CSC358 Intro. to Computer Networks Lecture 5: Review, Transport Layer, (de)multiplexing, UDP, reliable data transfer Amir H. Chinaei, Winter 2016 ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/-ahchinaei/ Many slides are (inspired/adapted) from the above source © all material copyright; all rights reserved for the authors Office Hours: T 17:00–18:00 R 9:00–10:00 BA4222 TA Office Hours: W 16:00-17:00 BA3201 R 10:00-11:00 BA7172 csc358ta@cdf.toronto.edu

http://www.cs.toronto.edu/~ahchinaei/teaching/2016jan/csc358/

Application Laver 2-8

Simple Database					
Simple	database with <mark>(k</mark>	e <mark>y, value)</mark> pairs:			
 key: human name; value: social security # 					
	Key	Value			
	John Washington	132-54-3570			
	Diana Louise Jones	761-55-3791			
	Xiaoming Liu	385-41-0902			
	Rakesh Gopal	441-89-1956			
	Linda Cohen	217-66-5609			
	Lisa Kobayashi	177-23-0199			
• key	r: movie title; val	ue: IP address			

•

Hash Table

• More convenient to store and search on numerical representation of key

 key = hash(original key)
--

Original Key	Key	Value
John Washington	8962458	132-54-3570
Diana Louise Jones	7800356	761-55-3791
Xiaoming Liu	1567109	385-41-0902
Rakesh Gopal	2360012	441-89-1956
Linda Cohen	5430938	217-66-5609
Lisa Kobayashi	9290124	177-23-0199
		Applic

Distributed Hash Table (DHT)

- Distribute (key, value) pairs over millions of peers
 pairs are evenly distributed over peers
- Any peer can query database with a key
 - database returns value for the key
 - To resolve query, small number of messages exchanged among peers
- Each peer only knows about a small number of other peers
- * Robust to peers coming and going (churn)

Application Layer 2-11

Application Layer 2-9

Transport services and protocols

- provide logical communication between app processes running on different hosts
 transport protocols run in
- hosts • send side: breaks app messages into segments,
- passes to network layer
 rcv side: reassembles segments into messages, passes to app layer
- more than one transport protocol available to apps
 - E.g.: TCP, UDP

UDP checksum

Goal: detect "errors" (e.g., flipped bits) in transmitted segment

sender:

- treat segment contents, including header fields, as sequence of 16-bit integers
- checksum: addition (one's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:

- compute checksum of
- received segment
 check if computed
 - checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless? More later in Sec 5.2

Transport Layer 3-31

Reliable data transfer: getting started

we'll:

- incrementally develop sender, receiver sides of reliable data transfer protocol (rdt)
- consider only unidirectional data transfer
 but control info will flow on both directions!
- use finite state machines (FSM) to specify sender,

2-48