CSC358 Intro. to Computer Networks

Lecture 4: FTP App, DNS App, P2P App,
Introduction to Transport Layer

Amir H. Chinaei, Winter 2016

ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaeil

Many slides are (inspired/adapted) from the above source '

© all material copyright; all rights reserved for the authors
Office Hours: T 17:00-18:00 R 9:00-10:00 BA4222

TA Office Hours: W 16:00-17:00 BA3201 R 10:00-11:00 BA7172
csc358ta@cdf.toronto.edu
http://www.cs.toronto.edu/~ahchinaeilteaching/20 | éjan/csc358/

Review

< Many applications run on Internet application layer
1. some have open protocols, such as HTTP, DNS, etc.,
many others have proprietary protocols.
2. use some underlying protocols as a black-box
3. architecture: C/S, P2P, Hybrid

+ HTTP

% Cookies provide user-server state
< Non-persistent vs persistent HTTP connections

Application Layer 1-2

Architecture examples
[A |

HTTP HTTP DNS
TCP TCP TCRUDP

myApp myApp
P P

HTTI DNS HTT Skype
TLS TCP TCRUDP
TCP TCRUDP

TCP or UDP or (TCRUDP) or DCCP

Application Layer 1-3

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time: initiate TCP

« one RTT to initiate TCP connection 7\‘
connection RTT- /
« one RTT for HTTP request Tequest

ile
and first few bytes of HTTP RTT{ T timen
response to return

} transmit
) e / file
> file transmission time file —1

received

> non-persistent HTTP
response time =

RTT+ ¢

v v
time time

Application Layer 2-4

Web caches (proxy server)

goal: satisfy client request without involving origin server

% user sets browser: Web
accesses via cache

« browser sends all HTTP |j==ay
requests to cache

= object in cache: cache client”’773

returns object

2y
= else cache requests W
bi P A <@ el
object from origin X< 2
== ﬂ?&
1 s W

server, then returns
object to client
client

origin
server

Application Layer 2-5

More about Web caching

+ cache acts as both why Web caching?
client and server + reduce response time
= server for original for client request
requesting client .
= client to origin server + reduce traffic on an
L .
+ typically cache is institution s access link
installed by ISP « Internet dense with
A « ”
(university, company, caches: enables “poor
residential ISP) content providers to

effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-6

Utilization
average

gueueing delay

minutes

uSec

LalR

Introduction 2-7

Caching example:

assumptions:
« avg object size: 100K bits origin
« avg request rate from browsers to servers

origin servers:|5/sec
« avg data rate to browsers: |.50 Mbps
% RTT from institutional router to any
origin server: 2 sec
% access link rate: |.54 Mbps

1.54 Mbps
consequences: access link

« LAN utilization: ? problem!
% access link utilization o

total delay = LAN,,0ung delay+
access,,poung delay + Internet delay +
access; po,ng delay + LAN, o, delay

Application Layer 2-8

Caching example: fatter access link

assumptions:
« avg object size: 100K bits origin
« avg request rate from browsers to servers

origin servers:|5/sec
> avg data rate to browsers: 1.50 Mbps
RTT from institutional router to any
origin server: 2 sec
access link rate: T54-Mbpgs 154 Mbps

consequences:
+ LAN utilization: ?
access link utilization = T
<+ total delay =
= 2 sec + minutes + psecs

EA

access link 154 Mops

msecs

Cost: increased access link speed (not cheap!)

Application Layer 2-9

Caching example: install local cache

assumptions:
% avg object size: 100K bits origin
% avg request rate from browsers to servers

origin servers:|5/sec
% avg data rate to browsers: |.50 Mbps

% RTT from institutional router to any
origin server: 2 sec
% access link rate: |.54 Mbps

1.54 Mbps
consequences: access link
« LAN utilization: 15% tutio
« access link utilization = ?
+ total delay = ?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

Application Layer 2-10

Caching example: install local cache

Calculating access link
utilization, delay with cache:
« suppose cache hit rate is 0.4
= 40% requests satisfied at cache,
60% requests satisfied at origin
« access link utilization:
= 60% of requests use access link

+ data rate to browsers over access link 1.54 Mbps
=0.6%1.50 Mbps = .9 Mbps access link
= utilization = 0.9/1.54 = .58

« total delay
= = 0.6 * (delay from origin servers) +0.4
* (delay when satisfied at cache)
= =0.6*(201) + 0.4 * (~psecs)
= =~ |.2secs

= less than with 154 Mbps link (and
cheaper too!)

origin
servers

Application Layer 2-11

Conditional GET

clientg H server
Goal: don’ t send object if
cache has up-to-date
HTTP request msg b
If-modified-since: <date> object

cached version
not

® no object transmission
delay

— modified
= |ower link utilization — HT'I;'F;;eP?fgnse before
cache: specify date of 304 Not Modified <date>

cached copy in HTTP
request T TTTTmsoss-s-----es
If-modified-since:

<date> HTTP request msg .
server: response contains If-modified-since: <date> object

jecti dified
no object if cached co __ mo
isu -tlo-date~ Py HTTP response after
P . < HTTP/1.0200 OK <date>

HTTP/1.0 304 Not

PN <data>
Modified

Application Layer 2-12

FTP: the file transfer protocol

file transfer
2 FTPl Frp FTP
UE? client server

interface

user -

athost | /) remote file
local file system
system

« transfer file to/from remote host

« client/server model
= client: side that initiates transfer (either to/from remote)
= server: remote host

« ftp: RFC 959

« ftp server:port 21

Application Layer 2-13

FTP: separate control,

data connections

at port 21, using TCP

« client authorized over control
connection

+ client browses remote
directory, sends commands
over control connection

+ when server receives file
transfer command, server
opens 2" TCP data
connection (for file) to client

+ after transferring one file,
server closes data connection

TCP control connection,

FTP client contacts FTP server - server port 21 E
FTP

TCP data connection,
) server port 20 FTP
client server

% server opens another TCP
data connection to transfer
another file

% control connection: “out of
band

% FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-14

FTP commands, responses

sample commands: sample return codes
sent as ASCII text over status code and phrase (as
control channel in HTTP)
+ USER username + 331 Username OK,
+« PASS password password required
+ LIST return list of file in # 125 data

current directory connection

. already open;
« RETR filename transfer starting
retrieves (gets) file

+ 425 Can’t open
+ STOR filename stores data connection
(puts) file onto remote 452 Error writing

host file

Application Layer 2-15

DNS: domain name system

people: many identifiers:
= SSN, name, passport #
Internet hosts, routers:
= |P address (32 bit) -
used for addressing
datagrams
= “name”, e.g,
www.yahoo.com -
used by humans
Q: how to map between IP
address and name, and
vice versa !

Domain Name System:
« distributed database
implemented in hierarchy of
many name servers
application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
= note: core Internet function,
implemented as application-
layer protocol
= complexity at network’s
“edge”

Application Layer 2-16

DNS: services, structure

DNS services why not centralize DNS?
+ hostname to IP address + single point of failure
translation > traffic volume
% host aliasing - distant centralized database
= canonical, alias names + maintenance
« mail server aliasing
+ load distribution
= replicated Web
servers: many IP
addresses correspond
to one name

A: doesn 't scale!

Application Layer 2-17

DNS: a distributed, hierarchical database

Root DNS

com DNS servers

yahoo.com amazon.com pbs.or

DNS servers DNS servers

client wants IP for www.amazon.co

org DNS servers

DNS servers

Servers

edu DNS servers

g poly.edu umass.edu
DNS serversDNS servers

m; It approx:

> client queries root server to find com DNS server
+ client queries .com DNS server to get amazon.com DNS server

« client queries amazon.com DNS
Wwww.amazon.com

server to get P address for

Application Layer 2-18

DNS: root name servers

+ contacted by local name server that can not resolve name
« root name server:
= contacts authoritative name server if name mapping not known
= gets mapping
= returns mapping to local name server
. Cogent, Herndon, VA (5 ther stes)

d.U Maryland College Park, MD k. RIPE London (17 other sites)
h. ARL Aberdeen, M

D
. Verisign, Dulles VA (69 other sites) i. Netnod, Stockholm (37 other stes)
. NASA Mt View, CA o= _ m. WIDE Tokyo
1. Internet Software C. o " /(5 other sites)

Palo Alto, CA (and 48 other
sites)

a. Verisign, Los Angeles c/
(5 other sites)
b. USC-IS! Marina del Rey, CA

1. ICANN Los Angeles, CA
(41 other sites)

13 root name
“servers ”
worldwide

g.US DoD Columbus,
OH (5 other sites)

Application Layer 2-19

TLD, authoritative servers

top-level domain (TLD) servers:

= responsible for com, org, net, edu, aero, jobs, museums,
and all top-level country domains, e.g.: uk, fr, ca, jp

= Network Solutions maintains servers for .com TLD
= Educause for .edu TLD

authoritative DNS servers:

= organization’s own DNS server(s), providing authoritative
hostname to IP mappings for organization’s named hosts

= can be maintained by organization or service provider

Application Layer 2-20

Local DNS name server

+ does not strictly belong to hierarchy
« each ISP (residential ISP, company, university) has
one
= also called “default name server”
« when host makes DNS query, query is sent to its
local DNS server

= has local cache of recent name-to-address translation
pairs (but may be out of date!)

= acts as proxy, forwards query into hierarchy

DNS na'me root DNS server
resolution example E

« host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu —

TLD DNS server

tl
. . local DNS servel
iterated query: dns.poly.edu

% contacted server ‘ 7N\\6
replies with name of
server to contact

% “l don’ t know this
name, but ask this

authoritative DNS server
dns.cs.umass.edu
requesting host

Application Layer 2-21

: \
server" cis.poly.edu \
gaia.cs.umass.edu

Application Layer 2-22

DNS name

resolution example

root DNS server

recursive query:

< puts burden of name
resolution on
contacted name
server

2

% heavy load at upper
levels of hierarchy?

2 E X
7 k
TLD DNS
server

t
local DNS server l
dns.poly.edu 5 4

B

authoritative DNS server
dns.cs.umass.edu

requesting host

cis.poly.edu E'

gaia.cs.umass.edu

Application Layer 2-23

DNS: caching, updating records

2
3

+ once (any) name server learns mapping, it caches
mapping
= cache entries timeout (disappear) after some time (TTL)
= TLD servers typically cached in local name servers
« thus root name servers not often visited
+ cached entries may be out-of-date (best effort
name-to-address translation!)
= if name host changes IP address, may not be known
Internet-wide until all TTLs expire
+ update/notify mechanisms proposed IETF standard
= RFC 2136

2

Application Layer 2-24

DNS records

DNS: distributed db storing resource records (RR)

| RR format: (name, value, type, ttl) |

type=A type=CNAME

= name is hostname

name is alias name for some

= value is IP address “canonical” (the real) name

t)(pe=NS * www.ibm.com is really
= name is domain (e.gﬂ servereast.backup2.ibm.com
foo.com) = value is canonical name
= value is hostname of
authoritative name txpe=MX

server for this domain = value is name of mailserver

associated with name

Application Layer 2-25

DNS protocol, messages

« query and reply messages, both with same message
format

+—— 2bytes ——><+—— 2bytes —

msg header | —identification | __—flags
8 e

> identification: |6 bit # for # m # answer RRs
query, reply to query uses
same #

#authority RRs | # additional RRs

% flags: questions (variable # of questions)
query or reply

recursion desired answers (variable # of RRs)

recursion available
reply is authoritative authority (variable # of RRs)

additional info (variable # of RRs)

Application Layer 2-26

DNS protocol, messages

+—— 2bytes ——>+—— 2bytes —*

identification flags

questions # answer RRs

authority RRs | # additional RRs

name, type fields

foraquery | questions (variable # of questions)

RRs in response

— 1 answers (variable # of RRs)
to query

records for

authoritative servers authority (variable # of RRs)

additional “helpful”

——————— additional info (variable # of RRs)
info that may be used

Application Layer 2-27

Inserting records into DNS

« example: new startup “Network Utopia”
% register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)
= provide names, IP addresses of authoritative name server
(primary and secondary)
= registrar inserts two RRs into .com TLD server:
(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)
+ create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Application Layer 2-28

Pure P2P architecture

no always-on server

arbitrary end systems
directly communicate

« peers are intermittently
connected and change IP
addresses

examples:

= file distribution
(BitTorrent)

= Streaming (KanKan)
= VolP (Skype)

Application Layer 2-29

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?

= peer upload/download capacity is limited resource

ug: server upload
capacity

d;: peer i download
capacity

,g network (with abundant 2
bandwidth) \

u;: peer i upload
capacity

Application Layer 2-30

File distribution time: client-server

% server transmission: must
sequentially send (upload) N E . ‘g g
file copies: §

= time to send one copy: Flu, .
= time to send N copies: NF/u ‘g

% client: each client must
download file copy
= d,;, = min client download rate

= min client download time: F/d,;,

time to distribute F

' to N clients using DC_5 > max{NF/Usy,F/dmin}
client-server approach

increases linearly in N

Application Layer 2-31

File distribution time: P2P

server transmission: must

upload at least one copy E " g ‘g
= time to send one copy: F/ug § d
« client: each client must _‘.g
download file copy g o
= min client download time: F/d, ,;,

clients: as aggregate must download NF bits

= max upload rate (limiting max download rate) is ug + Zu;

time to distribute F
to Nclients using - Dpp,p > max{F/ug,F/d;, ,NF/(u + Zu;)}
P2P approach

increases linearly in N ...
... but so does this, as each peer brings service capacity

Application Layer 2-32

Client-server vs. P2P: example

client upload rate = u, F/u=1 hour, ug=10u, dy, = Us
35

I i ”

-e—Client-Server
. /_/.)/
2 /

15 -/

1 /

s ssoacasnaeEasaaeased

Minimum Distribution Time

Application Layer 2-33

P2P file distribution: BitTorrent

« file divided into 256Kb chunks
< peers in torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file

Alice arrives ...
... obtains list

of peers from tracker
... and begins exchanging

Application Layer 2-34

P2P file distribution: BitTorrent

B A P

% peer joining torrent:

= has no chunks, but will =
accumulate them over time ﬁ-‘; '
from other peers ‘

= registers with tracker to get Ay
list of peers, connects to .Q‘—”Q

subset of peers
(“neighbors”)
+ while downloading, peer uploads chunks to other peers
« peer may change peers with whom it exchanges chunks
% churn: peers may come and go
+ once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

Application Layer 2-35

BitTorrent: requesting, sending file chunks

requesting chunks: sending chunks: tit-for-tat
« at any given time, different < Alice sends chunks to those

peers have different subsets four peers currently sending her
of file chunks chunks at highest rate

£ Periodica”y, Alice asks each = other peers are choked by Alice
peer for list of chunks that (do not receive chunks from her)
they have = re-evaluate top 4 every|0 secs

+ Alice requests missing % every 30 secs: randomly select
chunks from peers, rarest another peer, starts sending
first chunks

Peerl [| | | [] = “optimistically unchoke” this peer
Peer2 D:ED: = newly chosen peer may join top 4
peer3 [T T 7T |
peer4 [[T 7T

Application Layer 2-36

BitTorrent; tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

higher upload rate: find better
trading partners, get file faster !

Application Layer 2-37

Distributed Hash Table (DHT)

+ Hash table
« DHT paradigm
« Circular DHT and overlay networks

+ Peer churn

Application Layer 2-38

Simple Database

Simple database with(key, value) pairs:

+ key: human name; value: social security #

John Washington 132-54-3570
Diana Louise Jones 761-55-3791
Xiaoming Liu 385-41-0902
Rakesh Gopal 441-89-1956
Linda Cohen 217-66-5609
Lisa Kobayashi 177-23-0199

« key: movie title; value: IP address

Application Layer 2-39

Hash Table

« More convenient to store and search on
numerical representation of key
* key = hash(original key)

Original Key ___[Key ____ [Vale |

John Washington 8962458 132-54-3570
Diana Louise Jones 7800356 761-55-3791
Xiaoming Liu 1567109 385-41-0902
Rakesh Gopal 2360012 441-89-1956
Linda Cohen 5430938 217-66-5609
Lisa Kobayashi 9290124 177-23-0199

Application Layer 2-40

Distributed Hash Table (DHT)

+ Distribute (key, value) pairs over millions of peers
= pairs are evenly distributed over peers

« Any peer can query database with a key
= database returns value for the key

= To resolve query, small number of messages exchanged among
peers

+ Each peer only knows about a small number of other
peers

+ Robust to peers coming and going (churn)

Application Layer 2-41

Assign key-value pairs to peers

+ rule: assign key-value pair to the peer that has the
closest ID.

+ convention: closest is the immediate successor of
the key.

+ e.g., ID space {0,1,2,3,...,63}

+ suppose 8 peers: 1,12,13,25,32,40,48,60
= If key = 51, then assigned to peer 60
= If key = 60, then assigned to peer 60
= If key = 61, then assigned to peer |

Application Layer 2-42

Circular DHT

each peer only aware of
immediate successor and

predecessor.
1
60 12
13
48
25
40 13 ”
32 overlay network

Resolving a query

Circular DHT with shortcuts

L What is the value for
! key 53

32

each peer keeps track of IP addresses of predecessor,
successor, short cuts.

reduced from 6 to 3 messages.

possible to design shortcuts with O(log N) neighbors, O(log N)
messages in query

Application Layer 2-45

1 What is the value
associated with key 53
(e :
60
13
48
O(N) messages 25
on avgerage to resolve
query, when there 40 32
are N peers
Application Layer 2-44
Peer churn _
—_— handling peer churn:
<peers may come and go (churn)
«each peer knows address of its
15 3 two successors
<each peer periodically pings its
4 two successors to check aliveness
12 +if immediate successor leaves,
5 choose next successor as new
immediate successor
10 s

example: peer 5 abruptly leaves

Application Layer 2-46

Peer churn

T handling peer churn:

«+peers may come and go (churn)
«each peer knows address of its
15 tWo successors
«each peer periodically pings its
4 two successors to check aliveness
12 +if immediate successor leaves,
choose next successor as new

immediate successor
10
8

example: peer 5 abruptly leaves

«peer 4 detects peer 5’ s departure; makes 8 its immediate
successor

+ 4 asks 8 who its immediate successor is; makes 8’ s
immediate successor its second successor.

Application Layer 2-47

Let’s move on to Transport Layer

= TCP, UDP

= principles, services

= multiplexing, demultiplexing
= reliable data transfer

= flow control

= congestion control

Transport Layer 3-48

Transport services and protocols

« provide logical communication
between app processes
running on different hosts £

« transport protocols run in

end systems
= send side: breaks app
messages into segments,
passes to network layer
= rev side: reassembles
segments into messages,
passes to app layer
- more than one transport
protocol available to apps Wt
= E.g: TCPand UDP

7 Ydata Ik

Transport Layer 3-49

Transport vs. network layer

+ network layer: logical household analogy:
communication)

between hosts
< transport layer:
logical s
communication
between processes

[2 kids in Ann s house sending
letters to 12 kids in Bill s house:

hosts = houses
processes = kids

+ app messages = (long)
letters

® relies on, enhances, + segments= letters in
network layer envelopes
services >

transgqort protocol = Ann
and Bill who demux to in-
house siblings
network-layer protocol =
postal service

Transport Layer 3-50

Internet transport-layer protocols
.

{netwoly
foreicol

< reliable, in-order
delivery (TCP)
= congestion control ~Z
= flow control

® connection setup
% unreliable, unordered
delivery: UDP
= no-frills extension of
“best-effort” IP
% services not available:
= delay guarantees
= bandwidth guarantees

Transport Layer 3-51

Multiplexing/demultiplexing

multiplexing at sender:

handle data trom muitiple r demultiplexing at receiver:
sockets, add transport header use header info to deliver
(later used for demultiplexing) received segments to correct
socket
application
application @ application [socket
_:_3 . P2 O
process
transport netwol transpirt
i

network ﬁ link netwol

link phygd link \
= _ - \

physical physicg

Transport Layer 3-52

How demultiplexing works

+ host receives IP datagrams 32 bits
= each datagram has source IP source port # | dest port #
address, destination IP
address
= each datagram carries one
transport-layer segment

other header fields

= each segment has source, application
destination port number data
« host uses IP addresses & (payload)

port numbers to direct
segment to appropriate
socket

TCP/UDP segment format

Transport Layer 3-53

Connectionless demultiplexing

+ recall: created socket has « recall: when creating
host-local port #: datagram to send into
DatagramSocket mySocketl UDP socket, must specify

= new DatagramSocket(12534); = destination IP address

= destination port #

% when host receives UDP IP datagrams with same
segment: dest. port #, but different

= checks destination port # - source IP addresses
) and/or source port
in segment

. numbers will be directed
= directs UDP segment to to same socket at dest
socket with that port #

Transport Layer 3-54

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157) ; application (5775) ;
application application

trans et transpe

networ| link netwol
link ohydida link
physicgl

/‘g physicg|

v

source port: 6428 source port: ?
dest port: 9157 dest port: ?
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-55

Connection-oriented demux

« TCP socket identified « server host may support
by 4-tuple: many simultaneous TCP
= source IP address sockets:
= source port number = each socket identified by
= dest IP address its own 4-tuple
® dest port number « web servers have
«» demux: receiver uses different sockets for
all four values to direct each connecting client

segment to appropriate = non-persistent HTTP will
so%:ket pprop have different socket for

each request

Transport Layer 3-56

Connection-oriented demux: example

B
3

application @ application
tragspa
transpért netdorl ransport

netwol link| ngtwork
link i lifk
phyical
‘{ physicgl H Eerver: IP physical 2'}

pddress B
“+]
host: IP
host: 1P | —|
address A source IP,port: C,5775 address C

dest IP,port: B,80.

source IP,port: A,9157

; R
dest 1P, port: S0 source IP,port: C,9157
dest IP,port: B,80.

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets Transport Layer 357

Connection-oriented demux: example

threaded server

application 4 application
tragspe
transpért netbort Tansport

network linkl ngtwork
link n lifk
phyfica ‘
J‘:’ physicgl Server: IP physical g

address B

host: IP source IP,port: B,80
address A dest IPp: 157

|| host:IP
source IP,port: C,5775 address C

dest IP,port: B,80

source IP,port: A,9157

: R
dest P, port: B,80 source IP,port: C,9157
dest IP,port: B,80

Transport Layer 3-58

UDP: segment header

’ length, in bytes of
32 bits UDP segment,

source port # W including header

length < checksum

— why is therea UDP? ___

% No connection

application establishment (which can
data add delay)
(payload)

« simple: no connection
state at sender, receiver

« small header size

% no congestion control:
UDP can blast away as
fast as desired

UDP segment format

Transport Layer 3-59

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment
sender: receiver:
« treat segment contents, « compute checksum of

including header fields,
as sequence of |6-bit
integers

received segment

check if computed
checksum equals checksum

fhedeumdion fldve
sum) of sengr)'lent = NO - error detected
contents = YES - no error detected.
+ sender puts checksum But maybe errors
value into UDP nonetheless? More later

checksum field

Transport Layer 3-60

10

Internet checksum: example

example: add two |6-bit integers

[,
o

1110011001
110101010101

wraparound (D1 001 1 1 0111011

1110
000100

[
-

sum 101110
checksum 010001

Note: when adding numbers, a carryout from the most

significant bit needs to be added to the result

Transport Layer 3-61

Next weeks

+ Reliable data transfer
+ Connection-oriented transport
« TCP

11

