Principles of Computer Networks

Tutorial 9

Problem 1 Solution:

a)					
Router z	Informs w, $D_z(x) = \infty$				
	Informs y, $D_z(x)=6$				
Router w	Informs y, $D_w(x) = \infty$				
	Informs z, $D_w(x)=5$				
Router y	Informs w, $D_y(x)=4$				
	Informs z, $D_y(x)=4$				

b) Yes, there will be a count-to-infinity problem. The following table shows the routing converging process. Assume that at time t0, link cost change happens. At time t1, y updates its distance vector and informs neighbors w and z. In the following table, " \rightarrow " stands for "informs".

time	tO	t1	t2	t3	t4
Ζ	\rightarrow w, D _z (x)= ∞		No change	\rightarrow w, D _z (x)= ∞	
	\rightarrow y, D _z (x)=6			\rightarrow y, D _z (x)=11	
W	\rightarrow y, D _w (x)= ∞		\rightarrow y, D _w (x)= ∞		No change
	\rightarrow z, D _w (x)=5		\rightarrow z, D _w (x)=10		
Y	\rightarrow w, D _y (x)=4	\rightarrow w, D _y (x)=9		No change	\rightarrow w, D _y (x)=14
	\rightarrow z, D _y (x)=4	\rightarrow z, D _y (x)= ∞			\rightarrow z, D _y (x)= ∞

We see that w, y, z form a loop in their computation of the costs to router x. If we continue the iterations shown in the above table, then we will see that, at t27, z detects that its least cost to x is 50, via its direct link with x. At t29, w learns its least cost to x is 51 via z. At t30, y updates its least cost to x to be 52 (via w). Finally, at time t31, no updating, and the routing is stabilized.

time	t27	t28	t29	t30	t31
Ζ	\rightarrow w, D _z (x)=50				via w, ∞
	\rightarrow y, D _z (x)=50				via y, 55
					via z, 50
W		\rightarrow y, D _w (x)= ∞	\rightarrow y, D _w (x)=51		via w, ∞
		\rightarrow z, D _w (x)=50	\rightarrow z, D _w (x)= ∞		via y, ∞
					via z, 51
Y		\rightarrow w, D _y (x)=53		\rightarrow w, D _y (x)= ∞	via w, 52
		\rightarrow z, D _y (x)= ∞		\rightarrow z, D _y (x)= 52	via y, 60
					via z, 53

c) cut the link between y and z.

Problem 2 Solution:

- a) eBGP
- **b**) iBGP
- c) eBGP
- d) iBGP

Problem 3 Solution:

- a) Il because this interface begins the least cost path from 1d towards the gateway router 1c.
- **b**) I2. Both routes have equal AS-PATH length but I2 begins the path that has the closest NEXT-HOP router.
- c) I1. I1 begins the path that has the shortest AS-PATH.

Problem 4 Solution:

The minimal spanning tree has z connected to y via x at a cost of 14(=8+6).

z connected to v via x at a cost of 11(=8+3);

z connected to u via x and v, at a cost of 14(=8+3+3);

z connected to w via x, v, and u, at a cost of 17(=8+3+3+3).

Problem 5 Solution:

The thicker shaded lines represent The shortest path tree from A to all destination. Other solutions are possible, but in these solutions, B can not route to either C or D from A.