Principles of Computer Networks Tutorial 3

Problem 1

In Tutorial 2, we saw that the probability of having *n* arrivals in the $[0, k\Delta t]$ time interval of the discrete-time system was a binomial distribution:

$$\binom{k}{n} (\lambda \Delta t)^n (1 - \lambda \Delta t)^{k-n}$$

where $0 \le n \le k$, and $\lambda \Delta t$ is the probability of one packet arriving during one time-slot Δt where the arrival rate is λ .

Assume Δt approaches 0, and a packet is still processed instantly (no queueing). Consider a time interval of fixed length *T* which is divided into *N* slots of equal length $\Delta t = T/N$. In each time slot, exactly one packet arrives with probability $\lambda \Delta t$, and no packet arrives with probability $1 - \lambda \Delta t$. Therefore, the probability that two or more packets arrive in one time slot is 0.

- a) What is the probability *P_n* that *n*, *n* = 0, 1, ..., *N*, packets arrive in the time interval [0, *T*]?
- b) Find the probability P_n as the number of time slots *N* approaches infinity $(N \to \infty)$ (and the interval Δt approaches $0, \Delta t \to 0$). Hint: You may want to use $\lim_{x \to 0} (1 + ax)^{\frac{k}{x}} = e^{ak}$ and, for *N* very large, $N! \approx \frac{(N/e)^N}{\sqrt{2N\pi}}$
- c) Assuming that $\Delta t \rightarrow 0$, what is the distribution of the time between two successive packet arrivals?

Problem 2

Consider a transmission system (queue) that can hold at most one packet (the packet that is in service), i.e. there is no buffer and a new packet either goes directly into service or is dropped. The system receives Poisson packet traffic from two other nodes, 1 and 2, at rates λ_1 and λ_2 , respectively. The service times of the packets are independently, exponentially distributed with a mean $\frac{1}{\mu}$ for packets from node 1, and $\frac{1}{2\mu}$ for packets from source 2.

Define P_0 as the steady-state probability that system does not serve packets, P_1 as the steadystate probability that system serves a packet from node 1, and P_2 as the steady-state probability that system serves a packet from node 2.

Give answers to the following questions.

- a) What is the probability that a packet that gets accepted into service is a packet from node 1?
- **b**) What is the probability that a packet that gets accepted into service is a packet from node 2?
- c) Let the states 0, 1, and 2 indicate the case that we find in the system no packet, one packet of source 1, and one packet of source 2, respectively. Draw the state-transition diagram of the system.
- **d**) Compute the steady-state probabilities P_0 , P_1 and P_2 .

Problem 3

Consider a switch with two incoming and two outgoing links. The links are all synchronized, and the switch sends and receives in time slots of length Δt . The switch immediately forwards incoming packets to one of the outgoing links. An incoming packet is routed to link OUT₁ with probability *p* and routed to link OUT₂ with probability 1–*p*. In each time slot, the link receives exactly one new packet on link IN₁ with probability $\lambda_1 \Delta t$, and receives no packet with probability $1 - \lambda_1 \Delta t$. Similarly, the link receives exactly one new packet on link IN₂ with probability $1 - \lambda_2 \Delta t$.

To simplify the analysis, we assume that the events (arrivals) on link IN₁ and IN₂ are independent. Further, Δt is assumed to be very small; consequently, $\Delta t^2 \ll \Delta t$, and the approximation $\Delta t^2 \approx 0$ can be made.

Give answers to the following questions.

- a) Find the probability that the switch receives only one packet from link IN₁ in a time slot.
- **b**) Find the probability that the switch receives only one packet from link IN₂ in a time slot.
- c) Find the probability that the switch receives only one packet from IN_1 and no packet from IN_2 in a time slot.
- d) Find the probability that the switch receives only one packet from IN_2 and no packet from IN_1 in a time slot.
- e) Find the probability that the switch receives no packets in a time slot.
- f) Find the probability that the switch receives exactly one packet (which could be either from link IN_1 or IN_2) in a time slot.
- g) Find the probability that the switch receives exactly two packets in a time slot.
- **h**) Given that the switch receives exactly one packet in a given time slot, what is the probability that this packet is from link IN₁?
- i) Given that the switch receives exactly one packet in a given time slot, what is the probability that this packet is from link IN₂?
- j) Find the probability that the switch sends in a time slot exactly one packet on link OUT_1 .
- **k**) Find the probability that the switch sends in a time slot exactly one packet on link OUT_2 .