
1

CSC358 Intro. to Computer Networks

Lecture 4: FTP App, DNS App, P2P App,

Introduction to Transport Layer

Amir H. Chinaei, Winter 2016

ahchinaei@cs.toronto.edu

http://www.cs.toronto.edu/~ahchinaei/

Many slides are (inspired/adapted) from the above source

© all material copyright; all rights reserved for the authors

Office Hours: T 17:00–18:00 R 9:00–10:00 BA4222

TA Office Hours: W 16:00-17:00 BA3201 R 10:00-11:00 BA7172

csc358ta@cdf.toronto.edu

http://www.cs.toronto.edu/~ahchinaei/teaching/2016jan/csc358/

Application Layer

Review

 Many applications run on Internet application layer
1. some have open protocols, such as HTTP, DNS, etc.,

many others have proprietary protocols.

2. use some underlying protocols as a black-box

3. architecture: C/S, P2P, Hybrid

 HTTP

 Cookies provide user-server state

 Non-persistent vs persistent HTTP connections

1-2

Application Layer

Architecture examples

1-3

myApp

HTTP

TCP

….

myApp

HTTP DNS

TCP TCP,UDP

….

myApp

HTTP Skype

TCP TCP,UDP

….

myApp

TCP or UDP or (TCP,UDP) or DCCP

….

myApp

HTTP DNS

TLS

TCP TCP,UDP

….

Application Layer 2-4

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:

 one RTT to initiate TCP
connection

 one RTT for HTTP request
and first few bytes of HTTP
response to return

 file transmission time

 non-persistent HTTP
response time =

2RTT+ tf

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application Layer 2-5

Web caches (proxy server)

 user sets browser: Web
accesses via cache

 browser sends all HTTP
requests to cache

 object in cache: cache
returns object

 else cache requests
object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy

server

client origin

server

origin

server

Application Layer 2-6

More about Web caching

 cache acts as both
client and server
 server for original

requesting client

 client to origin server

 typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?

 reduce response time
for client request

 reduce traffic on an
institution’s access link

 Internet dense with
caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

2

Utilization

Introduction 2-7

minutes

µSec

Application Layer 2-8

Caching example:

origin

servers
public

Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access link

assumptions:
 avg object size: 100K bits

 avg request rate from browsers to
origin servers:15/sec

 avg data rate to browsers: 1.50 Mbps

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 1.54 Mbps

consequences:
 LAN utilization: ?

 access link utilization = ?

 total delay = LANoutbound delay+
accessoutbound delay + Internet delay +
accessinbound delay + LANinbound delay

= ?

problem!

Application Layer 2-9

assumptions:
 avg object size: 100K bits

 avg request rate from browsers to
origin servers:15/sec

 avg data rate to browsers: 1.50 Mbps

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 1.54 Mbps

consequences:
 LAN utilization: ?

 access link utilization = ?

 total delay =

= 2 sec + minutes + µsecs

Caching example: fatter access link

origin

servers

1.54 Mbps

access link
154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

?

public

Internet

institutional

network
1 Gbps LAN

institutional

network
1 Gbps LAN

Application Layer 2-10

Caching example: install local cache

origin

servers

1.54 Mbps

access link

local web
cache

assumptions:
 avg object size: 100K bits

 avg request rate from browsers to
origin servers:15/sec

 avg data rate to browsers: 1.50 Mbps

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%

 access link utilization = 100%

 total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public

Internet

Application Layer 2-11

Caching example: install local cache

Calculating access link
utilization, delay with cache:

 suppose cache hit rate is 0.4
 40% requests satisfied at cache,

60% requests satisfied at origin

origin

servers

1.54 Mbps

access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)

 = 0.6 * (2.01) + 0.4 * (~µsecs)

 = ~ 1.2 secs

 less than with 154 Mbps link (and
cheaper too!)

public

Internet

institutional

network
1 Gbps LAN

local web
cache

Application Layer 2-12

Conditional GET

 Goal: don’t send object if
cache has up-to-date
cached version
 no object transmission

delay

 lower link utilization

 cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

 server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

before

<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

after

<date>

client server

3

Application Layer 2-13

FTP: the file transfer protocol

file transfer
FTP

server

FTP

user

interface

FTP

client

local file

system

remote file

system

user

at host

 transfer file to/from remote host
 client/server model

 client: side that initiates transfer (either to/from remote)

 server: remote host

 ftp: RFC 959
 ftp server: port 21

Application Layer 2-14

FTP: separate control, data connections

 FTP client contacts FTP server
at port 21, using TCP

 client authorized over control
connection

 client browses remote
directory, sends commands
over control connection

 when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

 after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 control connection: “out of
band”

 FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-15

FTP commands, responses

sample commands:
 sent as ASCII text over

control channel

 USER username

 PASS password

 LIST return list of file in
current directory

 RETR filename

retrieves (gets) file

 STOR filename stores
(puts) file onto remote
host

sample return codes
 status code and phrase (as

in HTTP)

 331 Username OK,
password required

 125 data
connection
already open;
transfer starting

 425 Can’t open
data connection

 452 Error writing
file

Application Layer 2-16

DNS: domain name system

people: many identifiers:

 SSN, name, passport #

Internet hosts, routers:

 IP address (32 bit) -
used for addressing
datagrams

 “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
 distributed database

implemented in hierarchy of
many name servers

 application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)

 note: core Internet function,
implemented as application-
layer protocol

 complexity at network’s
“edge”

Application Layer 2-17

DNS: services, structure

why not centralize DNS?
 single point of failure

 traffic volume

 distant centralized database

 maintenance

DNS services
 hostname to IP address

translation

 host aliasing
 canonical, alias names

 mail server aliasing

 load distribution

 replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

Application Layer 2-18

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:

 client queries root server to find com DNS server

 client queries .com DNS server to get amazon.com DNS server

 client queries amazon.com DNS server to get IP address for
www.amazon.com

… …

4

Application Layer 2-19

DNS: root name servers

 contacted by local name server that can not resolve name

 root name server:

 contacts authoritative name server if name mapping not known

 gets mapping

 returns mapping to local name server

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA

(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA

f. Internet Software C.

Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo

(5 other sites)

c. Cogent, Herndon, VA (5 other sites)

d. U Maryland College Park, MD

h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,

OH (5 other sites)

Application Layer 2-20

TLD, authoritative servers

top-level domain (TLD) servers:
 responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp

 Network Solutions maintains servers for .com TLD

 Educause for .edu TLD

authoritative DNS servers:
 organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts

 can be maintained by organization or service provider

Application Layer 2-21

Local DNS name server

 does not strictly belong to hierarchy

 each ISP (residential ISP, company, university) has
one
 also called “default name server”

 when host makes DNS query, query is sent to its
local DNS server
 has local cache of recent name-to-address translation

pairs (but may be out of date!)

 acts as proxy, forwards query into hierarchy

Application Layer 2-22

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

Application Layer 2-23

45

6

3

recursive query:
 puts burden of name

resolution on

contacted name

server

 heavy load at upper

levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server

dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 2-24

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some time (TTL)

 TLD servers typically cached in local name servers

• thus root name servers not often visited

 cached entries may be out-of-date (best effort
name-to-address translation!)
 if name host changes IP address, may not be known

Internet-wide until all TTLs expire

 update/notify mechanisms proposed IETF standard
 RFC 2136

5

Application Layer 2-25

DNS records

DNS: distributed db storing resource records (RR)

type=NS
 name is domain (e.g.,

foo.com)

 value is hostname of
authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname

 value is IP address

type=CNAME
 name is alias name for some

“canonical” (the real) name

 www.ibm.com is really

servereast.backup2.ibm.com

 value is canonical name

type=MX
 value is name of mailserver

associated with name

Application Layer 2-26

DNS protocol, messages

 query and reply messages, both with same message
format

msg header

 identification: 16 bit # for

query, reply to query uses

same #

 flags:

 query or reply

 recursion desired

 recursion available

 reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-27

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

Application Layer 2-28

Inserting records into DNS

 example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
 provide names, IP addresses of authoritative name server

(primary and secondary)

 registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Application Layer 2-29

Pure P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers are intermittently
connected and change IP
addresses

examples:
 file distribution

(BitTorrent)

 Streaming (KanKan)

 VoIP (Skype)

Application Layer 2-30

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
 peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

6

Application Layer 2-31

File distribution time: client-server

 server transmission: must
sequentially send (upload) N
file copies:

 time to send one copy: F/us

 time to send N copies: NF/us

increases linearly in N

time to distribute F

to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
 dmin = min client download rate

 min client download time: F/dmin

us

network

di

ui

F

Application Layer 2-32

File distribution time: P2P

 server transmission: must
upload at least one copy

 time to send one copy: F/us

time to distribute F

to N clients using

P2P approach

us

network

di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

 client: each client must
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits

 max upload rate (limiting max download rate) is us + Sui

… but so does this, as each peer brings service capacity

increases linearly in N …

Application Layer 2-33

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-34

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

 file divided into 256Kb chunks

 peers in torrent send/receive file chunks

… obtains list

of peers from tracker

… and begins exchanging

file chunks with peers in torrent

Application Layer 2-35

 peer joining torrent:

 has no chunks, but will
accumulate them over time
from other peers

 registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers

 peer may change peers with whom it exchanges chunks

 churn: peers may come and go

 once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

Application Layer 2-36

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets
of file chunks

 periodically, Alice asks each
peer for list of chunks that
they have

 Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from her)

 re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer

 newly chosen peer may join top 4

7

Application Layer 2-37

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

Distributed Hash Table (DHT)

 Hash table

 DHT paradigm

 Circular DHT and overlay networks

 Peer churn

Application Layer 2-38

Key Value

John Washington 132-54-3570

Diana Louise Jones 761-55-3791

Xiaoming Liu 385-41-0902

Rakesh Gopal 441-89-1956

Linda Cohen 217-66-5609

……. ………

Lisa Kobayashi 177-23-0199

Simple database with(key, value) pairs:

• key: human name; value: social security #

Simple Database

• key: movie title; value: IP address
Application Layer 2-39

Original Key Key Value

John Washington 8962458 132-54-3570

Diana Louise Jones 7800356 761-55-3791

Xiaoming Liu 1567109 385-41-0902

Rakesh Gopal 2360012 441-89-1956

Linda Cohen 5430938 217-66-5609

……. ………

Lisa Kobayashi 9290124 177-23-0199

• More convenient to store and search on

numerical representation of key

• key = hash(original key)

Hash Table

Application Layer 2-40

 Distribute (key, value) pairs over millions of peers
 pairs are evenly distributed over peers

 Any peer can query database with a key
 database returns value for the key

 To resolve query, small number of messages exchanged among
peers

 Each peer only knows about a small number of other
peers

 Robust to peers coming and going (churn)

Distributed Hash Table (DHT)

Application Layer 2-41

Assign key-value pairs to peers

 rule: assign key-value pair to the peer that has the
closest ID.

 convention: closest is the immediate successor of
the key.

 e.g., ID space {0,1,2,3,…,63}

 suppose 8 peers: 1,12,13,25,32,40,48,60
 If key = 51, then assigned to peer 60

 If key = 60, then assigned to peer 60

 If key = 61, then assigned to peer 1

Application Layer 2-42

8

1

12

13

25

32
40

48

60

Circular DHT

• each peer only aware of
immediate successor and
predecessor.

“overlay network”

1

12

13

25

32
40

48

60

What is the value
associated with key 53 ?

value

O(N) messages

on avgerage to resolve

query, when there

are N peers

Resolving a query

Application Layer 2-44

Circular DHT with shortcuts

• each peer keeps track of IP addresses of predecessor,
successor, short cuts.

• reduced from 6 to 3 messages.
• possible to design shortcuts with O(log N) neighbors, O(log N)

messages in query

1

12

13

25

32
40

48

60

What is the value for
key 53

value

Application Layer 2-45

Peer churn

example: peer 5 abruptly leaves

1

3

4

5

8
10

12

15

handling peer churn:

peers may come and go (churn)

each peer knows address of its
two successors

each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor

Application Layer 2-46

Peer churn

example: peer 5 abruptly leaves

peer 4 detects peer 5’s departure; makes 8 its immediate
successor

 4 asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.

1

3

4

8
10

12

15

handling peer churn:

peers may come and go (churn)

each peer knows address of its
two successors

each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor

Application Layer 2-47 Transport Layer 3-48

Let’s move on to Transport Layer

 TCP, UDP

 principles, services

 multiplexing, demultiplexing

 reliable data transfer

 flow control

 congestion control

9

Transport Layer 3-49

Transport services and protocols

 provide logical communication
between app processes
running on different hosts

 transport protocols run in
end systems

 send side: breaks app
messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps

 E.g.: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-50

Transport vs. network layer

 network layer: logical
communication
between hosts

 transport layer:
logical
communication
between processes
 relies on, enhances,

network layer
services

12 kids in Ann’s house sending
letters to 12 kids in Bill’s house:

 hosts = houses
 processes = kids
 app messages = (long)

letters
 segments= letters in

envelopes
 transport protocol = Ann

and Bill who demux to in-
house siblings

 network-layer protocol =
postal service

household analogy:

Transport Layer 3-51

Internet transport-layer protocols

 reliable, in-order
delivery (TCP)
 congestion control

 flow control

 connection setup

 unreliable, unordered
delivery: UDP
 no-frills extension of

“best-effort” IP

 services not available:
 delay guarantees

 bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer 3-52

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4
transport

application

physical

link

network

P3

Transport Layer 3-53

How demultiplexing works

 host receives IP datagrams
 each datagram has source IP

address, destination IP
address

 each datagram carries one
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application

data
(payload)

other header fields

TCP/UDP segment format

Transport Layer 3-54

Connectionless demultiplexing

 recall: created socket has
host-local port #:
DatagramSocket mySocket1
= new DatagramSocket(12534);

 when host receives UDP
segment:
 checks destination port #

in segment

 directs UDP segment to
socket with that port #

 recall: when creating
datagram to send into
UDP socket, must specify
 destination IP address

 destination port #

IP datagrams with same
dest. port #, but different
source IP addresses
and/or source port
numbers will be directed
to same socket at dest

10

Transport Layer 3-55

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket

(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket

(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer 3-56

Connection-oriented demux

 TCP socket identified
by 4-tuple:
 source IP address

 source port number

 dest IP address

 dest port number

 demux: receiver uses
all four values to direct
segment to appropriate
socket

 server host may support
many simultaneous TCP
sockets:
 each socket identified by

its own 4-tuple

 web servers have
different sockets for
each connecting client
 non-persistent HTTP will

have different socket for
each request

Transport Layer 3-57

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP
address B

Transport Layer 3-58

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Transport Layer 3-59

UDP: segment header

source port # dest port #

32 bits

application

data
(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

 no connection
establishment (which can
add delay)

 simple: no connection
state at sender, receiver

 small header size

 no congestion control:
UDP can blast away as
fast as desired

why is there a UDP?

Transport Layer 3-60

UDP checksum

sender:
 treat segment contents,

including header fields,
as sequence of 16-bit
integers

 checksum: addition
(one’s complement
sum) of segment
contents

 sender puts checksum
value into UDP
checksum field

receiver:
 compute checksum of

received segment

 check if computed
checksum equals checksum
field value:

 NO - error detected

 YES - no error detected.
But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

11

Transport Layer 3-61

Internet checksum: example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Next weeks

 Reliable data transfer

 Connection-oriented transport

 TCP

2-62

