Principles of Computer Networks
 Tutorial 7

Problem 1 Solution:

Based on the figure and since $\frac{P_{a 1}}{P_{d 1}}=\frac{1}{2}$ and $\frac{P_{a 2}}{P_{d 2}}=\frac{1}{3}$:

$$
\begin{equation*}
\mathrm{P}_{0}=2 \mathrm{P}_{1} \quad \mathrm{P}_{0}=3 \mathrm{P}_{2} \tag{1}
\end{equation*}
$$

Also, $\mathrm{P}_{0}+\mathrm{P}_{1}+\mathrm{P}_{2}=1$
(1) and (2) $\quad==>\mathrm{P}_{0}+\mathrm{P}_{0} / 2+\mathrm{P}_{0} / 3=1$

$$
\Rightarrow 11 \mathrm{P}_{0} / 6=1 \Rightarrow \quad \mathrm{P}_{0}=6 / 11 \quad \mathrm{P}_{1}=3 / 11 \quad \mathrm{P}_{2}=2 / 11
$$

In other words: $P_{0} \cong 0.55 \quad P_{1} \cong 0.27 \quad P_{2} \cong 0.18$

Problem 2 Solution:

EstimatedRTT $=x$ SampleRTT $+(1-x)$ EstimatedRTT
DevRTT $=y \mid$ SampleRTT - EstimatedRTT $\mid+(1-y)$ DevRTT
TimeoutInterval $=$ EstimatedRTT $+4 * \operatorname{Dev} R T T$

After obtaining first sampleRTT is
EstimatedRTT $=0.125 * 106+0.875 * 100=100.75 \mathrm{~ms}$.
DevRTT $=0.25 *|106-100.75|+0.75 * 5=5.06 \mathrm{~ms}$.
TimeoutInterval $=100.75+4 * 5.06=120.99 \mathrm{~ms}$.

After obtaining second sampleRTT $=120 \mathrm{~ms}$:
EstimatedRTT $=0.125 * 120+0.875 * 100.75=103.15 \mathrm{~ms}$.
$\operatorname{Dev} R T T=0.25 *|120-103.15|+0.75 * 5.06=8 m s$.
TimeoutInterval $=103.15+4 * 8=135.15 \mathrm{~ms}$.

After obtaining Third sampleRTT $=140 \mathrm{~ms}$:
EstimatedRTT $=0.125 * 140+0.875 * 103.15=107.76 \mathrm{~ms}$.
$D e v R T T=0.25 *|140-107.76|+0.75 * 8=14.06 \mathrm{~ms}$.
TimeoutInterval $=107.76+4 * 14.06=164 \mathrm{~ms}$.

Problem 3 Solution:

a) GoBackN:

A sends 9 segments in total. They are initially sent segments $1,2,3,4,5$ and later re-sent segments $2,3,4$, and 5 .
B sends 8 ACKs. They are 4 ACKS with sequence number 1, and 4 ACKS with sequence numbers $2,3,4$, and 5 .

Selective Repeat:

A sends 6 segments in total. They are initially sent segments $1,2,3,4,5$ and later re-sent segments 2.
B sends 5 ACKs. They are 4 ACKS with sequence number 1, 3, 4, 5. And there is one ACK with sequence number 2.

TCP:
A sends 6 segments in total. They are initially sent segments $1,2,3,4,5$ and later re-sent segments 2.
B sends 5 ACKs. They are 4 ACKS with sequence number 2 . There is one ACK with sequence numbers 6 . Note that TCP always send an ACK with expected sequence number.
b) TCP. This is because TCP uses fast retransmit without waiting until time out.

Problem 4 Solution:

a) It takes 1 RTT to increase CongWin to 6 MSS; 2 RTTs to increase to 7 MSS; 3 RTTs to increase to $8 \mathrm{MSS} ; 4$ RTTs to increase to $9 \mathrm{MSS} ; 5$ RTTs to increase to $10 \mathrm{MSS} ; 6$ RTTs to increase to 11 MSS ; and 7 RTTs to increase to 12 MSS .
b) In the first RTT 5 MSS was sent; in the second RTT 6 MSS was sent; in the third RTT 7 MSS was sent; in the fourth RTT 8 MSS was sent; in the fifth RTT, 9 MSS was sent; and in the sixth RTT, 10 MSS was sent. Thus, up to time 6 RTT, $5+6+7+8+9+10=45$ MSS were sent (and acknowledged). Thus, we can say that the average throughput up to time 6 RTT was (45 $\mathrm{MSS}) /(6 \mathrm{RTT})=7.5 \mathrm{MSS} / \mathrm{RTT}$.

Problem 5 Solution:

a) The loss rate, L, is the ratio of the number of packets lost over the number of packets sent. In a cycle, 1 packet is lost. The number of packets sent in a cycle is

$$
\begin{aligned}
\frac{W}{2}+\left(\frac{W}{2}+1\right)+\cdots+W & =\sum_{n=0}^{W / 2}\left(\frac{W}{2}+n\right) \\
& =\left(\frac{W}{2}+1\right) \frac{W}{2}+\sum_{n=0}^{W / 2} n \\
& =\left(\frac{W}{2}+1\right) \frac{W}{2}+\frac{W / 2(W / 2+1)}{2} \\
& =\frac{W^{2}}{4}+\frac{W}{2}+\frac{W^{2}}{8}+\frac{W}{4} \\
& =\frac{3}{8} W^{2}+\frac{3}{4} W
\end{aligned}
$$

Thus the loss rate is

$$
L=\frac{1}{\frac{3}{8} W^{2}+\frac{3}{4} W}
$$

b) For W large, $\frac{3}{8} W^{2} \gg \frac{3}{4} W$. Thus $L \approx 8 / 3 W^{2}$ or $W \approx \sqrt{\frac{8}{3 L}}$. From the text, we therefore have average throughput $=\frac{3}{4} \sqrt{\frac{8}{3 L}} \cdot \frac{M S S}{R T T}=\frac{1.22 \cdot M S S}{R T T \cdot \sqrt{L}}$.

