Lecture 12: Efficiency of Recursive Algorithms, Hash Table

Amir H. Chinaei, Summer 2016

Office Hours: R 10-12 BA4222

ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaei/

Course page:
Review

- Efficiency of *iterative* algorithms
 - In CSC148, we mainly focus on time efficiency
 - i.e. *time complexity*
 - We calculate/estimate a function denoting the number of operations (e.g. comparisons), and we focus on the *dominant term*:
 - discard all irrelevant coefficients as well as all non-dominant terms
 - We focus on the *loops*
 - The way the *loop invariant* is changed
 - If the loops are *nested* or *sequential*
 - We also watch the *function calls*
Efficiency of recursive algorithms?
Example 1: BST Contains

A divide and conquer problem:

```python
def bst_contains(node, value):
    if node is None:
        return False
    elif value < node.data:
        return bst_contains(node.left, value)
    elif value > node.data:
        return bstContains(node.right, value)
    else:
        return True
```
Example 1: BST Contains

- Denote $T(n)$ as the number of operations for a tree with n nodes
- Assume we always have the best tree:
 - i.e. the tree is (almost) balanced
- $T(n) = T(n/2) + \varepsilon$
- We will see the big O notation of this, shortly.
Example 2: Quick Sort

Another divide and conquer problem:

\[
\text{Qsort} \ (A, \ i, \ j) \\
\text{if} \ (i < j) \\
p := \text{partition}(A) \\
\text{Qsort} \ (A, \ i, \ p-1) \\
\text{Qsort} \ (A, \ p+1, \ j) \\
\text{end}
\]
Example 2: Quick Sort

- Denote $T(n)$ as the number of operations in Qsort for a list with n items.
- Partition requires to traverse the whole list, i.e. n iterations.
- Assume we have the best partition function: i.e. p is roughly at the middle of the list.
- $T(n) = n + 2T(n/2) + \varepsilon$.
- We will see the big O notation of this, shortly.
Example 3: Merge Sort

Another, divide and conquer problem:

\[
\text{Msort} \ (A, \ i, \ j) \\
\text{if } (i < j) \\
\quad S1 := \text{Msort} (A, \ i, \ (i+j)/2) \\
\quad S2 := \text{Msort} (A, \ (i+j)/2, \ j) \\
\quad \text{Merge}(S1, S2, \ i, \ j) \\
\text{end}
\]
Example 3: Merge Sort

- Denote $T(n)$ as the number of operations in $Msort$ for a list with n items.
- Merge is to merge two sorted lists in one: the result will have n items. hence, Merge requires n operations.
- The list will be always halved.
- $T(n) = \ldots$
- We will see the big O notation of this, shortly.
big O of recurrence relations

- It’s covered in CSC236
 - For instance, via the Master Theorem
 - If interested, read the following:
 - Let T be an increasing function that satisfies the recurrence relation
 \[T(n) = a \cdot T(n/b) + cn^d \]
 whenever $n = b^k$, where k is a positive integer greater than 1, and c and d are real numbers with c positive and d nonnegative. Then
 \[
 T(n) \begin{cases}
 O(n^d) & \text{if } a < b^d, \\
 O(n^d \log n) & \text{if } a = b^d, \\
 O(n \log_b a) & \text{if } a > b^d.
 \end{cases}
 \]
big O of recurrence relations

- For now, we are going to accept the following common ones:

<table>
<thead>
<tr>
<th>Recurrence Relation</th>
<th>Time Complexity</th>
<th>Example Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n)=T(n/2) + O(1)$</td>
<td>$T(n) \in O(\log n)$</td>
<td>bst_contains, Binary Search</td>
</tr>
<tr>
<td>$T(n) = T(n - 1) + O(1)$</td>
<td>$T(n) \in O(n)$</td>
<td>Factorial</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>$T(n) \in O(n \log n)$</td>
<td>Qsort, Msort</td>
</tr>
<tr>
<td>$T(n) = T(n - 1)+T(n - 2)+O(1)$</td>
<td>$T(n) \in 2^n$</td>
<td>Recursive Fibunacci</td>
</tr>
</tbody>
</table>
More insight to big O

- When we say an algorithm (or a function) $f(n)$ is in $O(g(n))$, we mean $f(n)$ is bounded (from up) by $g(n)$. In other words, $g(n)$ is an upper bound for $f(n)$.

- This means, there are positive constants c and n_0 such that $f(n) \leq c \cdot g(n)$ for all $n>n_0$.

- Intuitively, this means that $f(n)$ grows slower than some fixed multiple of $g(n)$ as n grows without bound.
Recall

So, we can say:

...

\[2^n \text{ is an upper bound for } n^2 \]
and
\[n^2 \text{ is an upper bound for } n \log n, \]
and
\[n \log n \text{ is an upper bound for } n, \]
...

Find \(c \) and \(n_0 \) for each of these cases
big O

If a function $\in O(n)$, it's also $\in O(n \log n)$ and $\in O(n^2)$

In general,

$$O(1) \subseteq \ldots \subseteq O(\log \log n) \subseteq O(\log n) \subseteq O(n \log n) \ldots \subseteq O(n^2) \subseteq \ldots \subseteq$$

$$\subseteq O(n^2 \log n) \ldots \subseteq O(n^3) \subseteq \ldots \subseteq O(n^4) \ldots \subseteq O(2^n) \ldots \subseteq O(3^n) \ldots \subseteq O(n!)$$

However, when are looking for an upper bound, we are required to find the tightest one

$$F(n) = 5n^2 + 1000 \quad \text{is in } O(n^2)$$
Recall: Python lists and our liked lists

- Python list is a contiguous data structure
 - *Lookup* is fast
 - *Insertion* and *deletion* is slow

- linked list is not a contiguous data structure
 - *Lookup* is slow
 - *Insertion* and *deletion* (when does not require lookup) is fast

<table>
<thead>
<tr>
<th></th>
<th>lookup</th>
<th>insert</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Linked Lists</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Recall: Python lists and our liked lists
Recall: Balanced BST

- BST can be implemented by linked lists
- Yet, it has a property that makes it more efficient when it comes to lookup

<table>
<thead>
<tr>
<th></th>
<th>lookup</th>
<th>insert</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Linked Lists</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>BST</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

- Yet, this comes at a price for insertion and deletion

- Can we do better?
Can we do better?

- Assume a magical machine:
 - Input: a key
 - Output: its index value in a list
 - O(1)

- Well, this is a mapping machine:
 - A pair of (key, index)
 - The key is the value that we want to lookup or insert or delete, and the index is its location in the list

- And, it's called a hash function
- And, the list is called a hash table
A hash function first *converts* a key to an integer value, then *compresses* that value into an index.

Just as a simple example:

- The *conversion* can be done by applying some functions to the binary values of the characters of the key.
 - And the *compression* can be done by some modular operations.
Example: (insertion)

- A class roster of up to 10 students:
 - We want to enroll “ANA”
 - Hash function:
 - *Conversion* component, for instance, returns 208 which is 65+78+65
 - *Compression* component, for instance, returns 8 which is 208 mod 10
 - So, we insert “ANA” at index 8 of the roster.

- Similarly, if we want to enroll “ADAM”,
 - we insert it at index 5 of the roster (let’s call it the hash table).
Example: (lookup)

- We want to lookup “ANA”
- Hash function:
 - *Conversion* component, for instance, returns 208 which is 65+78+65
 - *Compression* component, for instance, returns 8 which is 208 mod 10
- So, we check index 8 of the roster.

- Similarly, if we want to lookup “ADAM”,
 - we check index 5 of the roster (hash table).
Recall: performance

<table>
<thead>
<tr>
<th></th>
<th>lookup</th>
<th>insert</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Linked Lists</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>BST</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Hash Table</td>
<td>$O(1)^*$</td>
<td>$O(1)^*$</td>
<td>$O(1)^*$</td>
</tr>
</tbody>
</table>

* if there is no collision
Collision

- How collision can happen?
Collision

- What can we do when there is a collision?
 - Chaining
Collision

- What can we do when there is a collision?
 - Probing
Collision

- What can we do when there is a collision?
 - Double hashing
Last recall

<table>
<thead>
<tr>
<th></th>
<th>lookup</th>
<th>insert</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Linked Lists</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>BST</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>Hash Table</td>
<td>O(1)*</td>
<td>O(1)*</td>
<td>O(1)*</td>
</tr>
</tbody>
</table>

- if there is no collision,
 - It’s almost impossible to prevent collision!