Principles of Computer Networks Tutorial 3

Problem 1

a)

$$P_n = \binom{N}{n} (\lambda \Delta t)^n (1 - \lambda \Delta t)^{N-n} \qquad n=0, 1, \dots, N$$

b)

$$P_n = \binom{N}{n} (\lambda \Delta t)^n (1 - \lambda \Delta t)^{N-n}$$

For *T* fixed, as $N \to \infty$, we have $\Delta_t = T/N \to 0$

- $\lim_{\Delta t \to 0} (1 \lambda \Delta t)^N = \lim_{\Delta t \to 0} (1 \lambda \Delta t)^{T/\Delta t} = e^{-\lambda T}$
- $\lim_{\Delta t \to 0} (1 \lambda \Delta t)^{-n} = 1$

•
$$\lim_{N \to \infty} \frac{N(N-1)...(N-(n-1))}{N^n} = \lim_{N \to \infty} 1 \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right) = 1$$

We then obtain that

•
$$P_n = \frac{(\lambda T)^n}{n!} e^{-\lambda T}$$
 $n=0, 1, ..., N$

which is the Poisson distribution.

c) Let T be the inter-arrival time. Then using (b), we have that

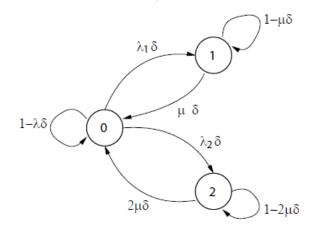
 $P(T \le t) = P(\text{at least one arrival in the interval } [0,t))$

$$=1-e^{-\lambda t}, \qquad t>0$$

i.e. the inter-arrival time is given by an exponential distribution.

Problem 2

- **a**) $\frac{\lambda_1}{\lambda_2 + \lambda_1}$ **b**) $\frac{\lambda_2}{\lambda_2 + \lambda_1}$
- c) Define $\lambda = \lambda_2 + \lambda_1$. The state transition diagram is shown below



d) Define $\rho_1 = \frac{\lambda_1}{\mu}$ and $\rho_2 = \frac{\lambda_2}{2\mu}$. It follows that

$$P_1 = (1 - \mu\delta)P_1 + \lambda_1\delta P_0$$
$$P_2 = (1 - 2\mu\delta)P_2 + \lambda_2\delta P_0$$

Which leads to,

$$P_1 = \frac{\lambda_1}{\mu} P_0$$
$$P_2 = \frac{\lambda_2}{2\mu} P_0$$

Using the condition that $P_0 + P_1 + P_2 = 1$, we obtain that

$$P_0\left(1+\frac{\lambda_1}{\mu}+\frac{\lambda_2}{2\mu}\right)=1$$

Define $\bar{\rho} = \frac{2\lambda_{1+}\lambda_2}{2\mu}$, then we get

$$P_0 = \frac{1}{1 + \bar{\rho}}$$
$$P_1 = \overline{\rho_1} \frac{1}{1 + \bar{\rho}}$$
$$P_2 = \overline{\rho_2} \frac{1}{1 + \bar{\rho}}$$

Problem 3

(a)	$P = \lambda_1 \Delta t$
(b)	$P = \lambda_2 \Delta t$
(c)	$P = \lambda_1 \Delta t (1 - \lambda_2 \Delta t) \approx \lambda_1 \Delta t$
(d)	$P = \lambda_2 \Delta t (1 - \lambda_1 \Delta t) \approx \lambda_2 \Delta t$
(e)	$P = (1 - \lambda_1 \Delta t)(1 - \lambda_2 \Delta t) = 1 - (\lambda_1 + \lambda_2)\Delta t + \lambda_1 \lambda_2 (\Delta t)^2 \approx 1 - (\lambda_1 + \lambda_2)\Delta t$
(f)	$P = \lambda_1 \Delta t (1 - \lambda_2 \Delta t) + \lambda_2 \Delta t (1 - \lambda_1 \Delta t) = (\lambda_1 + \lambda_2) \Delta t - 2\lambda_1 \lambda_2 (\Delta t)^2 \approx (\lambda_1 + \lambda_2) \Delta t$
(g)	

$$P = \lambda_1 \lambda_2 (\Delta t)^2 \approx 0$$

$$P = \frac{\lambda_1 \Delta t (1 - \lambda_2 \Delta t)}{\lambda_1 \Delta t (1 - \lambda_2 \Delta t) + \lambda_2 \Delta t (1 - \lambda_1 \Delta t)} \approx \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

(i)

(h)

$$P = \frac{\lambda_2 \Delta t (1 - \lambda_1 \Delta t)}{\lambda_1 \Delta t (1 - \lambda_2 \Delta t) + \lambda_2 \Delta t (1 - \lambda_1 \Delta t)} \approx \frac{\lambda_2}{\lambda_1 + \lambda_2}$$

(j) Let E_1 be the event that the link OUT₁ transmits a packet in a time-slot of length Δt , and let *A* be the event that we have an arrival at the switch. Then we have that

$$P(E_1) = P(E_1 \mid A)P(A) = p(\lambda_1 + \lambda_2)\Delta t$$

(k) Let E_2 be the event that the link OUT₂ transmits a packet in a time-slot of length Δt , and let *A* be the event that we have an arrival at the switch. Then we have that

$$P(E_2) = P(E_2 \mid A)P(A) = (1-p)(\lambda_1 + \lambda_2)\Delta t$$