Principles of Computer Networks
 Tutorial 9

Problem 1 Solution:

a)

Router z	Informs $\mathrm{w}, \mathrm{D}_{\mathrm{z}}(\mathrm{x})=\infty$
	Informs $\mathrm{y}, \mathrm{D}_{\mathrm{z}}(\mathrm{x})=6$
Router w	Informs $\mathrm{y}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=\infty$
	Informs $\mathrm{z}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=5$
Router y	Informs $\mathrm{w}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=4$
	Informs $\mathrm{z}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=4$

b) Yes, there will be a count-to-infinity problem. The following table shows the routing converging process. Assume that at time t 0 , link cost change happens. At time t1, y updates its distance vector and informs neighbors w and z . In the following table, " \rightarrow " stands for "informs".

time	t 0	t 1	t 2	t 3	t 4
Z	$\rightarrow \mathrm{w}, \mathrm{D}_{\mathrm{z}}(\mathrm{x})=\infty$ $\rightarrow \mathrm{y}, \mathrm{D}_{\mathrm{z}}(\mathrm{x})=6$		No change	$\rightarrow \mathrm{w}, \mathrm{D}_{\mathrm{z}}(\mathrm{x})=\infty$ $\rightarrow \mathrm{y}, \mathrm{D}_{\mathrm{z}}(\mathrm{x})=11$	
W	$\rightarrow \mathrm{y}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=\infty$ $\rightarrow \mathrm{z}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=5$		$\rightarrow \mathrm{y}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=\infty$ $\rightarrow \mathrm{z}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=10$		No change
Y	$\rightarrow \mathrm{w}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=4$ $\rightarrow \mathrm{z}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=4$	$\rightarrow \mathrm{w}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=9$ $\rightarrow \mathrm{z}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=\infty$		No change	$\rightarrow \mathrm{w}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=14$ $\rightarrow \mathrm{z}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=\infty$

We see that $\mathrm{w}, \mathrm{y}, \mathrm{z}$ form a loop in their computation of the costs to router x . If we continue the iterations shown in the above table, then we will see that, at t 27 , z detects that its least cost to x is 50, via its direct link with x . At t 29 , w learns its least cost to x is 51 via z . At t 30 , y updates its least cost to x to be 52 (via w). Finally, at time t31, no updating, and the routing is stabilized.

time	t27	t28	t29	t30	t31
Z	$\rightarrow \mathrm{w}, \mathrm{D}_{\mathrm{z}}(\mathrm{x})=50$ $\rightarrow \mathrm{y}, \mathrm{D}_{\mathrm{z}}(\mathrm{x})=50$			via w, ∞ via $\mathrm{y}, 55$ via $\mathrm{z}, 50$	
W		$\rightarrow \mathrm{y}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=\infty$ $\rightarrow \mathrm{z}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=50$	$\rightarrow \mathrm{y}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=51$ $\rightarrow \mathrm{z}, \mathrm{D}_{\mathrm{w}}(\mathrm{x})=\infty$	via w, ∞ via y, ∞ via $\mathrm{z}, 51$	
Y		$\rightarrow \mathrm{w}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=53$ $\rightarrow \mathrm{z}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=\infty$		$\rightarrow \mathrm{w}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=\infty$ $\rightarrow \mathrm{z}, \mathrm{D}_{\mathrm{y}}(\mathrm{x})=52$	via $\mathrm{w}, 52$ via $\mathrm{y}, 60$ via $\mathrm{z}, 53$

c) cut the link between y and z .

Problem 2 Solution:

a) eBGP
b) iBGP
c) eBGP
d) iBGP

Problem 3 Solution:

a) I1 because this interface begins the least cost path from 1d towards the gateway router 1c.
b) I2. Both routes have equal AS-PATH length but I2 begins the path that has the closest NEXTHOP router.
c) I1. I1 begins the path that has the shortest AS-PATH.

Problem 4 Solution:

The minimal spanning tree has z connected to y via x at a cost of $14(=8+6)$.
z connected to v via x at a cost of $11(=8+3)$;
z connected to u via x and v, at a cost of $14(=8+3+3)$;
z connected to w via x, v, and u, at a cost of $17(=8+3+3+3)$.

Problem 5 Solution:

The thicker shaded lines represent The shortest path tree from A to all destination. Other solutions are possible, but in these solutions, B can not route to either C or D from A.

