## Principles of Computer Networks

## Tutorial 3

## Problem 1

In Tutorial 2, we saw that the probability of having $n$ arrivals in the $[0, k \Delta t]$ time interval of the discrete-time system was a binomial distribution:

$$
\binom{k}{n}(\lambda \Delta \mathrm{t})^{n}(1-\lambda \Delta \mathrm{t})^{k-n}
$$

where $0 \leq n \leq k$, and $\lambda \Delta t$ is the probability of one packet arriving during one time-slot $\Delta t$ where the arrival rate is $\lambda$.

Assume $\Delta t$ approaches 0 , and a packet is still processed instantly (no queueing). Consider a time interval of fixed length $T$ which is divided into $N$ slots of equal length $\Delta t=T / N$. In each time slot, exactly one packet arrives with probability $\lambda \Delta t$, and no packet arrives with probability $1-\lambda \Delta t$. Therefore, the probability that two or more packets arrive in one time slot is 0 .
a) What is the probability $P_{n}$ that $n, n=0,1, \ldots, N$, packets arrive in the time interval $[0, T]$ ?
b) Find the probability $P_{n}$ as the number of time slots $N$ approaches infinity $(N \rightarrow \infty)$ (and the interval $\Delta t$ approaches $0, \Delta t \rightarrow 0$ ). Hint: You may want to use

$$
\lim _{x \rightarrow 0}(1+a x)^{\frac{k}{x}}=e^{a k} \text { and, for } N \text { very large, } N!\approx \frac{(N / e)^{N}}{\sqrt{2 N \pi}}
$$

c) Assuming that $\Delta t \rightarrow 0$, what is the distribution of the time between two successive packet arrivals?

## Problem 2

Consider a transmission system (queue) that can hold at most one packet (the packet that is in service), i.e. there is no buffer and a new packet either goes directly into service or is dropped. The system receives Poisson packet traffic from two other nodes, 1 and 2, at rates $\lambda_{1}$ and $\lambda_{2}$, respectively. The service times of the packets are independently, exponentially distributed with a mean $\frac{1}{\mu}$ for packets from node 1 , and $\frac{1}{2 \mu}$ for packets from source 2 .


Define $P_{0}$ as the steady-state probability that system does not serve packets, $P_{l}$ as the steadystate probability that system serves a packet from node 1 , and $P_{2}$ as the steady-state probability that system serves a packet from node 2 .

Give answers to the following questions.
a) What is the probability that a packet that gets accepted into service is a packet from node 1 ?
b) What is the probability that a packet that gets accepted into service is a packet from node 2 ?
c) Let the states 0,1 , and 2 indicate the case that we find in the system no packet, one packet of source 1 , and one packet of source 2 , respectively. Draw the state-transition diagram of the system.
d) Compute the steady-state probabilities $P_{0}, P_{1}$ and $P_{2}$.

## Problem 3

Consider a switch with two incoming and two outgoing links. The links are all synchronized, and the switch sends and receives in time slots of length $\Delta t$. The switch immediately forwards incoming packets to one of the outgoing links. An incoming packet is routed to link $\mathrm{OUT}_{1}$ with probability $p$ and routed to link $\mathrm{OUT}_{2}$ with probability $1-p$. In each time slot, the link receives exactly one new packet on link $\mathrm{IN}_{1}$ with probability $\lambda_{1} \Delta t$, and receives no packet with probability $1-\lambda_{1} \Delta t$. Similarly, the link receives exactly one new packet on link $\mathrm{IN}_{2}$ with probability $\lambda_{2} \Delta t$, and receives no packet with probability $1-\lambda_{2} \Delta t$.

To simplify the analysis, we assume that the events (arrivals) on link $\mathrm{IN}_{1}$ and $\mathrm{IN}_{2}$ are independent. Further, $\Delta t$ is assumed to be very small; consequently, $\Delta t^{2} \ll \Delta t$, and the approximation $\Delta t^{2} \approx 0$ can be made.


Give answers to the following questions.
a) Find the probability that the switch receives only one packet from link $\mathrm{IN}_{1}$ in a time slot.
b) Find the probability that the switch receives only one packet from link $\mathrm{IN}_{2}$ in a time slot.
c) Find the probability that the switch receives only one packet from $\mathrm{IN}_{1}$ and no packet from $\mathrm{IN}_{2}$ in a time slot.
d) Find the probability that the switch receives only one packet from $\mathrm{IN}_{2}$ and no packet from $\mathrm{IN}_{1}$ in a time slot.
e) Find the probability that the switch receives no packets in a time slot.
f) Find the probability that the switch receives exactly one packet (which could be either from link $\mathrm{IN}_{1}$ or $\mathrm{IN}_{2}$ ) in a time slot.
g) Find the probability that the switch receives exactly two packets in a time slot.
h) Given that the switch receives exactly one packet in a given time slot, what is the probability that this packet is from link $\mathrm{IN}_{1}$ ?
i) Given that the switch receives exactly one packet in a given time slot, what is the probability that this packet is from link $\mathrm{IN}_{2}$ ?
j) Find the probability that the switch sends in a time slot exactly one packet on link $\mathrm{OUT}_{1}$.
k) Find the probability that the switch sends in a time slot exactly one packet on link $\mathrm{OUT}_{2}$.

