Principles of Computer Networks Tutorial 4

Problem 1

The total amount of time to get the IP address is

 $RTT_1 + RTT_2 + \cdots + RTT_n$.

Once the IP address is known, RTT_o elapses to set up the TCP connection and another RTT_o elapses to request and receive the small object. The total response time is

 $2RTT_{o} + RTT_{1} + RTT_{2} + \dots + RTT_{n}$

Problem 2

- a) Consider a distribution scheme in which the server sends the file to each client, in parallel, at a rate of a rate of u_s/N . Note that this rate is less than each of the client's download rate, since by assumption $u_s/N \le d_{\min}$. Thus each client can also receive at rate u_s/N . Since each client receives at rate u_s/N , the time for each client to receive the entire file is $F_{(u_s/N)} = NF_{(u_s)}$. Since all the clients receive the file in NF/u_s , the overall distribution time is also NF/u_s .
- **b**) Consider a distribution scheme in which the server sends the file to each client, in parallel, at a rate of d_{\min} . Note that the aggregate rate, $N d_{\min}$, is less than the server's link rate u_s , since by assumption $u_s/N \ge d_{\min}$. Since each client receives at rate d_{\min} , the time for each client to receive the entire file is F/d_{\min} . Since all the clients receive the file in this time, the overall distribution time is also F/d_{\min} .
- c) From Section 2.6 we know that

 $D_{CS} \ge \max \{ NF/u_s, F/d_{\min} \}$ (Equation 1)

Suppose that $u_s/N \le d_{\min}$. Then from Equation 1 we have $D_{CS} \ge NF/u_s$. But from (a) we have $D_{CS} \le NF/u_s$. Combining these two gives:

 $D_{CS} = NF/u_s$ when $u_s/N \le d_{\min}$. (Equation 2)

We can similarly show that:

 $D_{CS} = F/d_{\min}$ when $u_s/N \ge d_{\min}$ (Equation 3).

Combining Equation 2 and Equation 3 gives the desired result.

Problem 3

a) Define $u = u_1 + u_2 + \dots + u_N$. By assumption

 $u_s \leq (u_s + u)/N$ Equation 1

Divide the file into *N* parts, with the *i*th part having size $(u_i/u)F$. The server transmits the ith part to peer i at rate $r_i = (u_i/u)u_s$. Note that $r_1 + r_2 + \ldots + r_N = u_s$, so that the aggregate server rate does not exceed the link rate of the server. Also have each peer *i* forward the bits it receives to each of the *N*-*I* peers at rate r_i . The aggregate forwarding rate by peer *i* is $(N-1)r_i$. We have

$$(N-1)r_{\rm i} = (N-1)(u_{\rm s}u_{\rm i})/u <= u_{\rm i},$$

where the last inequality follows from Equation 1. Thus the aggregate forwarding rate of peer i is less than its link rate u_i .

In this distribution scheme, peer *i* receives bits at an aggregate rate of

$$r_i + \sum_{j <>i} r_j = u_s$$

Thus each peer receives the file in F/u_s.

b) Again define $u = u_1 + u_2 + \dots + u_N$. By assumption

$$u_{\rm s} >= (u_{\rm s} + u)/N$$
 Equation 2

Let $r_i = u_i/(N-1)$ and

$$r_{N+1} = (u_s - u/(N-1))/N$$

In this distribution scheme, the file is broken into N+I parts. The server sends bits from the ith part to the ith peer (i = 1, ..., N) at rate r_i. Each peer i forwards the bits arriving at rate r_i to each of the other N-1 peers. Additionally, the server sends bits from the $(N+1)^{\text{st}}$ part at rate r_{N+1} to each of the N peers. The peers do not forward the bits from the $(N+1)^{\text{st}}$ part.

The aggregate send rate of the server is

$$r_1 + \ldots + r_N + N r_{N+1} = u/(N-1) + u_s - u/(N-1) = u_s$$

Thus, the server's send rate does not exceed its link rate. The aggregate send rate of peer i is

 $(N-1)r_i = u_i$

Thus, each peer's send rate does not exceed its link rate.

In this distribution scheme, peer i receives bits at an aggregate rate of

$$r_i + r_{N+1} + \sum_{j < i} r_j = u/(N-1) + (u_s - u/(N-1))/N = (u_s + u)/N$$

Thus each peer receives the file in $NF/(u_s+u)$.

(For simplicity, we neglected to specify the size of the file part for i = 1, ..., N+1. We now provide that here. Let $\Delta = (u_s+u)/N$ be the distribution time. For i = 1, ..., N, the *i*th file

part is $F_i = r_i \Delta$ bits. The $(N+1)^{\text{st}}$ file part is $F_{N+1} = r_{N+1} \Delta$ bits. It is straightforward to show that $F_1 + \dots + F_{N+1} = F$.)

c) The solution to this part is similar to the previous question. We know from Section 2.6 that $D_{P2P} \ge max\{F/us, NF/(us+u)\}$

Combining this with a) and b) gives the desired result.