Efficiency of Algorithms, Big Oh

Why efficiency of algorithm matters?

Another example of growth of functions:

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\text{Function} & \text{Log } x & \text{Log } n & \text{Log } n^2 & \text{Log } n^3 & \text{Log } n^4 & 2^n & 2^{2n} & 200n+2000n^2
\\
\hline
t_1 & 5 \times 10^{-2} & 5 \times 10^{-2}
t_2 & 7 \times 10^{-2} & 1 \times 10^{-2} & 1 \times 10^{-1} & 1 \times 10^{-1}
t_3 & 1.0 \times 10^{-2} & 2 \times 10^{-2} & 2 \times 10^{-1} & 2 \times 10^{-1}
t_4 & 1.5 \times 10^{-2} & 5 \times 10^{-1} & 5 \times 10^{-1}
ts_5 & 1.7 \times 10^{-2} & 5 \times 10^{-1} & 5 \times 10^{-1}
ts_6 & 2 \times 10^{-2} & 1 \times 10^{-1} & 1 \times 10^{-1}
ts_7 & 1.1 \times 10^{-2} & 5 \times 10^{-1} & 5 \times 10^{-1}
t_8 & 200n^2 + 2000n^2
\\
\end{array}
\]

Comparison of growth of functions

When \(n \) is arbitrarily big, growth of functions highly depends on the dominant term in the function:

- \(n + 5 \)
- \(n + 1000000 \)
- \(n^2 + n + 5 \)
- \(n^2 + 1000000 + 5 \)
- \(2n^2 + n \)
- \(n + \log n + n \log n \)
- \(n + (\log n)^2 + n \log n \)
- \(2^n + n^2 \)
- \(2^n + n^{200} \)

Comparison of growth of functions

Ignore coefficients as well:

- \(20n + 5 \)
- \(200n + 1000000 \)
- \(600n + 5 \)
- \(200n + 1000000 + 5 \)
- \(2n^2 + 50n \)
- \(n + 5000 \log n + 300 n \log n \)
- \(n + (\log n)^2 + 300 n \log n \)
- \(2^n + 1000 n^2 \)
- \(10002n + 2000 n^{200} \)

Comparison of growth of functions

Notation:

- \(20n + 5 \ O(n) \)
- \(200n + 1000000 \ O(n) \)
- \(600n + 5 \ O(n) \)
- \(200n^2 + 1000000 + 5 \ O(n^2) \)
- \(2n^2 + 50n \ O(n^2) \)
- \(n + 5000 \log n + 300 n \log n \ O(n \log n) \)
- \(n + (\log n)^2 + 300 n \log n \ O(n \log n) \)
- \(2^n + 1000 n^2 \ O(2^n) \)
- \(10002n + 2000 n^{200} \ O(2^n) \)
Ordering functions by big \(O \)

Ordering:

- \(2n^2 + n + 5 \quad O(n) \)
- \(200n + 1000000 \quad O(n) \)
- \(600n^2 + n + 5 \quad O(n^2) \)
- \(200n^2 + 1000000n + 5 \quad O(n^2) \)
- \(2n^2 + 50n^2 \quad O(n^2) \)
- \(n + 5000 \log n + 300n \log n \quad O(n \log n) \)
- \(n + (\log n)^2 + 300n \log n \quad O(n \log n) \)
- \(2^n + 1000n^2 \quad O(2^n) \)
- \(10000n^2 + 2000n^200 \quad O(2^n) \)

Ordering functions by their growth

Ordering:

- \(f_1(n) = (1.5)^n \)
- \(f_2(n) = 8n^3 + 1?n^2 + 111 \)
- \(f_3(n) = (\log n)^2 \)
- \(f_4(n) = 2^n \)
- \(f_5(n) = \log (\log n) \)
- \(f_6(n) = n^2 (\log n)^3 \)
- \(f_7(n) = 2^n (n^2 + 1) \)
- \(f_8(n) = n^3 + n (\log n)^2 \)
- \(f_9(n) = 10000 \)
- \(f_{10}(n) = n! \)

Time complexity of algorithms

- How time efficient is an algorithm given input size of \(n \).
- The worst-case time complexity:
 - an upper bound on the number of operations an algorithm conducts to solve a problem with input size of \(n \).
- We measure time complexity in the order of number of operations an algorithm uses in its worst-case and will demonstrate it using big \(O \).
 - ignore implementation details

Time complexity: Example 1

```python
def max2(list):
    max = list[0]
    for i in range(len(list)):
        if max < list[i]:
            max = list[i]
    return max
```

Exact counting:
Count the number of comparisons:
- Assume \(\text{len}(\text{list}) = n \).
- The max < list[i] comparison is made \(n \) times.
- Each time \(i \) is incremented, a test is made to see if \(i < \text{len}(\text{list}) \).
- One last comparison determines that \(i \geq \text{len}(\text{list}) \).
- Exactly \(2n + 1 \) comparisons are made.
- Consider the dominant term (as well as ignoring the coefficient)
- Hence, the time complexity of the max2 algorithm is \(O(n) \).

Time complexity: Example 2

```python
def silly(n):
    n = 17 + n**(1/2)
    n = n + 3
    print("n is: \{:.4f\}.format(n))
    if n > 1997:
        print('very big!')
    elif n > 97:
        print('big!')
    else:
        print('not so big!')
```

Exact counting of the number of comparisons:
- Assume there is not any comparisons inside functions print or format
- Exactly 2 comparisons are made.
- Hence, the time complexity of the silly algorithm is \(O(1) \).
- The number of comparisons in print/format is NOT depending on \(n \).
Estimating big-O

- Instead of calculating the exact number of operations, and then use the dominant term,

- Let's just focus on the dominant parts of the algorithm in the first place.

- Dominant parts of algorithms are loops and function calls.

- Hence, two things to watch:
 1. We need to carefully estimate the number of iterations in the loops in terms of algorithm's input size, i.e. \(n \).
 2. If a called function depends on \(n \) (i.e. it has loops that are in terms of \(n \)), we should take them into consideration.

\[\text{Time complexity: Example 1 (revisited)} \]

1. def max\((\text{list}) \):
2. \text{max} = \text{list}[0]
3. \text{for} \ i \ \text{in} \ \text{range}(\text{len}(\text{list})):\n4. \text{if} \ \text{max} < \text{list}[i]: \text{max} = \text{list}[i]
5. \text{return} \ \text{max}

Calculating big-O:
Focus on the dominant part of the code (normally loops, also be careful about function calls)
- Assume \(\text{len}(\text{list}) = n \)
- The dominant part is the for loop starting at line 3
 - Line 2 is minor, so is line 4, line 5
 - None of these lines have a loop or a function call
- The for loop in line 3 iterates roughly \(n \) times
- Hence, the time complexity of the max algorithm is \(O(n) \).

\[\text{Time complexity: Example 2 (revisited)} \]

1. def max2\((\text{list}) \):
2. \text{max} = \text{list}[0]
3. \text{i} = 1
4. \text{while} \ \text{i} < \text{len}(\text{list}):
5. \text{if} \ \text{max} < \text{list}[\text{i}]: \text{max} = \text{list}[\text{i}]
6. \text{i} += 1
7. \text{return} \ \text{max}

Calculating big-O:
Focus on the dominant part of the code
- Assume \(\text{len}(\text{list}) = n \)
- The dominant part is the while loop starting at line 4
- This while loop iterates roughly \(n \) times
- Hence, the time complexity of the max2 algorithm is \(O(n) \).

\[\text{Time complexity: Example 3 (revisited)} \]

def silly\((n) \):
1. \text{n} = 17 * \text{n}**\((1/2)\)
2. \text{n} = \text{n} + 3
3. print("n is: {}.format(n))
4. if \text{n} > 1997:
5. print("very big!")
6. elif \text{n} > 97:
7. print("big!")
8. else:
9. print("not so big!")

Calculating big-O:
Focus on the dominant parts (loops and function calls) of the code
- There is no loop; but there are some function calls
- The number of operations in print/format is NOT depending on \(n \)
- In other words, these function calls require constant amount of time
- Hence, the overall time complexity of the silly algorithm is \(O(1) \).
Time complexity: Example 5

```python
def silly2(n):
    n = n**2
    n = n + 3
    print("n is: {}.format(n))
    if n > 1997:
        print('so big!')
    elif n > 97:
        for i in range(n):
            print('big!')
    else:
        print('not so big!')
```

Calculate big O:

Time complexity: Example 6

What is the time complexity for this code fragment?

```python
sum = 0
for i in range(n//2):
    sum += i * j
```

The loop (roughly) iterates \(\frac{1}{2} n \) times. Hence, it is \(O(n) \)

Time complexity: Example 7

What is the time complexity for this code fragment?

```python
sum = 0
for i in range(n//2):
    for j in range(n**2):
        sum += i * j
```

The outer loop iterates \(\frac{1}{2} n \times n^2 \) times. Hence, it is \(O(n^3) \)

Time complexity: Example 8

What is the time complexity for this code fragment?

```python
sum = 0
for i in range(n//2):
    for j in range(n**2):
        sum += i * j
```

The loops iterate \(\frac{1}{2} n \times n^2 \) times. Hence, it is \(O(n^3) \)

Time complexity: Example 9

What is the time complexity for this code fragment?

```python
result = []
if len(lst)>0:
    result.append(lst[0])
for i in range(len(lst)-1):
    if lst[i] != lst[i+1]:
        result.append(lst[i+1])
return result
```

It is \(O(n) \)

Time complexity: Example 10

What is the time complexity for this code fragment?

```python
res = []
for i in lst:
    if i not in res:
        res.append(i)
```
What is the time complexity for this code fragment?

```python
sum = 0
if n % 2 == 0:
    for i in range(n*n):
        sum += 1
else:
    for i in range(5, n+3):
        sum += i
```

The loops iterate either \(n^2 \) or \(n+3 \) times. Hence, it is \(O(n^2) \)

What is the time complexity for this code fragment?

```python
i, sum = 0, 0
while i**2 < n:
    j = 0
    while j**2 < n:
        sum += i * j
        j += 1
    i += 1
```

The outer loop iterates \(n^{1/2} \times n^{1/2} \) times. Hence, it is \(O(n) \)

What is the time complexity for this code fragment?

```python
def twoness(n):
    count = 0
    while n > 1:
        n = n // 2
        count = count + 1
    return count
```

The loop iterate \(\log n \) times. Hence, it is \(O(\log n) \)