
CSC358: Tutorial 4

1

Principles of Computer Networks

Tutorial 4

Problem 1

a) t1 = t0 + Np/R

b) t2 = t1 + dAB/C = t0 + Np/R + dAB/C

c) t3 = t2 + Na/R = t0 + Np/R + dAB/C + Na/R

d) t4 = t3 + dAB/C = t0 + Np/R + dAB/C + Na/R + dAB/C = t0 + (Np + Na)/R + 2dAB/C

e) Tct = t4 – t0 = (Np + Na)/R + 2dAB/C

f) Average rate is the number of transmitted bytes in packet per communication

time:

𝑅𝐴 =
𝑁𝑝

𝑇𝑐𝑡
=

𝑁𝑝

(𝑁𝑝 + 𝑁𝑎)/𝑅 + 2𝑑𝐴𝐵/𝐶

g) Link utilization is link active time (packet transmission time) over the

communication time

𝑈𝐿 =
𝑁𝑃/𝑅

𝑇𝑐𝑡
=

𝑁𝑝/𝑅

(𝑁𝑝 + 𝑁𝑎)/𝑅 + 2𝑑𝐴𝐵/𝐶

h) All of the n packets need the same propagation delay, and the total transmission

delay of the n packets will be n multiples of that of one packet. Further, one ACK

will be sent. Consequently, the total time to transmit n packets and receive one

acknowledgment is (nNp + Na)/R + 2dAB/C. During this duration, n packets are

transmitted with total number of bytes of nNp. Then, the average rate will be

CSC358: Tutorial 4

2

𝑅𝑛 =
𝑛𝑁𝑝

(𝑛𝑁𝑝 + 𝑁𝑎)/𝑅 + 2
𝑑𝐴𝐵

𝐶

i) Link utilization is the transmission time of the n packets (not acknowledgments)

over the total time:

𝑈𝑛 =
𝑛𝑁𝑝/𝑅

(𝑛𝑁𝑝 + 𝑁𝑎)/𝑅 + 2
𝑑𝐴𝐵

𝐶

j) Congestion occurs if the total rate is above the channel capacity. So, we need to

have MRn ≤ R in order to avoid congestion.

𝑀𝑛𝑁𝑝

(𝑛𝑁𝑝 + 𝑁𝑎)/𝑅 + 2
𝑑𝐴𝐵

𝐶

≤ 𝑅

𝑛 ≤
2𝑅

𝑑𝐴𝐵
𝐶

+ 𝑁𝑎

(𝑀 − 1)𝑁𝑝

k) The solution here is similar to that of the single-ACK case in (h), (i), and (j). It is

the last sent ACK that will matter, why?

Problem 2

M0

M0

M0

M1

M1

A0

A0

A1

A1

old version of M0

accepted!

CSC358: Tutorial 4

3

Problem 3

Because the A-to-B channel can lose request messages, A will need to timeout and retransmit its

request messages (to be able to recover from loss). Because the channel delays are variable and

unknown, it is possible that A will send duplicate requests (i.e., resend a request message that has

already been received by B). To be able to detect duplicate request messages, the protocol will

use sequence numbers. A 1-bit sequence number will suffice for a stop-and-wait type of

request/response protocol.

A (the requestor) has 4 states:

 “Wait for Request 0 from above.” Here the requestor is waiting for a call from above to

request a unit of data. When it receives a request from above, it sends a request message,

R0, to B, starts a timer and makes a transition to the “Wait for D0” state. When in the

“Wait for Request 0 from above” state, A ignores anything it receives from B.

 “Wait for D0”. Here the requestor is waiting for a D0 data message from B. A timer is

always running in this state. If the timer expires, A sends another R0 message, restarts the

timer and remains in this state. If a D0 message is received from B, A stops the time and

transits to the “Wait for Request 1 from above” state. If A receives a D1 data message

while in this state, it is ignored.

 “Wait for Request 1 from above.” Here the requestor is again waiting for a call from

above to request a unit of data. When it receives a request from above, it sends a request

message, R1, to B, starts a timer and makes a transition to the “Wait for D1” state. When

in the “Wait for Request 1 from above” state, A ignores anything it receives from B.

 “Wait for D1”. Here the requestor is waiting for a D1 data message from B. A timer is

always running in this state. If the timer expires, A sends another R1 message, restarts the

timer and remains in this state. If a D1 message is received from B, A stops the timer and

transits to the “Wait for Request 0 from above” state. If A receives a D0 data message

while in this state, it is ignored.

 The data supplier (B) has only two states:

 “Send D0.” In this state, B continues to respond to received R0 messages by sending D0,

and then remaining in this state. If B receives a R1 message, then it knows its D0 message

has been received correctly. It thus discards this D0 data (since it has been received at the

other side) and then transits to the “Send D1” state, where it will use D1 to send the next

requested piece of data.

“Send D1.” In this state, B continues to respond to received R1 messages by sending D1, and

then remaining in this state. If B receives a R1 message, then it knows its D1 message has been

received correctly and thus transits to the “Send D1” state.

