
1

CSC358 Intro. to Computer Networks

Lecture 5: Review, Transport Layer,

(de)multiplexing, UDP, reliable data transfer

Amir H. Chinaei, Winter 2016

ahchinaei@cs.toronto.edu

http://www.cs.toronto.edu/~ahchinaei/

Many slides are (inspired/adapted) from the above source

© all material copyright; all rights reserved for the authors

Office Hours: T 17:00–18:00 R 9:00–10:00 BA4222

TA Office Hours: W 16:00-17:00 BA3201 R 10:00-11:00 BA7172

csc358ta@cdf.toronto.edu

http://www.cs.toronto.edu/~ahchinaei/teaching/2016jan/csc358/

Application Layer

Review

 Examples of Application Layer Protocols:
 TLS, DNS, TP

 Proprietary protocols: e.g. Skype or myGame

 Examples of Transport Layer Protocols:
 TCP, UDP, DCCP

 Examples of Network Layer Protocols:
 IP, ICMP

 DNS (TCP/UDP)

 P2P

1-2

Application Layer 2-3

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-4

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

 file divided into 256Kb chunks

 peers in torrent send/receive file chunks

… obtains list

of peers from tracker

… and begins exchanging

file chunks with peers in torrent

Application Layer 2-5

 peer joining torrent:

 has no chunks, but will
accumulate them over time
from other peers

 registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers

 peer may change peers with whom it exchanges chunks

 churn: peers may come and go

 once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

Application Layer 2-6

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets
of file chunks

 periodically, Alice asks each
peer for list of chunks that
they have

 Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from her)

 re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer

 newly chosen peer may join top 4

2

Application Layer 2-7

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

Distributed Hash Table (DHT)

 Hash table

 DHT paradigm

 Circular DHT and overlay networks

 Peer churn

Application Layer 2-8

Key Value

John Washington 132-54-3570

Diana Louise Jones 761-55-3791

Xiaoming Liu 385-41-0902

Rakesh Gopal 441-89-1956

Linda Cohen 217-66-5609

……. ………

Lisa Kobayashi 177-23-0199

Simple database with(key, value) pairs:

• key: human name; value: social security #

Simple Database

• key: movie title; value: IP address
Application Layer 2-9

Original Key Key Value

John Washington 8962458 132-54-3570

Diana Louise Jones 7800356 761-55-3791

Xiaoming Liu 1567109 385-41-0902

Rakesh Gopal 2360012 441-89-1956

Linda Cohen 5430938 217-66-5609

……. ………

Lisa Kobayashi 9290124 177-23-0199

• More convenient to store and search on

numerical representation of key

• key = hash(original key)

Hash Table

Application Layer 2-10

 Distribute (key, value) pairs over millions of peers
 pairs are evenly distributed over peers

 Any peer can query database with a key
 database returns value for the key

 To resolve query, small number of messages exchanged among
peers

 Each peer only knows about a small number of other
peers

 Robust to peers coming and going (churn)

Distributed Hash Table (DHT)

Application Layer 2-11

Assign key-value pairs to peers

 rule: assign key-value pair to the peer that has the
closest ID.

 convention: closest is the immediate successor of
the key.

 e.g., ID space {0,1,2,3,…,63}

 suppose 8 peers: 1,12,13,25,32,40,48,60
 If key = 51, then assigned to peer 60

 If key = 60, then assigned to peer 60

 If key = 61, then assigned to peer 1

Application Layer 2-12

3

1

12

13

25

32
40

48

60

Circular DHT

• each peer only aware of
immediate successor and
predecessor.

“overlay network”

1

12

13

25

32
40

48

60

What is the value
associated with key 53 ?

value

O(N) messages

on avgerage to resolve

query, when there

are N peers

Resolving a query

Application Layer 2-14

Circular DHT with shortcuts

• each peer keeps track of IP addresses of predecessor,
successor, short cuts.

• reduced from 6 to 3 messages.
• possible to design shortcuts with O(log N) neighbors, O(log N)

messages in query

1

12

13

25

32
40

48

60

What is the value for
key 53

value

Application Layer 2-15

Peer churn

example: peer 5 abruptly leaves

1

3

4

5

8
10

12

15

handling peer churn:

peers may come and go (churn)

each peer knows address of its
two successors

each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor

Application Layer 2-16

Peer churn

example: peer 5 abruptly leaves

peer 4 detects peer 5’s departure; makes 8 its immediate
successor

 4 asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.

1

3

4

8
10

12

15

handling peer churn:

peers may come and go (churn)

each peer knows address of its
two successors

each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor

Application Layer 2-17 Transport Layer 3-18

Let’s move on to Transport Layer

 TCP, UDP

 principles, services

 multiplexing, demultiplexing

 reliable data transfer

 flow control

 congestion control

4

Transport Layer 3-19

Transport services and protocols

 provide logical communication
between app processes
running on different hosts

 transport protocols run in
hosts

 send side: breaks app
messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps

 E.g.: TCP, UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-20

Transport vs. network layer

 transport layer: logical
communication
between A. processes
 relies on, enhances,

network layer
services

 network layer: logical
communication
between T. processes
 .relies on lower layer

12 kids in Ann’s house sending
letters to 12 kids in Bill’s house:

 hosts = houses
 processes = kids
 app messages =

(continuous) letter
 segments= letter (piece) in

envelopes
 transport protocol = Ann

and Bill who demux to in-
house siblings

 network-layer protocol =
postal service

household analogy:

Transport Layer 3-21

Internet transport-layer protocols

 reliable, in-order
delivery (TCP)
 congestion control

 flow control

 connection setup

 unreliable, unordered
delivery: UDP
 no-frills extension of

“best-effort” IP

 services not available:
 delay guarantees

 bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer 3-22

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4
transport

application

physical

link

network

P3

Transport Layer 3-23

How demultiplexing works

 host receives IP datagrams
 each datagram has source IP

address, destination IP
address

 each datagram carries one
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application

data
(payload)

other header fields

TCP/UDP segment format

Transport Layer 3-24

Connectionless demultiplexing

 recall: created socket has
host-local port #:
DatagramSocket mySocket1
= new DatagramSocket(12534);

 when host receives UDP
segment:
 checks destination port #

in segment

 directs UDP segment to
socket with that port #

 recall: when creating
datagram to send into
UDP socket, must specify
 destination IP address

 destination port #

IP datagrams with same
dest. port #, but different
source IP addresses
and/or source port
numbers will be directed
to same socket at dest

5

Transport Layer 3-25

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket

(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P3

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket

(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer 3-26

Connection-oriented demux

 TCP socket identified
by 4-tuple:
 source IP address

 source port number

 dest IP address

 dest port number

 demux: receiver uses
all four values to direct
segment to appropriate
socket

 server host may support
many simultaneous TCP
sockets:
 each socket identified by

its own 4-tuple

 web servers have
different sockets for
each connecting client
 non-persistent HTTP will

have different socket for
each request

Transport Layer 3-27

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP
address B

Transport Layer 3-28

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Transport Layer 3-29

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport
protocol

 “best effort” service,
UDP segments may be:

 lost

 delivered out-of-order
to app

 connectionless:

 no handshaking
between UDP sender,
receiver

 each UDP segment
handled independently
of others

 UDP use:
 streaming multimedia

apps (loss tolerant, rate
sensitive)

 DNS

 SNMP

 reliable transfer over
UDP:
 add reliability at

application layer

 application-specific error
recovery!

Transport Layer 3-30

UDP: segment header

source port # dest port #

32 bits

application

data
(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

 no connection
establishment (which can
add delay)

 simple: no connection
state at sender, receiver

 small header size

 no congestion control:
UDP can blast away as
fast as desired

why is there a UDP?

6

Transport Layer 3-31

UDP checksum

sender:
 treat segment contents,

including header fields,
as sequence of 16-bit
integers

 checksum: addition
(one’s complement
sum) of segment
contents

 sender puts checksum
value into UDP
checksum field

receiver:
 compute checksum of

received segment

 check if computed
checksum equals checksum
field value:

 NO - error detected

 YES - no error detected.
But maybe errors
nonetheless? More later
in Sec 5.2

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 3-32

Checksum: example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-33

Principles of reliable data transfer
 important in application, transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-34

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer
 important in application, transport, link layers

 top-10 list of important networking topics!

Transport Layer 3-35

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

 important in application, transport, link layers
 top-10 list of important networking topics!

Principles of reliable data transfer

Transport Layer 3-36

Reliable data transfer: getting started

send

side
receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

7

Transport Layer 3-37

we’ll:
 incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)

 consider only unidirectional data transfer
 but control info will flow on both directions!

 use finite state machines (FSM) to specify sender,
receiver

state

1
state

2

event causing state transition

actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

Reliable data transfer: getting started

Transport Layer 3-38

rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit errors

 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel

 receiver reads data from underlying channel

Wait for

call from

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-39

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
 negative acknowledgements (NAKs): receiver explicitly

tells sender that pkt had errors
 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

rdt2.0: over a channel with bit errors

How do humans recover from “errors”
during conversation?

Transport Layer 3-40

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:

 acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 feedback: control msgs (ACK,NAK) from receiver to

sender

rdt2.0: channel with bit errors

Transport Layer 3-41

rdt2.0: FSM specification

Wait for

call from

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

belowsender

receiver
rdt_send(data)

L

Transport Layer 3-42

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

8

Transport Layer 3-43

rdt2.0: error scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

Transport Layer 3-44

rdt2.0 has a fatal flaw!

what happens if
ACK/NAK corrupted?

 sender doesn’t know
what happened at
receiver!

 can’t just retransmit:
possible duplicate

handling duplicates:
 sender retransmits

current pkt if ACK/NAK
corrupted

 sender adds sequence
number to each pkt

 receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet,
then waits for receiver
response

Transport Layer 3-45

rdt2.1: sender, handles garbled ACK/NAKs

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for

ACK or

NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

Wait for

call 1 from

above

Wait for

ACK or

NAK 1

L
L

Transport Layer 3-46

Wait for

0 from

below

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) &&

has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) &&

has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt2.1: receiver

Transport Layer 3-47

rdt2.1: summary

sender:

 seq # added to pkt

 two seq. #’s (0,1) will
suffice. Why?

 must check if received
ACK/NAK corrupted

 twice as many states
 state must
“remember” whether
“expected” pkt should
have seq # of 0 or 1

receiver:

 must check if received
packet is duplicate
 state indicates whether

0 or 1 is expected pkt
seq #

 note: receiver can not
know if its last
ACK/NAK received
OK at sender

Next

 Midterm on Chapters 1 and 2
 Exclude Sec 1.7, 2.4, 2.7, and 2.8

 ~10% concepts addressed in class

 ~90% problems requiring math models
 In addition to Assignments 1 and 2, Tutorials

1 to 4, reading from the book, make sure you
have no doubts on the following problems:

 Ch1: P2-P17, P19-P30, and P32

 Ch2: P1, P7-P11, P20-P33

 Note that our reference is the 5th edition

2-48

