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Transport Layer 3-2

TCP: Overview  RFCs: 793,1122,1323, 2018, 2581

 full duplex data:
 bi-directional data flow 

in same connection

 MSS: maximum 
segment size

 connection-oriented:
 handshaking (exchange 

of control msgs) inits 
sender, receiver state 
before data exchange

 flow controlled:
 sender will not 

overwhelm receiver

 point-to-point:
 one sender, one 

receiver

 reliable, in-order byte 
steam:
 no “message 

boundaries”

 pipelined:
 TCP congestion and 

flow control set window 
size
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TCP segment structure

source port # dest port #

32 bits

application

data 

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data 

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

# bytes 

rcvr willing

to accept

counting

by bytes 

of data

(not segments!)

Internet

checksum

(as in UDP)
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TCP seq. numbers, ACKs

sequence numbers:

byte stream “number” of 
first byte in segment’s 
data

acknowledgements:

seq # of next byte 
expected from other side

cumulative ACK

Q: how receiver handles 
out-of-order segments

A: TCP spec doesn’t say, 
- up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent 
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not 
yet sent

not 
usable

window size
N

sender sequence number space 

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender
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TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80
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TCP round trip time, timeout

Q: how to set TCP 
timeout value?

 longer than RTT

 but RTT varies

 too short: premature 
timeout, unnecessary 
retransmissions

 too long: slow reaction 
to segment loss

Q: how to estimate RTT?
 SampleRTT: measured 

time from segment 
transmission until ACK 
receipt

 ignore retransmissions

 SampleRTT will vary, want 
estimated RTT “smoother”
 average several recent

measurements, not just 
current SampleRTT
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RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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SampleRTT Estimated RTT

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

 exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value:  = 0.125

TCP round trip time, timeout
R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds) Transport Layer 3-8

 timeout interval: EstimatedRTT plus “safety margin”
 large variation in EstimatedRTT -> larger safety margin

 estimate SampleRTT deviation from EstimatedRTT: 

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically,  = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”
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TCP reliable data transfer

 TCP creates rdt service 
on top of IP’s unreliable 
service
 pipelined segments

 cumulative acks

 single retransmission 
timer

 retransmissions  
triggered by:
 timeout events

 duplicate acks

let’s initially consider 
simplified TCP sender:
 ignore duplicate acks

 ignore flow control, 
congestion control
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TCP sender events:

data rcvd from app:

 create segment with 
seq #

 seq # is byte-stream 
number of first data 
byte in  segment

 start timer if not 
already running 
 think of timer as for 

oldest unacked 
segment

 expiration interval: 
TimeOutInterval

timeout:

 retransmit segment 
that caused timeout

 restart timer

ack rcvd:

 if ack acknowledges 
previously unacked 
segments
 update what is known 

to be ACKed

 start timer if there are  
still unacked segments
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TCP sender (simplified)

wait

for 

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data) 

if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment         
with smallest seq. #

start timer

timeout

if (y > SendBase) { 

SendBase = y 

/* SendBase–1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)

start timer

else stop timer 

} 

ACK received, with ACK field value y 
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TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92
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TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120
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TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

arrival of in-order segment with

expected seq #. One other 

segment has ACK pending

arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

arrival of segment that 

partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

immediately send single cumulative 

ACK, ACKing both in-order segments 

immediately send duplicate ACK,

indicating seq. # of next expected byte

immediate send ACK, provided that

segment starts at lower end of gap
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TCP fast retransmit

 time-out period  often 
relatively long:
 long delay before 

resending lost packet

 detect lost segments 
via duplicate ACKs.
 sender often sends 

many segments back-
to-back

 if segment is lost, there 
will likely be many 
duplicate ACKs.

if sender receives 3 
ACKs for same data

(“triple duplicate ACKs”),

resend unacked
segment with smallest 
seq #
 likely that unacked

segment lost, so don’t 
wait for timeout

TCP fast retransmit
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X

fast retransmit after sender 
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may 
remove data from 

TCP socket buffers …. 

… slower than TCP 
receiver is delivering

(sender is sending)

from sender

receiver controls sender, so 

sender won’t overflow 

receiver’s buffer by transmitting 

too much, too fast

flow control
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TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

 receiver “advertises” free 
buffer space by including 
rwnd value in TCP header 
of receiver-to-sender 
segments
 RcvBuffer size set via 

socket options (typical default 
is 4096 bytes)

 many operating systems 
autoadjust RcvBuffer

 sender limits amount of 
unacked (“in-flight”) data to 
receiver’s rwnd value 

 guarantees receive buffer 
will not overflow

receiver-side buffering
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Connection Management

before exchanging data, sender/receiver “handshake”:
 agree to establish connection (each knowing the other willing 

to establish connection)

 agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client 

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client 

application

network

Socket clientSocket =   

newSocket("hostname","port 

number");

Socket connectionSocket = 

welcomeSocket.accept();
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TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

CLOSED

server state

LISTEN
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TCP 3-way handshake: FSM

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =   

newSocket("hostname","port 

number");

SYN(seq=x)

Socket connectionSocket = 

welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for 
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)
ACK(ACKnum=y+1)

L
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TCP: closing a connection

 client, server each close their side of connection
 send TCP segment with FIN bit = 1

 respond to received FIN with ACK
 on receiving FIN, ACK can be combined with own 

FIN

 simultaneous FIN exchanges can be handled
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FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB
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Chapter 3 outline

3.1 transport-layer 
services

3.2 multiplexing and 
demultiplexing

3.3 connectionless 
transport: UDP

3.4 principles of reliable 
data transfer

3.5 connection-oriented 
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion 
control

3.7 TCP congestion control



5

Transport Layer 3-25

congestion:
 informally: “too many sources sending too much 

data too fast for network to handle”
 different from flow control!

 manifestations:

 lost packets (buffer overflow at routers)

 long delays (queueing in router buffers)

 a top-10 problem!

Principles of congestion control
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Causes/costs of congestion: scenario 1

 two senders, two 
receivers

 one router, infinite 
buffers 

 output link capacity: R

 no retransmission

 maximum per-connection 
throughput: R/2

unlimited shared 

output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l
o
u

t

lin R/2

d
e
la

y

lin

 large delays as arrival rate, lin, 
approaches capacity
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 one router, finite buffers 

 sender retransmission of timed-out packet
 application-layer input = application-layer output: lin = 
lout

 transport-layer input includes retransmissions : lin lin

finite shared output 

link buffers

Host A

lin : original data

Host B

loutl'in: original data, plus

retransmitted data

‘

Causes/costs of congestion: scenario 2
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idealization: perfect 
knowledge

 sender sends only when 
router buffers available 

finite shared output 

link buffers

lin : original data
loutl'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

l
o
u

t

lin

Causes/costs of congestion: scenario 2

Host B

A
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lin : original data
loutl'in: original data, plus

retransmitted data

copy

no buffer space!

Idealization: known loss
packets can be lost, 
dropped at router due  
to full buffers

 sender only resends if 
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B
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lin : original data
loutl'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost, 
dropped at router due  
to full buffers

 sender only resends if 
packet known to be lost

R/2

R/2lin

l
o
u
t

when sending at R/2, 

some packets are 

retransmissions but 

asymptotic goodput 

is still R/2 (why?)

A

Host B
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A

lin
loutl'in

copy

free buffer space!

timeout

R/2

R/2lin

l
o
u
t

when sending at R/2, 

some packets are 

retransmissions 

including duplicated 

that are delivered!

Host B

Realistic: duplicates
 packets can be lost, dropped 

at router due  to full buffers

 sender times out prematurely, 
sending two copies, both of 
which are delivered

Causes/costs of congestion: scenario 2
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R/2

l
o
u
t

when sending at R/2, 

some packets are 

retransmissions 

including duplicated 

that are delivered!

“costs” of congestion:
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple copies of pkt

 decreasing goodput

R/2lin

Causes/costs of congestion: scenario 2

Realistic: duplicates
 packets can be lost, dropped 

at router due  to full buffers

 sender times out prematurely, 
sending two copies, both of 
which are delivered
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 four senders

 multihop paths

 timeout/retransmit

Q: what happens as lin and lin
’

increase ?

finite shared output 

link buffers

Host A lout

Causes/costs of congestion: scenario 3

Host B

Host C

Host D

lin : original data

l'in: original data, plus

retransmitted data

A: as red  lin
’ increases, all arriving 

blue pkts at upper queue are 
dropped, blue throughput g 0
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another “cost” of congestion:

 when packet dropped, any “upstream 
transmission capacity used for that packet was 
wasted!

Causes/costs of congestion: scenario 3

C/2

C/2

l
o

u
t

lin
’
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Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion 
control:

 no explicit feedback 
from network

 congestion inferred 
from end-system 
observed loss, delay

 approach taken by 
TCP

network-assisted 
congestion control:

 routers provide 
feedback to end systems

 single bit indicating 
congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)

explicit rate for 
sender to send at
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Case study: ATM ABR congestion control

ABR: available bit rate:
 “elastic service”

 if sender’s path 
“underloaded”: 

 sender should use 
available bandwidth

 if sender’s path 
congested: 

 sender throttled to 
minimum guaranteed 
rate

RM (resource management) 
cells:

 sent by sender, interspersed 
with data cells

 bits in RM cell set by switches 
(“network-assisted”) 

 NI bit: no increase in rate 
(mild congestion)

 CI bit: congestion 
indication

 RM cells returned to sender 
by receiver, with bits intact
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Case study: ATM ABR congestion control

 two-byte ER (explicit rate) field in RM cell
 congested switch may lower ER value in cell

 senders’ send rate thus max supportable rate on path

 EFCI bit in data cells: set to 1 in congested switch

 if data cell preceding RM cell has EFCI set, receiver sets 
CI bit in returned RM cell

RM cell data cell
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TCP congestion control: additive increase 
multiplicative decrease

 approach: sender increases transmission rate (window 
size), probing for usable bandwidth, until loss occurs

 additive increase: increase  cwnd by 1 MSS every 
RTT until loss detected

multiplicative decrease: cut cwnd in half after loss 

c
w
n
d
:

T
C

P
 s

e
n
d
e
r 

c
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time
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TCP Congestion Control: details

 sender limits transmission:

 cwnd is dynamic, function 
of perceived network 
congestion

TCP sending rate:

 roughly: send cwnd 
bytes, wait RTT for 
ACKS, then send 
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte 
sent

cwnd

LastByteSent-

LastByteAcked
< cwnd

sender sequence number space 

rate ~~
cwnd

RTT
bytes/sec
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TCP Slow Start 

 when connection begins, 
increase rate 
exponentially until first 
loss event:
 initially cwnd = 1 MSS

 double cwnd every RTT

 done by incrementing 
cwnd for every ACK 
received

 summary: initial rate is 
slow but ramps up 
exponentially fast

Host A

R
T

T

Host B

time
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TCP: detecting, reacting to loss

 loss indicated by timeout:
 cwnd set to 1 MSS; 

 window then grows exponentially (as in slow start) 
to threshold, then grows linearly

 loss indicated by 3 duplicate ACKs: TCP RENO

 dup ACKs indicate network capable of  delivering 
some segments 

 cwnd is cut in half window then grows linearly

 TCP Tahoe always sets cwnd to 1 (timeout or 3 
duplicate acks)
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Q: when should the 
exponential 
increase switch to 
linear? 

A: when cwnd gets 
to 1/2 of its value 
before timeout.

Implementation:
 variable ssthresh

 on loss event, ssthresh
is set to 1/2 of cwnd just 
before loss event

TCP: switching from slow start to CA
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Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 

start

timeout

ssthresh = cwnd/2 
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!
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TCP throughput

 avg. TCP thruput as function of window size, RTT?
 ignore slow start, assume always data to send

 W: window size (measured in bytes) where loss occurs
 avg. window size (# in-flight bytes) is ¾ W

 avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 
3
4

W
RTT

bytes/sec
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TCP Futures: TCP over “long, fat pipes”

 example: 1500 byte segments, 100ms RTT, want 
10 Gbps throughput

 requires W = 83,333 in-flight segments

 throughput in terms of segment loss probability, L 
[Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L 
= 2·10-10  – a very small loss rate!

 new versions of TCP for high-speed

TCP throughput = 
1.22 . MSS

RTT L
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fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck

router

capacity R

TCP Fairness

TCP connection 2
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Why is TCP fair?

two competing sessions:
 additive increase gives slope of 1, as throughout increases

 multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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Fairness (more)

Fairness and UDP

 multimedia apps often 
do not use TCP
 do not want rate 

throttled by 
congestion control

 instead use UDP:
 send audio/video at 

constant rate, tolerate 
packet loss

Fairness, parallel TCP 
connections

 application can open 
multiple parallel 
connections between two 
hosts

 web browsers do this 

 e.g., link of rate R with 9 
existing connections:
 new app asks for 1 TCP, gets rate 

R/10

 new app asks for 11 TCPs, gets R/2 


