Question 1 (packet switching):

a 4 Mbps link
each user requires 200 Kbps only 50 percent of the time assume $2^{10} \cong 1000$
a) Yes, 50 users can simultaneously use the packet switching network. It just needs congestion control.
b) Probability of having minimum 8 users (out of 10) active at the same time.

$$
\binom{10}{8}\left(\frac{1}{2}\right)^{10}+\binom{10}{9}\left(\frac{1}{2}\right)^{10}+\binom{10}{10}\left(\frac{1}{2}\right)^{10}=\left(\frac{10 \times 9}{2}+\frac{10}{1}+1\right)\left(\frac{1}{2}\right)^{10}=56\left(\frac{1}{2}\right)^{10} \cong 0.056
$$

Question 2 (cache):

Figure 1a

Figure 1b
a) Let x denote the cache hit rate, RTT_{0} denote the local round trip time, and RTT_{1} the round trip time between the routers. $\mathrm{RTT}_{0}=3, \mathrm{RTT}_{1}=6$.

```
    x.RTT0 +(1-x) (RTT0}+\mp@subsup{\textrm{RTT}}{1}{})<
    3x + 9(1-x) < 6
m > > 0.5
```

b) Objective: $\mathrm{RTT}_{0}+\mathrm{RTT}_{1}=6 \mathrm{sec}$.

Assumptions: $\mathrm{RTT}_{0}=3 \mathrm{sec}$, and $\mathrm{RTT}_{1}=6 \mathrm{sec}$ when $\mathrm{R}=15 \mathrm{Mbps}$.
Hence, in order to have $\mathrm{RTT}_{1}=3 \mathrm{sec}, \mathrm{R}$ should be 30 Mbps .

Question 3 (steady state):

Assumptions: Assume that the system is in state S_{0}, S_{1}, S_{2} with probability P_{0}, P_{1}, P_{2} respectively. Also, $\frac{P_{a 1}}{P_{d 1}}=\frac{1}{2}$ and $\frac{P_{a 2}}{P_{d 2}}=\frac{1}{3}$ and $P_{a}=P_{a 1}+P_{a 2}$.

Figure 2
Based on Figure 2 and since $\frac{P_{a 1}}{P_{d 1}}=\frac{1}{2}$ and $\frac{P_{a 2}}{P_{d 2}}=\frac{1}{3}$:

$$
\begin{equation*}
\mathrm{P}_{0}=2 \mathrm{P}_{1} \quad \mathrm{P}_{0}=3 \mathrm{P}_{2} \tag{1}
\end{equation*}
$$

Also, $\mathrm{P}_{0}+\mathrm{P}_{1}+\mathrm{P}_{2}=1$
(1) and (2) $\quad==>P_{0}+P_{0} / 2+P_{0} / 3=1$

$$
\begin{array}{rlll}
=> & 11 P_{0} / 6=1==> & P_{0}=6 / 11 & P_{1}=3 / 11 \\
\text { In other words: } & P_{0} \cong 0.55 & P_{1} \cong 0.27 & P_{2} \cong 0.18
\end{array}
$$

Part 1: true:

\Rightarrow HTTP is stateless.
\Rightarrow DNS, the domain name system, is an example of a client-server architecture.
\Rightarrow DHT, the distributed hash table, can be designed so that the number of messages per query is $\mathrm{O}(\log N)$, where N is the number of peers.
\Rightarrow After a packet arrives to a switch, its first bits can be propagated while remaining bits are being processed.

Part 1: false:

$\Rightarrow \mu \mathrm{TP}$ is a transport layer protocol.
\Rightarrow In order to join a BitTorrent torrent, a peer must have at least one chunk.
\Rightarrow TCP provides minimum data transmission rate between processes.
\Rightarrow It takes 1 msec for a packet of length 1 Kbits to propagate over a link of distance 5 Km , propagation speed of $10^{6} \mathrm{mps}$, and transmission rate of $10^{6} \mathrm{bps}$, neglecting any other delays.
\Rightarrow Suppose that a file size is 1000 Kbits and the path from Host A to Host B has two links of rates $R 1=1 \mathrm{Mbps}$ and $R 2=500 \mathrm{Kbps}$. The throughput for the file transfer is 2 seconds.
\Rightarrow A circuit-switched network is well suited for applications in which the transmission rate is unknown and bursty.

