CSC358 Intro. to Computer Networks

Lecture 5: Review, Transport Layer,
(de)multiplexing, UDP, reliable data transfer

Amir H. Chinaei, Winter 2016

COMPUTER e
NETWORKING

ahchinaei@cs.toronto.edu
http:/lwww.cs.toronto.edu/~ahchinaeil

Many slides are (inspired/adapted) from the above source e
© all material copyright; all rights reserved for the authors

KUROSE - ROSS

Office Hours: T 17:00-18:00 R 9:00—-10:00 BA4222

TA Office Hours: W 16:00-17:00 BA3201 R 10:00-11:00 BA7172
csc358ta@cdf.toronto.edu
http://www.cs.toronto.edu/~ahchinaeilteaching/20 | 6jan/csc358/



Review

< Examples of Application Layer Protocols:
- TLS, DNS, uTP
» Proprietary protocols: e.g. Skype or myGame
< Examples of Transport Layer Protocols:
« TCP, UDP, DCCP

< Examples of Network Layer Protocols:
- P, ICMP

4

L)

. DNS (TCP/UDP)
. P2P

L)

4

L)

L)

Application Layer 1-2



Client-server vs. P2P: examEIe

client upload rate = u, F/u=1 hour, u,=10u, d.;, = U,

3.5

Minimum Distribution Time
O - N
(@) = (@) N (@) w

o

= P2P

-o— Client-Server

Application Layer 2-3



P2P file distribution: BitTorrent

< file divided into 256Kb chunks
< peers Iin torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file
§ 9. &%
| =

Alice arrives ...
... obtains list

of peers from tracker
... and begins exchanging

<A
.

Application Layer 2-4



P2P file distribution: BitTorrent

< peer joining torrent: E
" has no chunks, but will /
accumulate them over time w««.

from other peers

" registers with tracker to get < g
list of peers, connects to «...: =
subset of peers
(“neighbors”)

L)

0’0

while downloading, peer uploads chunks to other peers
peer may change peers with whom it exchanges chunks
churn: peers may come and go

» once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

L)

0’0

L)

0’0

>

Application Layer 2-5



BitTorrent: requesting, sending file chunks

requesting chunks: sending chunks: tit-for-tat

% at any given time, different < Alice sends chunks to those
peers have different subsets four peers currently sending her
of file chunks chunks at highest rate

& periodically, Alice asks each " other peers are choked by Alice
peer for list of chunks that (do not receive chunks from her)

" re-evaluate top 4 every |0 secs

< every 30 secs: randomly select
another peer, starts sending

they have

+ Alice requests missing
chunks from peers, rarest

0

first chunks
Peer 1 = “optimistically unchoke” this peer
Peer 2 * newly chosen peer may join top 4
Peer 3
Peer 4

Application Layer 2-6



BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

higher upload rate: find better
trading partners, get file faster !

Application Layer 2-7



Distributed Hash Table (DHT)

< Hash table

+» DHT paradigm
% Circular DHT and overlay networks

< Peer churn

Application Layer 2-8



Simple Database

Simple database with(key, value) pairs:

* key: human name; value: social security #

John Washington 132-54-3570
Diana Louise Jones 761-55-3791

Xiaoming Liu 385-41-0902
Rakesh Gopal 441-89-1956
Linda Cohen 217-66-5609
Lisa Kobayashi 177-23-0199

* key: movie title; value: IP address

Application Layer 2-9



Hash Table

« More convenient to store and search on
numerical representation of key

* key = hash(original key)

John Washington 8962458 132-54-3570
Diana Louise Jones 7800356 761-55-3791
Xiaoming Liu 1567109 385-41-0902
Rakesh Gopal 2360012 441-89-1956
Linda Cohen 5430938 217-66-5609

Lisa Kobayashi 9290124 177-23-0199

Application Layer 2-10



Distributed Hash Table (DHT)

+ Distribute (key, value) pairs over millions of peers
= pairs are evenly distributed over peers
+ Any peer can query database with a key

" database returns value for the key

" To resolve query, small number of messages exchanged among
peers

<+ Each peer only knows about a small number of other
peers

+ Robust to peers coming and going (churn)

Application Layer 2-11



Assign key-value pairs to peers

% rule: assign key-value pair to the peer that has the
closest ID.

< convention: closest is the immediate successor of
the key.

+ e.g., ID space {0,1,2,3,...,63}
» suppose 8 peers: |,12,13,25,32,40,48,60

= |f key =51, then assigned to peer 60
" |f key = 60, then assigned to peer 60
" |f key = 61, then assigned to peer |

Application Layer 2-12



Circular DHT

each peer only aware of
immediate successor and

predecessor.

1
60 12

13
48
25
40
32

“overlay network”



Resolving a query

-

1 What is the value
associated with key 53

O(N) messages
on avgerage to resolve
query, when there 32

are N peers
Application Layer 2-14



Circular DHT with shortcuts

‘

1 What is the value foj
key 53
”, 1 y

32

each peer keeps track of IP addresses of predecessor,
successor, short cuts.

reduced from 6 to 3 messages.

possible to design shortcuts with O(log N) neighbors, O(log N)
messages in query

Application Layer 2-15



Peer churn

- handling peer churn:

<peers may come and go (churn)

<each peer knows address of its
15 two successors
<each peer periodically pings its
4 two successors to check aliveness
12 <+if immediate successor leaves,

5 choose next successor as new

immediate successor
10 o

example: peer 5 abruptly leaves

Application Layer 2-16



Peer churn
1

handling peer churn:
<peers may come and go (churn)

<each peer knows address of its
15 two successors

<each peer periodically pings its
4 two successors to check aliveness

12 <+if immediate successor leaves,
choose next successor as new

immediate successor
10 o

example: peer 5 abruptly leaves

~peer 4 detects peer 5’ s departure; makes 8 its immediate
successor

+ 4 asks 8 who its immediate successor is; makes 8 s
immediate successor its second successor.

Application Layer 2-17



Let's move on to Transport Layer

= TCP, UDP

= principles, services

* multiplexing, demultiplexing
* reliable data transfer

* flow control

" congestion control

Transport Layer 3-18



Transport services and protocols

application
g transport
networ
‘ M
y physical
[asibNg 1

— /]

<« provide logical communication
between app processes
running on different hosts

transport protocols run in
hosts

" send side: breaks app
messages into segments,
passes to network layer

| I .
rcv side: rgassembles | T
segments into messages, transport

network

passes to app layer , data lnk

psical
+ more than one transport |
protocol available to apps

= Eg: TCP, UDP

{

K/
0’0

—
3 —1
¥/ -

Transport Layer 3-19



Transport vs. network layer

+ transport layer: logical
communication
between A. processes

" relies on, enhances,

network layer
services

% network layer: logical
communication
between T. processes

= relies on lower layer

household analogy:

|2 kids in Ann s house sending
letters to |2 kids in Bill 's house:

» hosts = houses

» processes = kids

» app messages =
(continuous) letter

» segments= letter (piece) in
envelopes

» transport protocol = Ann

and Bill who demux to in-
house siblings

» network-layer protocol =
postal service

Transport Layer 3-20




Internet transport-layer protocols

application

rell.able, in-order e~
delivery (TCP) ] Yoy

physical

< netwqu
= congestion control = revoeydataink_{
physical O
= flow control N | =
. P h %
= connhection setu - P
P é/ & network %

+ unreliable, unordered Bl Do 1S

physical

O
delivery: UDP Fiota ink
aysical
» no-frills extension of Y o
“best-effort” IP | A

“ network ar=po

data link networ

. . . sica data link

+ services not available: % |<ﬂ ——

" delay guarantees = =
= bandwidth 55
andwidth guarantees

Transport Layer 3-21




Multiplexing/demultiplexing

- multiplexing at sender:

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

application

— demultiplexing at receiver: —

use header info to deliver
received segments to correct

T e

transport

network

link
/
{ ‘! physical

socket
—‘
application I:I socket
@ Q process
transpplrt
netwoflk
physics Q

Transport Layer 3-22



How demultiplexing works

+ host receives |IP datagrams

= each datagram has source |P
address, destination IP
address

" each datagram carries one
transport-layer segment

= each segment has source,
destination port number
+ host uses IP addresses &
pbort numbers to direct
segment to appropriate
socket

32 bits

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-23



Connectionless demultiplexing

< recall: created socket has < recall: when creating
host-local port #: datagram to send into
DatagramSocket mySocketl UDP socket, must specify

= new DatagramSocket (12534); = destination IP address

" destination port #

« when host receives UDP IP datagrams with same
segment: dest. port #, but different
= checks destination port # m— :::g}fj lij:lcderle:c‘:'fts
in segment : :
5 numbers will be directed

= directs UDP segment to to same socket at dest
socket with that port #

Transport Layer 3-24



Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new g mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157) ; application (5773) ;
application @ application
tran:;pott
transport network
network link network
link physical link
[ ‘! physica physicdl \
-~ &+ =X
source port: 6428 source port: ?
. dest port: 9157 L dest port: ?
> e ¥
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-25



Connection-oriented demux

+» TCP socket identified
by 4-tuple:
" source |IP address
" source port number
" dest IP address
" dest port number

+ demux: receiver uses
all four values to direct
segment to appropriate
socket

% server host may support
many simultaneous TCP
sockets:

= each socket identified by
its own 4-tuple

< web servers have
different sockets for
each connecting client

" non-persistent HT TP will
have different socket for
each request

Transport Layer 3-26



Connection-oriented demux: examEIe

application
application @ @ @ application
= R P2 (P3P
4 transport _Ig

transpcPrt netdork ransport

networlk link ngtwork

link phy'sicai link '\

g ‘Z Physicq server: [P ppysical 5 -
e address B o
host: IP source IP,port: B,80 PR host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
DS dest IP,port: B,80
source IP,port: A,9157
dest IP, port: B,80 _

three segments, all destined to IP address: B,

source IP,port: C,9157

dest IP,port: B,80

dest port: 80 are demultiplexed to different sockets

Transport Layer 3-27



Connection-oriented demux: examEIe

threaded server

application

application

application
* Lwe:

transpcPrt ransport

networfk ngtwork

link : link

:” ‘f physicq| gl Eerver: [P physical ‘\" \
e — address B i
host: IP source IP,port: B,80 PR host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157
dest IP, port: B,80

source IPport: C,9157

dest IP,port: B,80

Transport Layer 3-28



UDP: User Datagram Protocol [RFC 768]

% “no frills,” “bare bones” «» UDP use:
Internet transport = streaming multimedia
protocol apps (loss tolerant, rate
+ “best effort” service, sensitive)
UDP segments may be: = DNS
" |lost = SNMP
" delivered out-of-order + reliable transfer over
to app UDP:

% connectionless: L
" add reliability at

" no handshaking Felle
between UDP sender, application layer

receiver

" each UDP segment
handled independently
of others

= application-specific error
recovery!

Transport Layer 3-29



UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #

~

length <~ | checksum

— why is there a UDP? ____

% NO conhection

application establishment (which can
data add delay)
(payload)

<+ simple: no connection
state at sender, receiver

< small header size

+ Nno congestion control:
UDP can blast away as
fast as desired

UDP segment format

Transport Layer 3-30



UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

sender: receiver:

% treat segment contents, » compute checksum of
including header fields, received segment
as sequence of 16-bit

+ check if computed

integers
& checksum equals checksum

» checksum: addition

(one’ s complement field value:

sum) of segment * NO - error detected

contents = YES - no error detected.
» sender puts checksum But maybe errors

value into UDP nonetheless? More later

checksum field in Sec 5.2

Transport Layer 3-31



Checksum: example

example: add two | 6-bit integers

6-
1 1 O 01 O 01 O 01
1 1 1 01 1 01 1 01

O =
= O

1 1 1
0] 0] o)

wraparound (1)1 001 1 101110111011

sum

10 0 0
checksum 01 1 1

= O
= O

111 111 1111
00O O00O O0O00O

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-32



Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| 1
reliable chcnrmel)j

application
layer

fransport
layer

() provided service

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-33



Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| 1
reliable chcnrmel)j

application
layer

fransport
layer

Junreliable Chonnel)i

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-34



Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

senalngl receiver I
process process
! f

. rdt send()
reliable chcnrmel)j —

application
layer

deliver data()

=

8_ 5 reliable data reliable data

B > transfer protocol transfer protocol

% O (sending side) (receiving side)

+ udt_send()i [packet | [ packet] Irdt rev()

Junreliable Chonnel)i

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-35



Reliable data transfer: getting started

rdt send() : called from above, deliver data() : called by
(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer /

rdt_ send()

data Tdeliver_data ()

send ;eliok:f)Ie dOT’? | relioble data receijve
: ransrer protoco transfer protocol :
side (sending side) (receiving side) side
udt send ( )i packet packet Irdt_rcv ()
T—»()unrelicible channel )J

udt send () : called by rdt, rdt rcv () : called when packet
to transfer packet over arrives on rcv-side of channel
unreliable channel to receiver

Transport Layer 3-36



Reliable data transfer: getting started

’

we |l

+ incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

<+ consider only unidirectional data transfer
= but control info will flow on both directions!

+ use finite state machines (FSM) to specify sender,

receiver

event causing state transition
actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

|

Transport Layer 3-37



rdt1.0: reliable transfer over a reliable channel

*

+ underlying channel perfectly reliable
" no bit errors
" no loss of packets
+ separate FSMs for sender, receiver:
= sender sends data into underlying channel
" receiver reads data from underlying channel

Y Wait for
call from
above

rdt_send(data)

packet = make pkt(data)
udt_send(packet)

sender

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

Wait for
call from
below

receiver

Transport Layer 3-38



rdt2.0: over a channel with bit errors

% underlying channel may flip bits in packet
= checksum to detect bit errors

< the question: how to recover from errors:

»”

How do humans recover from “errors
during conversation?

Transport Layer 3-39



rdt2.0: channel with bit errors

% underlying channel may flip bits in packet
= checksum to detect bit errors

< the question: how to recover from errors:

= acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

= negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

= sender retransmits pkt on receipt of NAK
% new mechanisms in rdt2.0 (beyond rdt1l.0):

" error detection

= feedback: control msgs (ACK,NAK) from receiver to
sender

Transport Layer 3-40



rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum) recejver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&

ISNAK((rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt) :
X Wait for
call from
sender -~ \below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-41



rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK((rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

D

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
3
A

rdt rcv( rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-42



rdt2.0: error scenario

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt)

dt rev(

£

rcvpkt) &&

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt) A
<
A

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-43



rdt2.0 has a fatal flaw!

what happens if handling duplicates:

ACK/NAK corrupted!?

+ sender doesn’ t know
what happened at
receiver!

% can’ tjust retransmit:
possible duplicate

— stop and wait

response

sender sends one packet,
then waits for receiver

» sender retransmits

current pkt if ACK/NAK
corrupted

<+ sender adds sequence

number to each pkt

» receiver discards (doesn’ t

deliver up) duplicate pkt

Transport Layer 3-44



rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISNAK(rcvpkt) )

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A A
Wait for Wait for
ACK or
rdt_rcv(rcvpkt) && NAK 1
( corrupt(rcvpkt) ||
iSNAK (rcvpkt) ) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-45



rdt2.l: receiver

e ————

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && ( :
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum) ,/

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqgO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

/
¢ rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpkt)

// && has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-46



rdt2.1: summary

sender:
% seq # added to pkt

» two seq. # s (0,1) will
suffice. Why?

<+ must check if received
ACK/NAK corrupted

+ twice as many states

= state must
“remember’ whether
“expected’ pkt should
have seq # of 0 or |

receiver:

< must check if received
packet is duplicate

= state indicates whether
0 or | is expected pkt
seq #
< nhote: receiver can not
know if its last
ACK/NAK received
OK at sender

Transport Layer 3-47



Next

% Midterm on Chapters | and 2
" Exclude Sec 1.7, 2.4, 2.7, and 2.8

% ~10% concepts addressed in class

% ~90% problems requiring math models

* |n addition to Assignments | and 2, Tutorials
| to 4, reading from the book, make sure you
have no doubts on the following problems:

= Chl: P2-P17, P19-P30, and P32
= Ch2: PI, P7-Pl1, P20-P33
» Note that our reference is the 5t edition

2-48



