CSC358 Intro. to Computer Networks

Lecture 7: TCP, flow and congestion control

Amir H. Chinaei, Winter 2016

ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaeil

Many slides are (inspired/adapted) from the above source
© all material copyright; all rights reserved for the authors

Office Hours: T 17:00—18:00 R 9:00-10:00 BA4222

TA Office Hours: W 16:00-17:00 BA3201 R 10:00-11:00 BA7172
csc358ta@cdf.toronto.edu
http://www.cs.toronto.edu/~ahchinaeilteaching/20 | éjan/csc358/

TCP OverVieW RFCs: 793,1122,1323, 2018, 2581

% point-to-point:
= one sender, one
receiver
+ reliable, in-order byte
steam:
= no “message
boundaries”
+ pipelined:
= TCP congestion and

flow control set window
size

+ full duplex data:

= bi-directional data flow
in same connection

= MSS: maximum
segment size
+ connection-oriented:
= handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange
+ flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-2

TCP segment structure

32 bits
URG: urgent data countin
(generally not used) source port # | dest port # by byteg
ACK: ACK # sequence number of data

valid ~|—acknowledgement number (not segments!)

head|not . .
PSH: push data now |U;S_EJHPR§IF receive window

len
enerally not used — - # bytes
(9 y) cheeksum Urg data pointer rovr willng
RST, SYN, FIN: | optjefis (variable length) to accept
connection estab

(setup, teardown

commands) o
application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 3-3

TCP seq. numbers, ACKs

sequence numbers:
=byte stream “number” of
first byte in segment’s
data
acknowledgements:
=seq # of next byte
expected from other side
= cumulative ACK
Q: how receiver handles
out-of-order segments
= A: TCP spec doesn’t say,
- up to implementor

outgoing segment from sender
sequence number

rwnd

[T 1

window size

—n
I

sender sequence number space

sent sent, not- usable not
ACKed yet ACKed but not usable
(“in- yet sent
flight”)
incoming segment to sender

[source port# | _destport#_|
acknowledgement number
rwnd

Transport Layer 3-4

TCP seq. numbers, ACKs

Host Host B
g |4
’ﬁ» «b

User
types
Pes

—
Seq=42, ACK=79,data = ‘C’
K host ACKs

receipt of
Seq=79, ACK=43, d c C, echoes
eq= =43, data = ‘C" «c
host ACKs : back °C
receipt
of echoed
c

Seq=43, ACK:EO\‘

simple telnet scenario

Transport Layer 3-5

TCP round trip time, timeout

Q: how to set TCP
timeout value?

« longer than RTT

= but RTT varies

« too short: premature
timeout, unnecessary
retransmissions

« too long: slow reaction
to segment loss

Q: how to estimate RTT?

+ SampleRTT: measured
time from segment
transmission until ACK
receipt

® ignore retransmissions
« SampleRTT will vary, want
estimated RTT “smoother”
= average several recent
measurements, not just
current SampleRTT

Transport Layer 3-6

TCP round trip time, timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT

exponential weighted moving average
influence of past sample decreases exponentially fast
typical value:a =0.125

RTT: gaia.cs.umass.edu to faxmasiax.eurez:om.frl

o
§ . : dlle I
E h
E !
4 sampleRTT
EstimatedRTT

time (seconds) Transport Layer 3-7

TCP round trip time, timeout

% timeout interval: EstimatedRTT plus “safety margin”
= large variation in EstimatedRTT -> larger safety margin
+ estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-B)*DevRTT +
p* | SampleRTT-EstimatedRTT |
(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

‘ estimated RTT “safety margin”

Transport Layer 3-8

TCP reliable data transfer

« TCP creates rdt service
on top of IP’ s unreliable

service
= pipelined segments , .
= cumulative acks let s initially consider
= single retransmission simplified TCP sender:
timer = ignore duplicate acks
& retransmissions = ignore f!OW control,
triggered by: congestion control

= timeout events
= duplicate acks

Transport Layer 3-9

TCP sender events:

data rcvd from app: timeout:
+ create segment with & retransmit segment
seq # that caused timeout

seq # is byte-stream « restart timer
number of first data ack revd:

byte in segment + if ack acknowledges
+ start timer |f.not previously unacked
already running segments

= think of timer as for = update what is known
oldest unacked to be ACKed

segment
= expiration interval:
TimeOutInterval

= start timer if there are
still unacked segments

Transport Layer 3-10

TCP sender (simplified)

data received from application above
create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

timeout
retransmit not-yet-acked segment

with smallest seq. #
start timer

A N
A
NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
I* SendBase-1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)
start timer
else stop timer

Transport Layer 3-11

TCP: retransmission scenarios

Host A Host B Host A Host B

= < =

T SendBase=92
Seq=92, 8 bytes of data Seq=92, 8 bytes of data
| |Seams2 sbresatade
5 — 5| Seq=100, 20 bytes of dat;
5 ACK=100 2
£ £
ACK=100
ACK=120
T Seamo2, 8 bytes of data
=92, 8 bytes of dal Seq=92, 8
— SendBase=100 .

bytes of data—_
ACK=100 SendBase=120
a ACK=120

SendBase=120 /

lost ACK scenario premature timeout

Transport Layer 3-12

TCP: retransmission scenarios

Host A Host B

y1

e

Seq=92, 8 bytes of data
~=7

Seq=100, 20 byt ;Ef
eq=100, es of

/y

ACK=100
v~

ACK=120

k———— timeout
/ \ N

Seq=120, 15 bytes of data

cumulative ACK

Transport Layer 3-13

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-14

TCP fast retransmit

% time-out period often
relatively long:
= long delay before
resending lost packet
+ detect lost segments
via duplicate ACKs.
= sender often sends
many segments back-
to-back
= if segment is lost, there

will likely be many
duplicate ACKs.

r TCP fast retransmit—

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #

= likely that unacked

segment lost,so don’ t
wait for timeout

Transport Layer 3-15

TCP fast retransmit

Host A Host B

/ \

Z

[~ Seq=92, 8 bytes of data

\5eq=100w
=I5

timeout

ACK=100
=

[_ACK=100
TSeq=100, 20 bytes of data

fast retransmit after sender
receipt of triple duplicate ACK

Transport Layer 3-16

TCP flow control

application may pLOCe
remove data from -
TCP socket buffers

)
TCP socket
receiver buffers
... slower than TCP /a

receiver is delivering ——
(sender is sending)

flow control
receiver controls sender, so
sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

TCP
code

| 1
from sender|

receiver protocol stack

Transport Layer 3-17

application

| |
P
code '
i

1 E W

TCP flow control

+ receiver “advertises” free
buffer space by including to application process
rwnd value in TCP header

of receiver-to-sender = .d dat
segments RcvBuffer uirered data

= RcvBuffer size set via

socket options (typical default zwnd free buffer space
is 4096 bytes)

many operating systems
autoadjust RevBuffer
+ sender limits amount of
oo e

unacked (“in-flight”) data to

)
receiver s rwnd value
guarantees receive buffer
will not overflow

Ve

TCP segment payloads

receiver-side buffering

Transport Layer 3-18

Connection Management

before exchanging data, sender/receiver “handshake”:

+ agree to establish connection (each knowing the other willing
to establish connection)

< agreeon connection parameters

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

application

Lol o
connection state: ESTAB
connection Variables:

seq # client-to-server

server-to-client
rcvBuffer size
at server,client

network

o

Socket clientSocket =
newSocket ("hostname",
number") ;

network E

Socket connectionSocket =

"port welcomeSocket.accept () ;

Transport Layer 3-19

TCP 3-way handshake

dlient state q E server state
CLOSED T

LISTEN
choose init seq num, x
send TCP SYN msg

SYNSENT SYNbit=1, Seg=x
choose init seq num, y
send TCP SYNACK
/ msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
received SYNACK(x)
ESTAB indicates server is live;

send ACK for SYNACK;
this segment may contain ACKbit=1, ACKnum=y+1
client-to-server data ! received ACK(y)
indicates client is live
ESTAB

Transport Layer 3-20

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept () ;

A

SYN(x

Socket clientSocket =
newSocket ("hostname", "port

SYNACK(seq=y,ACKnum=x+1) number”) ;
create new socket for SYN(seq=x)
ccommunication back to client

ACK(ACKnum=y+1)
A

| SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)

Transport Layer 3-21

TCP: closing a connection

< client, server each close their side of connection
= send TCP segment with FIN bit = |

« respond to received FIN with ACK

= on receiving FIN, ACK can be combined with own
FIN

« simultaneous FIN exchanges can be handled

Transport Layer 3-22

TCP: closing

a connection

client state d
ESTAB T

E server state
ESTAB

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP
3.2 multiplexing and = segment structure

clientSocket.close ()
FIN_WAIT_1 can no longer FINbit=1, seq=x
n - send but can ! q\
receive data CLOSE_WAIT
ACKbit=1; ACKnum=x+1 can stil
FIN_WAIT_2 wait for server o——"" send data
close
— LAST_ACK
bit=1, seq=
TIMED_WAIT — a=y can no longer
- ‘ —— send data
ACKbit=1; ACKnum=y+1
timed wait ~—
for 2¥max CLOSED
segment lifetime

CLOSED

Transport Layer 3-23

demultiplexing
3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

= reliable data transfer

= flow control

= connection management
3.6 principles of congestion

control

3.7 TCP congestion control

Transport Layer 3-24

Principles of congestion control

congestion:

+ informally: “too many sources sending too much
data too fast for network to handle”

« different from flow control!
+ manifestations:
= lost packets (buffer overflow at routers)
= long delays (queueing in router buffers)
« a top-10 problem!

Transport Layer 3-25

% two senders, two

» one router, infinite

No retransmission

Causes/costs of congestion: scenario |

original data:)»m throughput: xout

receivers HostA

unlimited shared
output link buffers

buffers
> output link capacity: R

[N — .
5 g :
< S |
Ain R2 Ain R2
» maximum per-connection + large delays as arrival rate, &,
throughput: R/2 approaches capacity

Transport Layer 3-26

Causes/costs of congestion: scenario 2

+ one router, finite buffers
% sender retransmission of timed-out packet
= application-layer input = application-layer output: A;, =

out
= transport-layer input includes retransmissions : A= Ain

<A, : original data

T Ay: original data, plus
retransmitted data

: Hostl / =] E
= B

finite shared output
Host B link buffers

= ou

Transport Layer 3-27

Causes/costs of congestion: scenario 2

idealization: perfect
knowledge

« sender sends only when
router buffers available

A R12

— A, : original data R
copy E — L',y original data, plus = out
retransmitted data
i . .
A free buffer space! / H
ft
i

Transport Layer 3-28

finite shared output
link buffers

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

« sender only resends if
packet known to be lost

l— i, : original data R
L, . A,
copy |[EH ¢ A'jy: original data, plus out
retransmitted data

o
i B
A no buffer space!

g Host B .i = B E

8
Transport Layer 3-29

Causes/costs of congestion: scenario 2

Idealization: known loss 2
packets can be lost,

dropped at router due when fending at R/2,

some/packets are

to full buffers Kg retrapsmissions but
. toti dput
+ sender only resends if o 2l RIZ (o)
packet known to be lost % RIZ
in

p I — i, : original data R
— . —— A
B8 @<4—). : original data, plus out
retransmitted data

I.\A H

free buffer space!

4
Host B ? E

4
Transport Layer 3-30

Causes/costs of congestion: scenario 2

RI2

Realistic: duplicates

+ packets can be lost, dropped
at router due to full buffers _ :::”:;Tk'gg a2,
+ sender times out prematurely, < retransmissions
. . including duplicated
sending two copies, both of that are delivered!
which are delivered o RIZ
in
—Min pn
| /A “out
free buffer space! 7z . . E
L,
Host B E

Transport Layer 3-31

Causes/costs of congestion: scenario 2

Realistic: duplicates

« packets can be lost, dropped
at router due to full buffers

+ sender times out prematurely,
sending two copies, both of
which are delivered

“ ” .
costs of congestion:

when sending at R/2,
some packets are

< retransmissions
including duplicated
that are delivered!

out

+ more work (retrans) for given “goodput”
« unneeded retransmissions: link carries multiple copies of pkt

= decreasing goodput

Transport Layer 3-32

Causes/costs of congestion: scenario 3

Q: what happens as };, and A,
increase ?

A:asred), increases,all arriving
blue pkts at upper queue are
dropped, blue throughput = 0

« four senders
« multihop paths
+ timeout/retransmit

A

Ay : original data “out, 1ost B

M\'jy: original data, plus
retransmitted data
finite shared output

lipk buffe <

Transport Layer 3-33

Causes/costs of congestion: scenario 3

/2

)“oul

o

another “cost” of congestion:

« when packet dropped, any “upstream
transmission capacity used for that packet was

wasted!

Transport Layer 3-34

Approaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion __ _network-assisted
control: congestion control:
« no explicit feedback « routers provide
from network feedback to end systems
« congestion inferred = single bit indicating
from end-system congestion (SNA,
observed loss, delay DECbit, TCP/IP ECN,
« approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-35

Case study: ATM ABR congestion control

ABR: available bit rate:
+ “elastic service”
+ if sender’ s path
“underloaded”:
= sender should use
available bandwidth
> if sender’ s path
congested:
= sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:

« sent by sender, interspersed
with data cells

+ bits in RM cell set by switches
(“network-assisted *)

= NI bit: no increase in rate
(mild congestion)

= (I bit: congestion
indication

+ RM cells returned to sender
by receiver, with bits intact

Transport Layer 3-36

Case study: ATM ABR congestion control

I RM cell H data cell

L

+ two-byte ER (explicit rate) field in RM cell
= congested switch may lower ER value in cell
= senders’ send rate thus max supportable rate on path
« EFCI bit in data cells: set to | in congested switch
= if data cell preceding RM cell has EFCI set, receiver sets
CI bit in returned RM cell

Transport Layer 3-37

TCP congestion control: additive increase
multiplicative decrease

+ approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

= additive increase: increase cwnd by | MSS every
RTT until loss detected

= multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

TCP Congestion Control: details

sender sequence number space

e cond ——si TCP sending rate:
"""l" """ « roughly: send cwnd
bytes, wait RTT for
E(s;(ggtej sent,“ not-L I:;:tbyte Qgrlisi)then Send
yet ACKed ytes
g'ig;‘-t") cwnd
» sender limits transmission: ‘ rate x - bytes/sec
LastByteSent- < cwnd ‘
LastByteAcked

+ cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-39

"
@
AIMD saw tooth 8 3
behavior: probing % §
for bandwidth & §
P8
is
time
Transport Layer 3-38
TCP Slow Start
Host A Host B

+ when connection begins, 5
increase rate

exponentially until first —

loss event:
= initially cwnd = | MSS %
= double cwnd every RTT

= done by incrementing
cwnd for every ACK U Segments
received
% summary: initial rate is
slow but ramps up
exponentially fast time

jli

«—RTT—

Transport Layer 3-40

TCP: detecting, reacting to loss

+ loss indicated by timeout:
= cwnd set to | MSS;

= window then grows exponentially (as in slow start)
to threshold, then grows linearly

+ loss indicated by 3 duplicate ACKs: TCP RENO

= dup ACKs indicate network capable of delivering
some segments

= cwnd is cut in half window then grows linearly

+ TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-41

TCP: switching from slow start to CA

Q: when should the
exponential
increase switch to "
linear? ?

A: when cwnd gets
to 1/2 of its value
before timeout.

TCP Reno

Implementation:

+ variable ssthresh

+ on loss event, ssthresh
is set to /2 of cwnd just
before loss event

Transport Layer 3-42

Summary: TCP Congestion Control

duplicate ACK

ount=
cwnd = cwnd+MSS. transmit new segment(s), as allowed

dupACKcount= 0
\) duplicate ACK

wransmit new segment(s), as allowed
dupACKcouN++

cwnd 2 ssthresh
A

up
retransmit missing segment
dupACKcount= 0
retransmit missing segment

cwnd =1 \CK
dupACKcount= 0 T ssivesh
dupACKcoun==3 | | retransmit missing segment o ssihvesh
ssthresh= cwnd/2

cund - ssthrosh + 3
rewansmil missing Segment

dupACKcount==3
ssthresh= cwnd/2

wind = ssthresh + 3
retransmit missing segment

duplicate ACK

wansmit new segment(s), as allowed

Transport Layer 3-43

TCP throughput

+ avg. TCP thruput as function of window size, RTT?
= ignore slow start, assume always data to send

<+ W: window size (measured in bytesy Where loss occurs
= avg. window size (# in-flight bytes) is %4 W
= avg. thruput is 3/4W per RTT

avg TCP thruput = % % bytes/sec

w/2

Transport Layer 3-44

TCP Futures: TCP over “long, fat pipes”

+ example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

% requires W = 83,333 in-flight segments

+ throughput in terms of segment loss probability, L
[Mathis 1997]:

1.22 -MSS

TCP throughput = RTT /L

=» to achieve 10 Gbps throughput, need a loss rate of L
=2'10"'° — a very small loss rate!

+ new versions of TCP for high-speed

o
"

Transport Layer 3-45

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router
capacity R

g

TCP connection 2

Transport Layer 3-46

Why is TCP fair?

two competing sessions:
« additive increase gives slope of |, as throughout increases
« multiplicative decrease decreases throughput proportionally

R equal bandwidth share
- L,
3 s
=
=)
=]
<}
£ oss: decrease window by factor of 2
~ gestion avoidance: additive increase
g loss: decrease window by factor of 2
B ngestion avoidance: additive increase
g
c
I}
o

Connection 1 throughput R

Transport Layer 3-47

Fairness (more)

Fairness and UDP Fairness, parallel TCP
« multimedia apps often connections
do not use TCP + application can open
* do not want rate multiple parallel
throttled by connections between two

congestion control

instead use UDP hosts
% instead use : .
o <+ web browsers do this
= send audio/video at

constant rate, tolerate <+ e.g., link of rate R with 9
packet loss existing connections:

= new app asks for | TCP, gets rate
R/10

= new app asks for || TCPs, gets R/2

Transport Layer 3-48

