CSC358 Intro. to Computer Networks

Lecture 12: Network Security, Exam Prep

Amir H. Chinaei, Winter 2016

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

© all material copyright; all rights reserved for the authors

Office Hours: T 17:00-18:00 R 9:00-10:00 BA4222

TA Office Hours: W 16:00-17:00 BA3201 R 10:00-11:00 BA7172 csc358ta@cdf.toronto.edu

http://www.cs.toronto.edu/~ahchinaei/teaching/2016jan/csc358/

Who might Bob, Alice be? * ... well, real-life Bobs and Alices!

- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates
- other examples?

Network Security

There are bad guys (and girls) out there!

Q: What can a "bad guy" do?

A: A lot!

- eavesdrop: intercept messages
- actively insert messages into connection
- impersonation: can fake (spoof) source address in packet (or any field in packet)
- hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
- denial of service: prevent service from being used by others (e.g., by overloading resources)

Network Security

Breaking an encryption scheme

- cipher-text only attack: Trudy has ciphertext she can analyze
- two approaches:
 brute force: search through all keys
 - statistical analysis
- known-plaintext attack: Trudy has plaintext corresponding to ciphertext
 - e.g., in monoalphabetic cipher, Trudy determines pairings for a,l,i,c,e,b,o,
- chosen-plaintext attack: Trudy can get ciphertext for chosen plaintext

Network Security

Simple encryption scheme substitution cipher: substituting one thing for another . monoalphabetic cipher: substitute one letter for another . monoalphabetic cipher: bob. i love you. alice . ciphertext: nkn. s gktc wky. mgsbc . monoalphabetic cipher: mapping from set of 26 letters . monoalphabetic ciphertext: . mon

Why is RSA secure?

Network Security

- suppose you know Bob's public key (n,e). How hard is it to determine d?
- essentially need to find factors of n without knowing the two factors p and q
 - fact: factoring a big number is hard

RSA in practice: session keys exponentiation in RSA is computationally intensive DES is at least 100 times faster than RSA use public key crypto to establish secure connection, then establish second key – symmetric session key – for encrypting data session key, K_S Bob and Alice use RSA to exchange a symmetric key K_S once both have K_S, they use symmetric key cryptography

2-25

2-26

Secure e-mail * Alice wants to send confidential e-mail (secrecy), m, to Bob. K_{S¦}⊘≃ K_S(m m K_s() $K_{s}()$ K۹ $K_{B}^{+}(K_{S})$ K_B(K_S Ka 🖓 K_B Alice: * generates random symmetric private key, Ks encrypts message with K_s (for efficiency) \diamond also encrypts K_s with Bob's public key * sends both $K_s(m)$ and $K_B(K_s)$ to Bob

Big Picture: key derivation

- considered bad to use same key for more than one cryptographic operation
 - use different keys for message authentication code (MAC) and encryption
- four keys:
 - K_c = encryption key for data sent from client to server
 - M_c = MAC key for data sent from client to server
 - K_s = encryption key for data sent from server to client
 - M_s = MAC key for data sent from server to client
- * keys derived from key derivation function (KDF)
 - takes master secret and (possibly) some additional random data and creates the keys

Network Security

Big Picture: sequence numbers Big Picture: control information * problem: attacker can capture and replay record problem: truncation attack: or re-order records attacker forges TCP connection close segment one or both sides thinks there is less data than there * solution: put sequence number into MAC: actually is. MAC = MAC(M_x, sequence||data) * solution: record types, with one type for closure note: no sequence number field type 0 for data; type 1 for closure MAC = MAC(M_x, sequence||type||data) * problem: attacker could replay all records * solution: use nonce MAC length type data Network Security Network Security

Final exam: approach/final answer

- Most questions require to calculate the final answer.
 This is, in fact, good!
 - Relatively simple numbers and calculations are required.
 - If you end up in complicated calculations, you can conclude that you are probably in a wrong track.
- Also, a final answer with a missing or wrong approach/justification does not receive points.
- Write neatly and concisely, such that you do not lose points unnecessarily.

Final exam: 50% rule, difficulty

- Remember: you are required to earn 50% of the final exam or 50% of the weighted average of the midterm and final exam to pass the course.
 - Example: if a student receives perfect points in all assignments and have collected several bonus points, but has not earned at least 50% of the above, he/she will receive an F in the course.
- The exam is long & difficult for students who are not prepared; and, it's fair & doable in ~ an hour for others.

Final exam: preparation

- Similar to the midterm;
- In addition to preparation for pre-midterm part (refer to Lecture 5);
- Make sure you understand details/concepts of Assignments 3 to 5, Tutorials 5 to 11, reading from the book, and the following problems:
 - Ch3: even questions from P2-P40, as well as 41, 45, and 53
 - Ch4: even questions from P2-P40, as well as 43 and 49
 - Ch5: P2, P4, P10, P14, P18, P20, P26, P28, P32, P34 and P36
 - Ch8: PI-PI2, PI5-PI8, P20-P22
 - Reference is the 5th edition

Last but not the least!

- If you want to do me a favour:
- Thanks and good luck!