CSC358 Intro. to Computer Networks

Lecture 7: TCP, flow and congestion control

Amir H. Chinaei, Winter 2016

COMPUTER e
NETWORKING

ahchinaei@cs.toronto.edu

P
http:/lwww.cs.toronto.edu/~ahchinaeil e

Many slides are (inspired/adapted) from the above source s
© all material copyright; all rights reserved for the authors

KUROSE - ROSS

Office Hours: T 17:00-18:00 R 9:00—-10:00 BA4222

TA Office Hours: W 16:00-17:00 BA3201 R 10:00-11:00 BA7172
csc358ta@cdf.toronto.edu
http://www.cs.toronto.edu/~ahchinaeilteaching/20 | 6jan/csc358/



TC P: Ove rVieW RFCs: 793,1122,1323, 2018, 258

% point-to-point:
= one sender, one
receiver
<+ reliable, in-order byte
steam:
" no “message
boundaries”
<+ pipelined:
= TCP congestion and

flow control set window
size

< full duplex data:

= bj-directional data flow
In same connection

= MSS: maximum
segment size

< cohnection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-2



TCP segment structure

« 32 hits

URG: urgent data
(generally not used)\

source port # dest port #

ACK: ACK #

. Sequence number

valid

\kngwledgement number

PSH: push data now
(generally not used) —

neadn E i‘EAPRSF receive window
7
Urg data pointer

RST, SYN, aN—T
connection estab

op/a{ s (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Transport Layer 3-3



TCP seq. numbers, ACKs

outgoing segment from sender

sequence numbers:

"byte stream “number” of
first byte in segment’s
data

acknowledgements:

"seq # of next byte
expected from other side

= cumulative ACK

Q: how receiver handles
out-of-order segments

= A: TCP spec doesn’t say,
- up to implementor

source port # dest port #
sequence number
acknowledgement number
| | rwnd
checksum urg pointer
wmdow Size

N

sender sequence number space

sent
ACKed

sent, not- usable not
yet ACKed butnot usable
(“in- yet sent
flight™)

incoming segment to sender
dest port #
sequence number

R acknowledgement number

A rwnd

source port #

checksum urg pointer

Transport Layer 3-4



TCP seq. numbers, ACKs

Host A Host B
™ \
User &
types
‘C; \

host ACKs
receipt
of echoed
‘C’

Seq=42, ACK=79,w

Seq=79, ACK=43, data= ‘C’

\

Seq=43, ACK:K

simple telnet scenario

host ACKs
receipt of

‘C’, echoes
back ‘C

Transport Layer 3-5



TCP round trip time, timeout

Q: how to set TCP
timeout value?

% longer than RTT
= but RTT varies
% too short: premature

timeout, unnecessary
retransmissions

< too long: slow reaction
to segment loss

Q: how to estimate RTT?
+» SampleRTT: measured

time from segment
transmission until ACK
receipt

" jgnore retransmissions

» SampleRTT will vary, want

estimated RTT “smoother”

= average several recent
measurements, not just
current SampleRTT

Transport Layer 3-6



TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

+» exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 +

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

¢ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-7



TCP round trip time, timeout

% timeout interval: EstimatedRTT plus “safety margin”
" large variation in EstimatedRTT -> larger safety margin

<+ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-P)*DevRTT +
f* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-8



TCP reliable data transfer

< T CP creates rdt service
” .
on top of IP" s unreliable
service

" pipelined segments S .
s cumulative acks let s initially consider

« single retransmission simplified TCP sender:
timer " ignore duplicate acks

% retransmissions " ignore flow control,
triggered by: congestion control

" timeout events
= duplicate acks

Transport Layer 3-9



TCP sender events:

data rcvd from app:

% create segment with
seq #

% seq # is byte-stream
number of first data
byte in segment

. start timer if not
already running
®» think of timer as for

oldest unacked
segment

= expiration interval:
TimeOutInterval

4

L)

L)

timeout;

% retransmit segment
that caused timeout

% restart timer
ack revd:

+ if ack acknowledges
previously unacked
segments

= update what is known
to be ACKed

= start timer if there are
still unacked segments

Transport Layer 3-10



TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSeqgNum
timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
[* SendBase-1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-11



TCP: retransmission scenarios

Host A
V{
\
Seq=92, 8 bytes of data
5
) ACK=100
S X

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host B

S

Host A Hos

3
3

2

SendBase=92

—— timeout —

SendBase=100
SendBase=120

SendBase=120

E

==

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

ACK=100
ACK=120

\

Seq=92, 8

bytes of data\

\

ACK=120

\

premature timeout

Transport Layer 3-12



TCP: retransmission scenarios

Host A Host B

—— timeout —*

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of da

ACK=100
X<
ACK=120

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer 3-13



TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-14



TCP fast retransmit

% time-out period often
relatively long:

" |long delay before
resending lost packet

+ detect lost segments
via duplicate ACKs.

= sender often sends
many segments back-
to-back

= if segment is lost, there

will likely be many
duplicate ACKs.

—- TCP fast retransmit ——

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don’ t
wait for timeout

Transport Layer 3-15



TCP fast retransmit

Host A Host B
g r

— Seq=92, 8 bytes of data

Seq= 100,\20‘0;:(@5.%
\X

(ACK=1OO

timeout

’ACK=1OO
~Seq=100, 20 bytes of data

A4

v VL
fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-16



TCP flow control

application may

remove data from

TCP socket buffers ....

... Slower than TCP
receiver is delivering —
(sender is sending)

— flow control
receiver controls sender, so

sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

_
application ‘
. application
] [ ® T --===-"
TCP socket 05
receiver buffers
N
TCP
code
[] .
IP
code \' \

I I
from sender

receiver protocol stack

Transport Layer 3-17



TCP flow control

/7
0‘0

receiver “advertises’ free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

= RcvBuffer size setvia

socket options (typical default
is 4096 bytes)

" many operating systems
autoadjust RevBuffer
sender Iimits amount of
unacked ( in-flight”) data to
receiver’ s rwnd value

guarantees receive buffer
will not overflow

to application process

FI_‘

?
RcvBuffer

T

rwnd

L

buffered data

free buffer space

1

TCP segment payloads

receiver-side buffering

Transport Layer 3-18



Connection Management

before exchanging data, sender/receiver “handshake”:

+ agree to establish connection (each knowing the other willing
to establish connection)

<« agree on connection parameters

application application

O
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

Vf network network
i
R |
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-19



TCP 3-way handshake

client state 1'/
CLOSED e
choose init seq num, x
! send TCP SYN msg | ~_
SYNSENT SYNbit=1, Seq=x

v received SYNACK(x)
indicates server is live;

ESTAB send ACK for SYNACK;
this segment may contain
client-to-server data

P

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
/

\

ACKbit=1, ACKnum=y+1

\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

v

ESTAB

Transport Layer 3-20



TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept () ;
A .
Socket clientSocket =
SYN(X) | newSocket ("hostname", "port
ulnb 1 ,.
SYNACK(seq=y,ACKnum=x-+1) number™)
create new socket for SYN(seq=x)
communication back to client
| | SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Transport Layer 3-21



TCP: closing a connection

< client, server each close their side of connection
= send TCP segment with FIN bit = |

+ respond to received FIN with ACK

= on receiving FIN, ACK can be combined with own
FIN

<« simultaneous FIN exchanges can be handled

Transport Layer 3-22



TCP: closing a connection

client state j V/ H server state
ESTAB e ESTAB

clientSocket.close ()
N

' T Fibit=1
FIN_WAIT_1 can no longer It=1, seq=x

send but can q\ v
receive data _— CLOSE_WAIT
ACKbit=1; ACKnum=x+1

r . can still
FIN_WAIT 2 wait for server —" send data
close
_— LAST ACK
v F b|t=1, seqg=
TIMED_WAIT — A/LN A can no longer
B \ ~—~—— send data
ACKbit=1; ACKnum=y+1
timed wait ~— v
for 2*max CLOSED

segment lifetime

CLOSED l

Transport Layer 3-23



Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-24



Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
+ manifestations:
" |ost packets (buffer overflow at routers)
* long delays (queueing in router buffers)
<+ a top-10 problem!

Transport Layer 3-25



C

original data: }\“in

auses/costs of congestion: scenario

throughput: A

unlimited shared

output link buffers

two senders, two \\ .
receivers Host A
one router, infinite |
buffers s;[ |

e I

output link capacity: R
No retransmission

A R/2

< maximum per-connection
throughput: R/2

in

out

A

delay

Ain  R/2

+ large delays as arrival rate, A, ,

approaches capacity

Transport Layer 3-26




Causes/costs of congestion: scenario 2

<« one router, finite buffers

+ sender retransmission of timed-out packet
= application-layer input = application-layer output: A;, =

A

out

= transport-layer input includes retransmissions : A,> A;,

A, : original data

O mm

S==== “EEIREEER

finite shared output
link buffers

pi—2

A': original data, plus

retransmitted data

Transport Layer 3-27



Causes/costs of congestion: scenario 2

idealization: perfect
knowledge

+ sender sends only when
router buffers available

R/2

kout

copy

Host B

B\, original data

A': original data, plus

retransmitted data

out

free buffer space!
>

S==== “EEIREEER

finite shared output
link buffers

Transport Layer 3-28



Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

» sender only resends if
packet known to be lost

A, : original data

Ccopy

A': original data, plus
retransmitted data

no buffer space!

Transport Layer 3-29



Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

+ sender only resends if
packet known to be lost

R/2

7\'0Ut

A, : original data

retransmitted

free buffer space!

______________________________________

when gending at R/2,
some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

7\; RI/2

A',: original data, plus out

data

Transport Layer 3-30



Causes/costs of congestion: scenario 2

Realistic: duplicates

+ packets can be lost, dropped
at router due to full buffers

R/2

ut

+ sender times out prematurely, <
sending two copies, both of
which are delivered

___________________________

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

R/2

Transport Layer 3-31



Causes/costs of congestion: scenario 2

Realistic: duplicates

= | — S
+ packets can be lost, dropped A
at router due to full buffers ~ i WhensendingatR/2,
. ‘g’ i some pagkgts are
+ sender times out prematurely, < § _retzagsmlzsmlnst |
. . : including duplicate
sending two copies, both of . thatare delivered!
which are delivered - RI2

in

“costs” of congestion:

» more work (retrans) for given “goodput”
+ unneeded retransmissions: link carries multiple copies of pkt
" decreasing goodput

Transport Layer 3-32



Causes/costs of congestion: scenario 3

Q: what happens as 1, and A,
increase !
ﬂ as red A, increases,all arriving

blue pkts at upper queue are
dropped, blue throughput = 0

< four senders
<« multihop paths
< timeout/retransmit

Host A

. A
A : original data OUt, Host B

A'..: original data, plus
retransmitted data

finite shared output
I

k buffers ‘ H

Host D

T —

Transport Layer 3-33



Causes/costs of congestion: scenario 3

C/2

Kout

/2

(11 77 .
another "cost  of congestion:

» when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 3-34



AEEroaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion _network-assisted =
control: congestion control:
+ no explicit feedback <+ routers provide
from network feedback to end systems
<+ congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
<« approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-35



Case study: ATM ABR congestion control

ABR: available bit rate:

(11 . . 13/
» elastic service

» if sender’ s path
underloaded :

= sender should use
available bandwidth

» if sender’ s path
congested:

= sender throttled to
minimum guaranteed
rate

RM (resource management)

cells:

+ sent by sender, interspersed

with data cells

+ bits in RM cell set by switches

(“network-assisted *)

= N/ bit: no increase in rate
(mild congestion)

= (Cl bit: congestion
indication

< RM cells returned to sender

by receiver, with bits intact

Transport Layer 3-36



Case study: ATM ABR congestion control

I RM cell H data cell

s‘[u ’-/Hﬂlﬂﬂliﬁﬂﬂl “ T
D F R | R I

+» two-byte ER (explicit rate) field in RM cell

" congested switch may lower ER value in cell

= senders’ send rate thus max supportable rate on path
<« EFCI bit in data cells: set to | in congested switch

= if data cell preceding RM cell has EFCI set, receiver sets
Cl bit in returned RM cell

Transport Layer 3-37



TCP congestion control: additive increase
multiplicative decrease
% approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
|

time
Transport Layer 3-38



TCP Congestion Control: details

sender sequence number space
¢ cWwnd ——p|

last byte J \ L last byte
yet ACKed
(“in-
flight™)

< sender limits transmission:

LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

< roughly: send cwnd
bytes, wait RTT for
ACKS, then send

more bytes

cwnd

rate ~ bytes/sec

Transport Layer 3-39



TCP Slow Start

. ) Host A Host B
+» when connection begins, & =
increase rate - 1
exponentially until first t ——one segmen
loss event: e
|

"= initially cwnd = | MSS
* double cwnd every RTT

= done by incrementing

cwnd for every ACK Ur segments
received
% summary: initial rate is
slow but ramps up
exponentially fast time

Transport Layer 3-40



TCP: detecting, reacting to loss

- loss indicated by timeout:
* cwnd set to | MSS;

= window then grows exponentially (as in slow start)
to threshold, then grows linearly

» loss indicated by 3 duplicate ACKs: TCP RENO

= dup ACKs indicate network capable of delivering
some segments

o

o

* cwnd is cut in half window then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-41



TCP: switching from slow start to CA

Q: when should the
exponential
increase switch to 4 TCP Reno
linear? 27

A: when cwnd gets
to |/2 of its value
before timeout.

o
l

ssthresh

ssthresh

Congestion window
(in segments)

TCP Tahoe

° . 0
Implementation: 0123456 78 9101112131415
+ variable ssthresh Transmission found

<+ on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

Transport Layer 3-42



S

u

duplicate ACK
dupACKcount++

)

néw'A‘CK cwnd = cwnd
cwnd = cwnd+MSS
dupACKcount =0

/>transmit new segment(s), as allowed

P
C N

cAQY timeout
‘((c €))¥esh = cwnd/2
cWind = 1 MSS

dupACKcount =0
retransmit missing segment

A
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0_>

N
(¢ { D timeout </
—6..esh = cwnd/2
cwnd = 1 MSS
dupACKcount =0
retransmit missing segment

cwnd > ssthresh
A

v

P e

PR

timeout( 3]

ssthresh = cwnd/2

cwnd =1

dupACKcount =0
retransmit missing segment

New ACK
cwnd = ssthresh

dupACKcount == dupACKcount =0

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

__new ACH

mmary: TCP Congestion Control

+ MSS =(MSS/cwnd)

dupACKcount =0
transmit new segment(s), as allowed

duplicate ACK
dupACKcount++

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

v
A

duplicate ACK

cwnd = cwnd + MSS
transmit new segment

(s), as allowed

Transport Layer 3-43



TCP throughput

% avg. TCP thruput as function of window size, RTT?
" ignore slow start, assume always data to send

+ W: window Size (measured in bytes) Where loss occurs
= avg. window size (# in-flight bytes) is ¥4 W
= avg. thruput is 3/4WV per RTT

3 W
4 RTT

N14%4%4%%

avg TCP thruput = bytes/sec

Transport Layer 3-44



77

TCP Futures: TCP over “long, fat pipes

*

example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

requires W = 83,333 in-flight segments

throughput in terms of segment loss probability, L
[Mathis 1997]:

L)

0’0

0’0

TCP throughput = =:22-MSS

RTT./L

=?» to achieve 10 Gbps throughput, need a loss rate of L
=210 — a very small loss rate!

+ new versions of TCP for high-speed

&

Transport Layer 3-45



TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENG—

- bottleneck
Q router

TCP connection 2 capacity R

Transport Layer 3-46



Why is TCP fair?

two competing sessions:
+ additive increase gives slope of |, as throughout increases
+ multiplicative decrease decreases throughput proportionally

R equal bandwidth share
E ;
Q
L
o)
>
o .
< 0ss: decrease window by factor of 2
N co#igestion avoidance: additive increase
S loss: decrease window by factor of 2
= ’ ngestion avoidance: additive increase
c J
(@) s
O ,

| 4

Connection 1 throughput R

Transport Layer 3-47



Fairness gmorez

Fairness and UDP Fairness, parallel TCP
+ multimedia apps often connections
do not use TCP %+ application can open
" do not want rate multiple parallel
throttled by connections between two
congestion control hosts

< instead use UDP;

* send audio/video at . .
constant rate, tolerate  + e.g., link of rate R with 9

packet loss existing connections:

" new app asks for | TCP, gets rate
R/10

" new app asks for || TCPs, gets R/2

4

. web browsers do this

L)

L)

Transport Layer 3-48



