004a011
http://pubs.acs.org/doi/abs/10.1021/ci0497657

BIBLIOGRAPHY 139

NextMove Software. ChemDraw CDX File Parser v2.0. http://nextmovesoftware.com/, 2010.

K. C. Nicolaou and E. J. Sorensen. Classics in Total Synthesis: Targets, Strategies, Methods. Wiley-VCH, 1996.

Nils J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1980.

Noel O’Boyle, Chris Morley, and Geoffrey Hutchison. Pybel: a python wrapper for the openbabel cheminformat-

ics toolkit. Chemistry Central Journal, 2(1):5, 2008. ISSN 1752-153X. doi: 10.1186/1752-153X-2-5. URL

http://journal.chemistrycentral.com/content/2/1/5.

Noel O’Boyle, Michael Banck, Craig James, Chris Morley, Tim Vandermeersch, and Geoffrey Hutchison. Open

babel: An open chemical toolbox. Journal of Cheminformatics, 3(1):33, 2011a. ISSN 1758-2946. doi: 10.

1186/1758-2946-3-33. URL http://www.jcheminf.com/content/3/1/33.

Noel O’Boyle, Rajarshi Guha, Egon Willighagen, Samuel Adams, Jonathan Alvarsson, Jean-Claude Bradley, Igor

Filippov, Robert Hanson, Marcus Hanwell, Geoffrey Hutchison, Craig James, Nina Jeliazkova, Andrew Lang,

Karol Langner, David Lonie, Daniel Lowe, Jerome Pansanel, Dmitry Pavlov, Ola Spjuth, Christoph Steinbeck,

Adam Tenderholt, Kevin Theisen, and Peter Murray-Rust. Open data, open source and open standards in

chemistry: The blue obelisk five years on. Journal of Cheminformatics, 3(1):37, 2011b. ISSN 1758-2946. doi:

10.1186/1758-2946-3-37. URL http://www.jcheminf.com/content/3/1/37.

Martin A. Ott and Jan H. Noordik. Long-range strategies in the LHASA program: The quinone Diels-Alder

transform. Journal of Chemical Information and Computer Sciences, 37(1):98–108, 1997. doi: 10.1021/

ci9600972. URL http://pubs.acs.org/doi/abs/10.1021/ci9600972.

George A. Patani and Edmond J. LaVoie. Bioisosterism: A rational approach in drug design. Chemical Reviews,

96(8):3147–3176, 1996. doi: 10.1021/cr950066q. URL http://pubs.acs.org/doi/abs/10.1021/

cr950066q.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

György Pirok, Nóra Máté, Jeno Varga, József Szegezdi, Miklós Vargyas, Szilárd Dóránt, and Ferenc Csizma-

dia. Making “real” molecules in virtual space. Journal of Chemical Information and Modeling, 46(2):563–

568, 2006. doi: 10.1021/ci050373p. URL http://pubs.acs.org/doi/abs/10.1021/ci050373p.

PMID: 16562984.

http://journal.chemistrycentral.com/content/2/1/5
http://www.jcheminf.com/content/3/1/33
http://www.jcheminf.com/content/3/1/37
http://pubs.acs.org/doi/abs/10.1021/ci9600972
http://pubs.acs.org/doi/abs/10.1021/cr950066q
http://pubs.acs.org/doi/abs/10.1021/cr950066q
http://pubs.acs.org/doi/abs/10.1021/ci050373p

BIBLIOGRAPHY 140

Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie de Bruin. Best-first fixed-depth minimax algorithms. Artif.

Intell., 87(1-2):255–293, 1996.

Yevgeniy Podolyan, Michael A. Walters, and George Karypis. Assessing synthetic accessibility of chemical

compounds using machine learning methods. Journal of Chemical Information and Modeling, 50(6):979–991,

2010. doi: 10.1021/ci900301v. URL http://pubs.acs.org/doi/abs/10.1021/ci900301v.

E. L. Post. Recursive unsolvability of a problem of Thue. J. Symbolic Logic, 12:1–11, 1947.

Syed Rahman, Matthew Bashton, Gemma Holliday, Rainer Schrader, and Janet Thornton. Small molecule

subgraph detector (smsd) toolkit. Journal of Cheminformatics, 1(1):12, 2009. ISSN 1758-2946. doi:

10.1186/1758-2946-1-12. URL http://www.jcheminf.com/content/1/1/12.

Milan Randić and Dejan Plavić. On the concept of molecular complexity. Croatica Chemica Acta, 75(1):107–116,

2002.

Panolil Raveendranath, Joseph Zeldis, Galina Vid, John R. Potoski, Jianxin Ren, and Silvio Iera. Aryloxy-alkyl-

dialkylamines. U.S. Patent Trademark Office, US 6,268,504, 1999.

Jussi Rintanen. Complexity of planning with partial observability. In Shlomo Zilberstein, Jana Koehler, and Sven

Koenig, editors, ICAPS, pages 345–354. AAAI, 2004. ISBN 1-57735-200-9.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of Chemical Information and

Modeling, 50(5):742–754, 2010. doi: 10.1021/ci100050t. URL http://pubs.acs.org/doi/abs/10.

1021/ci100050t. PMID: 20426451.

Bruce D. Roth. The discovery and development of atorvastatin, a potent novel hypolipidemic agent. In F.D. King,

A.W. Oxford, A. B. Reitz, and S. L. Dax, editors, Progress in Medicinal Chemistry, volume 40, pages 1 – 22.

Elsevier, 2002. doi: DOI:10.1016/S0079-6468(08)70080-8. URL http://www.sciencedirect.com/

science/article/B7CV8-4SGTFHJ-5/2/98df40b9f329367cc9b3a6ada0de2e0b.

Stephen D. Roughley and Allan M. Jordan. The medicinal chemist’s toolbox: An analysis of reactions used

in the pursuit of drug candidates. Journal of Medicinal Chemistry, 54(10):3451–3479, 2011. doi: 10.1021/

jm200187y. URL http://pubs.acs.org/doi/abs/10.1021/jm200187y.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs,

NJ, 2nd edition edition, 1995.

Koji Satoh and Kimito Funatsu. A novel approach to retrosynthetic analysis using knowledge bases derived from

reaction databases. Journal of Chemical Information and Computer Sciences, 39(2):316–325, 1999.

http://pubs.acs.org/doi/abs/10.1021/ci900301v
http://www.jcheminf.com/content/1/1/12
http://pubs.acs.org/doi/abs/10.1021/ci100050t
http://pubs.acs.org/doi/abs/10.1021/ci100050t
http://www.sciencedirect.com/science/article/B7CV8-4SGTFHJ-5/2/98df40b9f329367cc9b3a6ada0de2e0b
http://www.sciencedirect.com/science/article/B7CV8-4SGTFHJ-5/2/98df40b9f329367cc9b3a6ada0de2e0b
http://pubs.acs.org/doi/abs/10.1021/jm200187y

BIBLIOGRAPHY 141

Jonathan Schaeffer. The history heuristic and alpha-beta search enhancements in practice. IEEE Trans. Pattern

Anal. Mach. Intell., 11(11):1203–1212, 1989.

Jonathan Schaeffer. One Jump Ahead: Computer Perfection at Checkers. Springer-Verlag, 2009.

Jonathan Schaeffer, Neil Burch, Yngvi Bjornsson, Akihiro Kishimoto, Martin Muller, Robert Lake, Paul Lu, and

Steve Sutphen. Checkers is solved. Science, 317(5844):1518–1522, July 2007. doi: 10.1126/science.1144079.

URL http://dx.doi.org/10.1126/science.1144079.

Martin Schijf. Proof-number search and transpositions. Master’s thesis, University of Leiden, 1993.

Dina Schneidman-Duhovny, Oranit Dror, Yuval Inbar, Ruth Nussinov, and Haim J Wolfson. Deterministic phar-

macophore detection via multiple flexible alignment of drug-like molecules. J Comput Biol, 15(7):737–754,

Sep 2008. ISSN 1557-8666 (Electronic); 1557-8666 (Linking). doi: 10.1089/cmb.2007.0130.

Matthew Segall, Ed Champness, Chris Leeding, Ryan Lilien, Ramgopal Mettu, and Brian Stevens. Applying

medicinal chemistry transformations and multiparameter optimization to guide the search for high-quality leads

and candidates. Journal of Chemical Information and Modeling, 51(11):2967–2976, 2011. doi: 10.1021/

ci2003208. URL http://pubs.acs.org/doi/abs/10.1021/ci2003208.

Masahiro Seo, Hiroyuki Iida, and Jos W. H. M. Uiterwijk. The PN*-search algorithm: Application to tsume-shogi.

Artif. Intell., 129(1-2):253–277, 2001.

Maxim Shatsky, Alexandra Shulman-Peleg, Ruth Nussinov, and Haim J Wolfson. The multiple common point set

problem and its application to molecule binding pattern detection. J Comput Biol, 13(2):407–428, Mar 2006.

ISSN 1066-5277 (Print); 1066-5277 (Linking). doi: 10.1089/cmb.2006.13.407.

Robert P. Sheridan. The most common chemical replacements in drug-like compounds. Journal of Chemical

Information and Computer Sciences, 42(1):103–108, 2002. doi: 10.1021/ci0100806. URL http://pubs.

acs.org/doi/abs/10.1021/ci0100806.

Robert P. Sheridan. Time-split cross-validation as a method for estimating the goodness of prospective prediction.

Journal of Chemical Information and Modeling, 53(4):783–790, 2013. doi: 10.1021/ci400084k. URL http:

//pubs.acs.org/doi/abs/10.1021/ci400084k.

Noel T. Southall and Ajay. Kinase patent space visualization using chemical replacements. Journal of Medicinal

Chemistry, 49(6):2103–2109, 2006. doi: 10.1021/jm051201m. URL http://pubs.acs.org/doi/abs/

10.1021/jm051201m.

http://dx.doi.org/10.1126/science.1144079
http://pubs.acs.org/doi/abs/10.1021/ci2003208
http://pubs.acs.org/doi/abs/10.1021/ci0100806
http://pubs.acs.org/doi/abs/10.1021/ci0100806
http://pubs.acs.org/doi/abs/10.1021/ci400084k
http://pubs.acs.org/doi/abs/10.1021/ci400084k
http://pubs.acs.org/doi/abs/10.1021/jm051201m
http://pubs.acs.org/doi/abs/10.1021/jm051201m

BIBLIOGRAPHY 142

Christoph Steinbeck, Yongquan Han, Stefan Kuhn, Oliver Horlacher, Edgar Luttmann, and Egon Willighagen.

The chemistry development kit (cdk): An open-source java library for chemo- and bioinformatics. Journal

of Chemical Information and Computer Sciences, 43(2):493–500, 02 2003. doi: 10.1021/ci025584y. URL

http://dx.doi.org/10.1021/ci025584y.

Kent D. Stewart, Melisa Shiroda, and Craig A. James. Drug guru: A computer software program for drug

design using medicinal chemistry rules. Bioorganic and Medicinal Chemistry, 14(20):7011 – 7022, 2006.

ISSN 0968-0896. doi: DOI:10.1016/j.bmc.2006.06.024. URL http://www.sciencedirect.com/

science/article/pii/S0968089606004895.

Gareth R Stockwell and Janet M Thornton. Conformational diversity of ligands bound to proteins. J Mol Biol,

356(4):928–944, Mar 2006. ISSN 0022-2836 (Print); 0022-2836 (Linking). doi: 10.1016/j.jmb.2005.12.012.

Edward M. Suh and Yoshito Kishi. Synthesis of palytoxin from palytoxin carboxylic acid. Journal of the American

Chemical Society, 116(24):11205–11206, 1994. doi: 10.1021/ja00103a065. URL http://pubs.acs.

org/doi/abs/10.1021/ja00103a065.

M. Takahashi, I. Dogane, M. Yoshida, H. Yamachika, T. Takabatake, and Malcolm Bersohn. The performance of

a noninteractive synthesis program. Journal of Chemical Information and Computer Sciences, 30(4):436–441,

1990.

Yuji Takaoka, Yutaka Endo, Susumu Yamanobe, Hiroyuki Kakinuma, Taketoshi Okubo, Youichi Shimazaki, To-

momi Ota, Shigeyuki Sumiya, and Kensei Yoshikawa. Development of a method for evaluating drug-likeness

and ease of synthesis using a data set in which compounds are assigned scores based on chemists’ intuition.

Journal of Chemical Information and Computer Sciences, 43(4):1269–1275, 2003. doi: 10.1021/ci034043l.

URL http://pubs.acs.org/doi/abs/10.1021/ci034043l.

Akio Tanaka, Hideho Okamoto, and Malcolm Bersohn. Construction of functional group reactivity database

under various reaction conditions automatically extracted from reaction database in a synthesis design system.

Journal of Chemical Information and Modeling, 50(3):327–338, 2010. doi: 10.1021/ci9004332. URL http:

//pubs.acs.org/doi/abs/10.1021/ci9004332. PMID: 20187659.

Taffee T Tanimoto. An elementary mathematical theory of classification and prediction. Technical report, IBM,

1958.

Harry Thangaraj. Information from patent office could aid replication. Nature, 447(7145):638–638, 06 2007.

URL http://dx.doi.org/10.1038/447638c.

http://dx.doi.org/10.1021/ci025584y
http://www.sciencedirect.com/science/article/pii/S0968089606004895
http://www.sciencedirect.com/science/article/pii/S0968089606004895
http://pubs.acs.org/doi/abs/10.1021/ja00103a065
http://pubs.acs.org/doi/abs/10.1021/ja00103a065
http://pubs.acs.org/doi/abs/10.1021/ci034043l
http://pubs.acs.org/doi/abs/10.1021/ci9004332
http://pubs.acs.org/doi/abs/10.1021/ci9004332
http://dx.doi.org/10.1038/447638c

BIBLIOGRAPHY 143

Andrew Thurkauf, Xiao shu He, He Zhao, John Peterson, Xiaoyan Zhang, Robbin Brodbeck, James Krause,

George Maynard, and Alan Hutchison. High affinity small molecule c5a receptor modulators. U.S. Patent

Trademark Office, US 6,884,815, 2003.

Matthew H. Todd. Computer-aided organic synthesis. Chem. Soc. Rev., 34:247–266, 2005. doi: 10.1039/

B104620A. URL http://dx.doi.org/10.1039/B104620A.

Shin-Shyong Tseng. Computer-assisted reaction searching directed toward the synthesis of target molecules. J.

Chem. Inf. Comput. Sci., 37:1138–1145, 1997.

Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201, 1979.

Aniko T. Valko and A. Peter Johnson. Clide pro: The latest generation of clide, a tool for optical chemical structure

recognition. Journal of Chemical Information and Modeling, 49(4):780–787, 2009. doi: 10.1021/ci800449t.

URL http://pubs.acs.org/doi/abs/10.1021/ci800449t.

Karin Verspoor, K Bretonnel Cohen, and Lawrence Hunter. The textual characteristics of traditional and open

access scientific journals are similar. BMC Bioinformatics, 10(1):183, 2009. ISSN 1471-2105. doi: 10.1186/

1471-2105-10-183. URL http://www.biomedcentral.com/1471-2105/10/183.

Markus Wagener and Jos P. M. Lommerse. The quest for bioisosteric replacements. Journal of Chemical In-

formation and Modeling, 46(2):677–685, 2006. doi: 10.1021/ci0503964. URL http://pubs.acs.org/

doi/abs/10.1021/ci0503964.

R. Waldinger. Achieving several goals simultaneously. In E. W. Elcock and D. Michie, editors, Machine Intelli-

gence, volume 8, pages 94–136. Wiley, 1977.

Ke Wang, Lisha Wang, Qiong Yuan, Shiwei Luo, Jianhua Yao, Shengang Yuan, Chongzhi Zheng, and Josef

Brandt. Construction of a generic reaction knowledge base by reaction data mining. Journal of Molecu-

lar Graphics and Modelling, 19(5):427 – 433, 2001. ISSN 1093-3263. doi: DOI:10.1016/S1093-3263(00)

00102-9. URL http://www.sciencedirect.com/science/article/B6TGP-43CBCSP-5/2/

790f9148962606d8ff2ec7941cf23066.

Yanli Wang, Jewen Xiao, Tugba O. Suzek, Jian Zhang, Jiyao Wang, and Stephen H. Bryant. PubChem: a public

information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37(suppl 2):W623–

W633, 2009. doi: 10.1093/nar/gkp456. URL http://nar.oxfordjournals.org/content/37/

suppl_2/W623.abstract.

http://dx.doi.org/10.1039/B104620A
http://pubs.acs.org/doi/abs/10.1021/ci800449t
http://www.biomedcentral.com/1471-2105/10/183
http://pubs.acs.org/doi/abs/10.1021/ci0503964
http://pubs.acs.org/doi/abs/10.1021/ci0503964
http://www.sciencedirect.com/science/article/B6TGP-43CBCSP-5/2/790f9148962606d8ff2ec7941cf23066
http://www.sciencedirect.com/science/article/B6TGP-43CBCSP-5/2/790f9148962606d8ff2ec7941cf23066
http://nar.oxfordjournals.org/content/37/suppl_2/W623.abstract
http://nar.oxfordjournals.org/content/37/suppl_2/W623.abstract

BIBLIOGRAPHY 144

Wendy Warr. Chembl. an interview with john overington, team leader, chemogenomics at the european bioin-

formatics institute outstation of the european molecular biology laboratory (embl-ebi). Journal of Computer-

Aided Molecular Design, 23:195–198, 2009. ISSN 0920-654X. URL http://dx.doi.org/10.1007/

s10822-009-9260-9. 10.1007/s10822-009-9260-9.

David Weininger. SMILES, a chemical language and information system. 1. introduction to methodology and

encoding rules. Journal of Chemical Information and Computer Sciences, 28(1):31–36, 1988. doi: 10.1021/

ci00057a005. URL http://pubs.acs.org/doi/abs/10.1021/ci00057a005.

Daniel S. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27–61, 1994.

Martina Wernerova and Tomas Hudlicky. On the practical limits of determining isolated product yields and ratios

of stereoisomers: Reflections, analysis, and redemption. Synlett, 2010(18):2701–2707, 2010. doi: 10.1055/

s-0030-1259018.

Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, 2000. ISBN 0130144002.

Craig S. Wilcox and Robert A. Levinson. A Self-Organized Knowledge Base for Recall, Design, and Discovery

in Organic Chemistry, volume 306 of ACS Symposium Series, chapter 18, pages 209–230. American Chemical

Society, 1986. doi: 10.1021/bk-1986-0306.ch018. URL http://pubs.acs.org/doi/abs/10.1021/

bk-1986-0306.ch018.

W.Todd Wipke, Glenn I. Ouchi, and S. Krishnan. Simulation and evaluation of chemical synthesis–SECS:

An application of artificial intelligence techniques. Artificial Intelligence, 11(1-2):173 – 193, 1978. ISSN

0004-3702. doi: DOI:10.1016/0004-3702(78)90016-4. URL http://www.sciencedirect.com/

science/article/B6TYF-48VPC54-J/2/1ab50ab3e4bb5c558cf567f625d80767. Applica-

tions to the Sciences and Medicine.

Bianca Zadrozny, John Langford, and Naoki Abe. Cost-sensitive learning by cost-proportionate example weight-

ing. In ICDM, pages 435–. IEEE Computer Society, 2003.

http://dx.doi.org/10.1007/s10822-009-9260-9
http://dx.doi.org/10.1007/s10822-009-9260-9
http://pubs.acs.org/doi/abs/10.1021/ci00057a005
http://pubs.acs.org/doi/abs/10.1021/bk-1986-0306.ch018
http://pubs.acs.org/doi/abs/10.1021/bk-1986-0306.ch018
http://www.sciencedirect.com/science/article/B6TYF-48VPC54-J/2/1ab50ab3e4bb5c558cf567f625d80767
http://www.sciencedirect.com/science/article/B6TYF-48VPC54-J/2/1ab50ab3e4bb5c558cf567f625d80767

	Relation to published work
	Introduction
	Prolegomena to any future automated synthesis planning
	Search
	AND/OR graph search algorithms
	AO*
	Learning in Depth-First Search (LDFS)
	The question of cycle semantics
	Proof Number Search (PNS)
	PN*
	Proof Disproof Search (PDS)
	Depth-First Proof Number and variants (DFPN, DFPN+, DFPN(r), DFPN-TCA, and DFPN-SNDA)

	The shapes of chemistry
	Challenges of organic synthesis
	Automated organic synthesis planners
	LHASA and its variants (interactive synthesis planners)
	Noninteractive synthesis planners

	Heuristics
	Complexity-based
	Fragment-based
	Machine learning and retrosynthetic analysis

	Reaction libraries
	The critical need for search guidance

	A declarative description of chemistry
	Definitions

	Retrosynthetic search algorithms
	Introduction
	A Proof Number Search-based Solver
	Constructing a Public Chemistry Benchmark
	Results and Discussion
	Chapter Conclusion and Future Work

	Compilation of synthesis and chemical data
	SCRIPDB
	Discussion
	Patents as a source of chemical images
	Patents as biomedical literature
	Patents as a reaction database
	Patents as a bioisostere catalog

	Chapter Conclusion and Future Work

	Domain-specific heuristics for synthetic feasibility
	Introduction
	Humans, eh?
	Objective measures of synthetic feasibility

	Materials and Methods
	Data collection
	Data cleaning
	Data labeling
	Data modeling

	Results
	Discussion
	Chapter Conclusion and Future Work

	Summary & Conclusion
	Appendices
	Glossary
	Which molecules should be built?
	Introduction
	System and methods
	Correspondence of bound ligands
	Ligand alignment
	Residue cluster extraction via clique detection

	Results and discussion
	Heme
	Nicotinamide adenine dinucleotide

	Chapter Conclusion and Future Work

	Bibliography

