Principles of Computer Networks Tutorial 1

Problem 1 Solution

(a) Let $P_{o f f}^{(1)}$ be the probability that at time $k=1$ the transceiver is in state $S_{o f f}$. We have, $P_{o f f}^{(1)}=\frac{2}{3}$.
(b) Let $P_{o f f}^{(k)}\left(P_{o n}^{(k)}\right)$ be the probability that the transceiver is in state $S_{o f f}\left(S_{o n}\right)$ at time k for $k=0,1,2, \ldots$. From the initial conditions, we have that $P_{o f f}^{(0)}=1$ and $P_{o n}^{(0)}=0$. For $k=1,2,3, \ldots$, we have that

$$
P_{o f f}^{(k)}=\frac{2}{3} P_{o f f}^{(k-1)}+\frac{1}{3} P_{o n}^{(k-1)}
$$

and

$$
P_{o n}^{(k)}=\frac{1}{3} P_{o f f}^{(k-1)}+\frac{2}{3} P_{o n}^{(k-1)}
$$

We then obtain

$$
\begin{array}{ll}
P_{o f f}^{(1)}=\frac{2}{3}, & P_{o n}^{(1)}=\frac{1}{3} \\
P_{o f f}^{(2)}=\frac{2}{3} \frac{2}{3}+\frac{1}{3} \frac{1}{3}=\frac{5}{9}, & P_{o n}^{(2)}=\frac{1}{3} \frac{2}{3}+\frac{2}{3} \frac{1}{3}=\frac{4}{9} \\
P_{o f f}^{(3)}=\frac{2}{3} \frac{5}{9}+\frac{1}{3} \frac{4}{9}=\frac{14}{27}, & P_{o n}^{(3)}=\frac{1}{3} \frac{5}{9}+\frac{2}{3} \frac{4}{9}=\frac{13}{27} \\
P_{\text {off }}^{(4)}=\frac{2}{3} \frac{14}{27}+\frac{1}{3} \frac{13}{27}=\frac{41}{81}, & P_{o n}^{(4)}=\frac{1}{3} \frac{14}{27}+\frac{2}{3} \frac{13}{27}=\frac{40}{81}
\end{array}
$$

(c) See question (b):

$$
\begin{aligned}
P_{o f f}^{(1)} & =\frac{2}{3} P_{o f f}+\frac{1}{3} P_{o n}, \\
P_{o n}^{(1)} & =\frac{1}{3} P_{o f f}+\frac{2}{3} P_{o n} .
\end{aligned}
$$

(d) From (b) and (c), we need that

$$
P_{o f f}=\frac{2}{3} P_{o f f}+\frac{1}{3} P_{o n},
$$

and

$$
P_{o n}=\frac{1}{3} P_{o f f}+\frac{2}{3} P_{o n}
$$

Any solution for this system of equations has the property that

$$
P_{o f f}=P_{o n}
$$

As $P_{o f f}$ and $P_{o n}$ are probabilities, we need that

$$
P_{o f f}+P_{o n}=1
$$

Combining the two conditions above, we obtain that

$$
P_{o f f}=P_{o n}=\frac{1}{2}
$$

(e) We have

$$
\lim _{k \rightarrow \infty} P_{o f f}^{(k)}=\frac{1}{2}
$$

and

$$
\lim _{k \rightarrow \infty} P_{o n}^{(k)}=\frac{1}{2}
$$

Problem 2 Solution

(a) You can utilize $\sum_{k=1}^{\infty} k x(1-x)^{k-1}=\frac{1}{x}$.

$$
\begin{aligned}
E[L] & =\sum_{l=1}^{\infty} l \alpha(1-\alpha)^{l-1} \\
& =\frac{1}{\alpha}
\end{aligned}
$$

(b) For $l>l_{0}$, we have that

$$
P\left(L=l \mid L>l_{0}\right)=\frac{P\left(L=l \text { and } L>l_{0}\right)}{P\left(L>l_{0}\right)}=\frac{P(L=l)}{P\left(L>l_{0}\right)} .
$$

Note that

$$
P(L=l)=\alpha(1-\alpha)^{l-1}
$$

and

$$
\begin{aligned}
P\left(L>l_{0}\right) & =\sum_{k=l_{0}+1}^{\infty} \alpha(1-\alpha)^{(k-1)} \\
& =\sum_{u=l_{0}}^{\infty} \alpha(1-\alpha)^{u} \\
& =\sum_{l=0}^{\infty} \alpha(1-\alpha)^{\left(l_{0}+l\right)} \\
& =(1-\alpha)^{l_{0}} \sum_{l=0}^{\infty} \alpha(1-\alpha)^{l} \\
& =(1-\alpha)^{l_{0}} \alpha \sum_{l=0}^{\infty}(1-\alpha)^{l} \ldots(i) \\
& =(1-\alpha)^{l_{0}} \alpha \frac{1}{1-(1-\alpha)} \\
& =(1-\alpha)^{l_{0}},
\end{aligned}
$$

where we used the identity $\sum_{k=0}^{\infty} x^{n}=\frac{1}{1-x}$ for $x<1$ in (i).

It then follows that for $l>l_{0}$, we have

$$
P\left(L=l \mid L>l_{0}\right)=\frac{P(L=l)}{P\left(L>l_{0}\right)}=\frac{\alpha(1-\alpha)^{l-1}}{(1-\alpha)^{l_{0}}}=\alpha(1-\alpha)^{l-l_{0}-1} .
$$

Note that this implies that the geometric distribution is "memoryless".
(c) Using part (b), we have that

$$
\begin{aligned}
E\left[L \mid L>l_{0}\right] & =\sum_{l=l_{0}+1}^{\infty} l \alpha(1-\alpha)^{l-l_{0}-1} \\
& =\sum_{l=l_{0}+1}^{\infty}\left(l-l_{0}+l_{0}\right) \alpha(1-\alpha)^{l-l_{0}-1} \ldots .(i) \\
& =\sum_{x=1}^{\infty}\left(x+l_{0}\right) \alpha(1-\alpha)^{x-1} \ldots .(i i) \\
& =\sum_{x=1}^{\infty} x \alpha(1-\alpha)^{x-1}+\sum_{x=1}^{\infty} l_{0} \alpha(1-\alpha)^{x-1} \ldots(i i i) \\
& =\sum_{x=1}^{\infty} x \alpha(1-\alpha)^{x-1}+l_{0} \sum_{x=1}^{\infty} \alpha(1-\alpha)^{x-1} \ldots(i v) \\
& =\sum_{x=1}^{\infty} x \alpha(1-\alpha)^{x-1}+l_{0} \ldots(v) \\
& =\sum_{x=1}^{\infty} x \alpha(1-\alpha)^{x-1}+l_{0} \ldots(v i) \\
& =\frac{1}{\alpha}+l_{0} .
\end{aligned}
$$

In (i): we added and subtracted l_{0}.
In (ii): we used change of variables: $x=l-l_{0}$.
In (iii): we split the summation of x and l_{0}.
In (iv): we moved l_{0} outside the second summation.
In (v): we used the results of Problem 2(b) - (i) where we found that
$\sum_{k=1}^{\infty} \alpha(1-\alpha)^{k-1}=\sum_{u=0}^{\infty} \alpha(1-\alpha)^{u}=1$
In (vi): we used $\sum_{k=1}^{\infty} k x(1-x)^{k-1}=\frac{1}{x}$.

