Principles of Computer Networks Tutorial 11

Part 1.
 Problem 1 Solution:

i) from A to switch: Source MAC address: 00-00-00-00-00-00

Destination MAC address: 55-55-55-55-55-55
Source IP: 111.111.111.001
Destination IP: 133.333.333.003
ii) from switch to right router: Source MAC address: 00-00-00-00-00-00

Destination MAC address: 55-55-55-55-55-55
Source IP: 111.111.111.001
Destination IP: 133.333.333.003
iii) from right router to F: Source MAC address: 88-88-88-88-88-88

Destination MAC address: 99-99-99-99-99-99
Source IP: 111.111.111.001
Destination IP: 133.333.333.003

Problem 2 Solution:

Suppose the IP addresses for those three computers (from left to right) in EE department are: 111.111.1.1, 111.111.1.2, 111.111.1.3. The subnet mask is 111.111.1/24.

Suppose the IP addresses for those three computers (from left to right) in CS department are: 111.111.2.1, 111.111.2.2, 111.111.2.3. The subnet mask is $111.111 .2 / 24$.

The router's interface card that connects to port 1 can be configured to contain two sub-interface IP addresses: 111.111.1.0 and 111.111.2.0. The first one is for the subnet of EE department, and the second one is for the subnet of CS department. Each IP address is associated with a VLAN ID. Suppose 111.111.1.0 is associated with VLAN 11, and 111.111.2.0 is associated with VLAN 12. This means that each frame that comes from subnet $111.111 .1 / 24$ will be added an 802.1 q tag with VLAN ID 11, and each frame that comes from 111.111.2/24 will be added an 802.1 q tag with VLAN ID 12.

Suppose that host A in EE department with IP address 111.111.1.1 would like to send an IP datagram to host B (111.111.2.1) in CS department. Host A first encapsulates the IP datagram (destined to 111.111 .2 .1) into a frame with a destination MAC address equal to the MAC address of the router's interface card that connects to port 1 of the switch. Once the router receives the frame, then it passes it up to IP layer, which decides that the IP datagram should be forwarded to subnet 111.111.2/24 via sub-interface 111.111.2.0. Then the router encapsulates the IP datagram into a frame and sends it to port 1 . Note that this frame has an 802.1 q tag VLAN ID 12. Once the switch receives the frame port 1 , it knows that this frame is destined to VLAN with ID 12, so the switch will send the frame to Host B which is in CS department. Once Host B receives this frame, it will remove the 802.1 q tag.

Problem 3 Solution:

Each flow evenly shares a link's capacity with other flows traversing that link, then the 80 flows crossing the B to access-router 10 Gbps links (as well as the access router to border router links) will each only receive $10 \mathrm{Gbps} / 80=125 \mathrm{Mbps}$
b) In Topology of Figure 5.31, there are four distinct paths between the first and third tier-2 switches, together providing 40 Gbps for the traffic from racks $1-4$ to racks $9-12$. Similarly, there are four links between second and fourth tier-2 switches, together providing 40 Gbps for the traffic from racks 5-8 to 13-16. Thus the total aggregate bandwidth is 80 Gbps , and the value per flow rate is 1 Gbps .
c) Now 20 flows will need to share each 1 Gbps bandwidth between pairs of TOR switches. So the host-to-host bit rate will be 0.5 Gbps .

Part 2. Putting Protocols Together: Review (Chapters 1-5)

Refer to slides.

