Principles of Computer Networks Tutorial 1

Problem 1

Consider a transceiver unit which can send and receive data over a wireless communication link. The transceiver can be in one out of two possible states: state S_{off} (when it is not sending/receiving data) and S_{on} (when it is sending/receiving data).

Assume that the transceiver changes states at discrete time steps k = 0, 1, 2, 3, ... When the state of the transceiver is equal to S_{off} at time k, then at time (k + 1) it will be in the state S_{off} with probability 2/3 and be in the state S_{on} with probability 1/3. Similarly, when at time k the transceiver is in state S_{on} , then at time (k + 1) it is in state S_{off} with probability 1/3 and in state S_{on} with probability 2/3. The state diagram of the transceiver is shown as:

- (a) Assume that at time k = 0 the transceiver is in state S_{off} . What is the probability that the transceiver is still in state S_{off} at time k = 1?
- (b) Assume that at time k = 0 the transceiver is in state S_{off} . Using (a), what is the probability that the transceiver is in state S_{on} at time k = 2, 3, 4?
- (c) Assume that the transceiver is at time k = 0 in state S_{off} with probability P_{off} and in state S_{on} with probability P_{on} . Express the probability that the transceiver is at time k = 1 in state S_{off} , and state S_{on} , as a function of P_{off} and P_{on} .
- (d) Find initial probabilities P_{off} , P_{on} such that the transceiver is at time k = 1 in state S_{off} , and S_{on} , again with probability P_{off} , and P_{on} , respectively.
- (e) Assume that at time k = 0 the transceiver is in state S_{off} . Using the result of (d), try to guess that probabilities that the buffer is in state S_{on} and S_{off} after a very long time, i.e. as k approaches infinity.

Problem 2

The length of data packets can vary in a wide range (some packets are very short and some packets are very long). To capture this, we model packet lengths as a random variable with a geometric distribution. That is, the probability that a packet is L bits long is given by.

$$P(L = l) = \alpha (1 - \alpha)^{l-1}, \qquad l \ge 1.$$

- (a) Derive the average packet length, i.e. derive E[L].
- (b) Consider a specific packet. Assume that we know that the length of this packet is larger than l_0 . Find the probability that the packet is l bits long, $l > l_0$.
- (c) Derive the expected packet length when we know that $L > l_0$, i.e. derive $E[L \mid L > l_0]$.